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Abstract: This article presents a new family of symmetric heavy-tailed distributions. This model
is based on the ratio of two independent random variables; one with a normal distribution in the
numerator and another with a Birnbaum–Saunders distribution in the denominator. The result is a
new slash-like distribution capable of modeling high levels of kurtosis, so it can be considered as a
viable alternative to other heavy-tailed distributions in the literature. Fundamental properties such
as density and raw moments are derived. Parameter estimation is performed using the moment
and maximum likelihood methods. A simulation study to evaluate the behavior of the estimators is
carried out. Finally, the utility of the new distribution is illustrated by fitting two real datasets.

Keywords: Birnbaum–Saunders distribution; kurtosis; maximum likelihood; modified slash distribu-
tion; moments; slash distribution
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1. Introduction

The slash distribution has a symmetrical bell shape similar to the normal, but with
the distinctive feature of having heavier tails. As a consequence, the slash distribution
may perform better when modeling data that exhibits high kurtosis levels. Specifically,
the random variable X follows the slash distribution with kurtosis parameter q > 0,
denoted as X ∼ S(q), if it is represented as

X =
Z

U1/q , (1)

where Z ∼ normal(0, 1) and U ∼ uniform(0, 1) are independent.
From Equation (1), it can be verified that X → Z as q → ∞, that is, the standard

normal distribution is a limit case of the slash distribution. If q = 1, then X follows the
canonic slash distribution proposed by Rogers and Tukey [1].

The literature referring to slash distribution is extensive. Several properties and
extensions of this distribution can be found in Mosteller and Tukey [2], Johnson et al.
[3], Kafadar [4], Wang and Genton [5], Gómez et al. [6], Arslan [7], Genç [8], Arslan and
Genç [9], and Genç [10], among others.

In recent years, some authors have invested significant effort in developing studies
focused on proposing distributions with even heavier tails than the slash distribution,
which are originated by modifying the distribution of the denominator of Equation (1).
For example, Reyes et al. [11] introduced the modified-slash distribution by considering
that U—in Equation (1)—has the exponential distribution with mean 1/2. The authors
illustrate that the modified-slash distribution—presenting the same parameter dimension
as the slash distribution—can present a better performance in fitting data that exhibit a
high kurtosis level. Similarly, Rojas et al. [12] introduced the extended-slash distribution
by replacing U1/q by W in Equation (1), where W has a beta distribution with mean
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q(q + q2)
−1 and variance qq2(q + q2)

−2(q + q2 + 1)−1, with q, q2 > 0. Here, the authors
show that the extended-slash distribution—by presenting two kurtosis parameters—can
perform better than the slash distribution when fitting high kurtosis data. In this same line,
Reyes et al. [13] proposed the generalized modified-slash distribution by replacing V1/q

by W in Equation (1), where W has a gamma distribution with mean 2 and variance 2/β,
with β > 0. Here, the authors show that the generalized modified-slash distribution can
perform better than the slash and modified-slash distributions in fitting high kurtosis data.

The aim of this paper is to improve the modelling of high kurtosis data by introducing
a new heavy-tailed modification of the slash distribution. This modification has such
heavy tails that it can outperform even the modified-slash, extended-slash, and generalized
modified-slash distributions. To achieve this end, we introduce a type II modified-slash
distribution by replacing U1/q by V in Equation (1), where V has a Birnbaum–Saunders
distribution.

The Birnbaum–Saunders distribution [14,15], originally derived to model the time to
failure due to material fatigue, has played an important role in reliability studies. An impor-
tant number of studies on properties, applications, and generalizations of this distribution
can be found in the literature; see for example, Díaz-García and Leiva-Sánchez [16], San-
hueza et al. [17], and Gómez et al. [18], to name a few.

Specifically, the random variable V has a Birnbaum–Saunders distribution with a
shape parameter α > 0 and scale parameter β > 0, denoted as V ∼ BS(α, β), if it can, by
being represented as

V = β

αZ
2

+

[(
αZ
2

)2
+ 1

] 1
2


2

, (2)

where Z has a standard normal distribution.
The pdf of V results to be

f (v; α, β) =
v + β

2α
√

βv3
φ

(
1
α

[√
v
β
−
√

β

v

])
, v > 0, (3)

where φ(·) represents the pdf of standard normal distribution.
We provide evidence that by considering a Birnbaum–Saunders distribution—with

representation and pdf given by Equations (2) and (3)—in the denominator of Equation (1),
a new extremely heavy-tailed distribution is defined, which can perform better than the
slash, extended-slash, modified-slash, and generalized modified-slash distributions when
fitting data that show high levels of kurtosis.

The remainder of this paper is summarized as follows. In Section 2, we propose
the new distribution and study some of its fundamental properties, such as stochastic
representation, density, and raw moments. Section 3 discusses the problem of parameter
estimation via the moment and maximum likelihood methods. In addition, a simulation
study is carried out to evaluate the behavior of the estimators. In Section 4, two application
examples aimed at evaluating the comparative performance of the proposed distribution
are considered. Final comments are considered in Section 5.

2. Type II Modified Slash Distribution

This section proposes the new distribution and derives some of its fundamental
properties.
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2.1. Representation and Density

Definition 1. A random variable Y has a type II modified-slash distribution with location parameter
µ ∈ R, scale parameter σ > 0, and kurtosis parameter α > 0, denoted as Y ∼ T2MS(µ, σ, α), if it
can be as

Y = µ + σ
Z
V

, (4)

where Z ∼ normal(0, 1) and V ∼ BS(2α, 1) are independent.

Remark 1. From the stochastic representation of V ∼ BS(2α, 1), it can be seen that V → 1 as
α ↓ 0. Thus, from Equation (1), it follows that Y → (µ + σZ) as α ↓ 0, which means that the
T2MS(µ, σ, α) distribution converges to the normal(µ,σ2) distribution as α decreases to 0.

Proposition 1. Let Y ∼ T2MS(µ, σ, α). Then, the pdf of Y is is given by

fY(y; µ, σ, α) =
1

4σα

∫ ∞

0

t + 1√
t

φ

(
1

2α

[√
t− 1√

t

])
φ(zt) dt, (5)

where y ∈ R, z =
y− µ

σ
, µ ∈ R, σ > 0, and φ(·) represents the pdf of the standard normal

distribution.

Proof. From Equation (4), taking into account that T = V ∼ BS(2α, 1) and applying the
Jacobian technique (see Ross [19], Equation (7.1)), we obtain that the joint pdf of (Y, T) is

fY,T(y, t; µ, σ, α) =
t + 1

4σα
√

t
φ

((
y− µ

σ

)
t
)

φ

(
1

2α

[√
t− 1√

t

])
, y ∈ R , t > 0,

and marginalizing with respect to T, the result in Equation (5) is obtained.

Corollary 1. If α = 1, then Y follows the canonic type II modified slash (CT2MS) distribution
with pdf

fY(y; µ, σ) =
1

4σ

∫ ∞

0

t + 1√
t

φ

(√
t−
√

t−1

2

)
φ(zt) dt.

We compute the pdf of the T2MS(µ, σ, α) distribution using the stats::integrate( ) func-
tion of the R programming language [20]. The R code used is provided in Appendix A.1.

Figure 1 shows the behavior of the T2MS pdf with µ = 0, σ = 1 and α = 0.3, 0.4, and
0.5, respectively. In the figure, it can be seen that the pdf of the T2MS distribution has a
symmetrical bell shape. Note that as α increases, the weight of the tails and the density
value associated with the mode also increase, which means that the kurtosis level of the
distribution is increased.
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Figure 1. Plot of the pdf of the T2MS distribution with µ = 0 and σ = 1.

2.2. Moments

In this section, we derive the raw moments of the T2MS(µ, σ, α) distribution, which are
used to calculate some associated measures such as the mean, variance, Fisher’s skewness,
and kurtosis coefficients.

Proposition 2. Let X ∼ T2MS(0, 1, α). Then, the kth raw moment of X is given by

E(Xk) =

0, if k = 2j + 1, j = 0, 1, 2, . . .
(2j)!
2j j!

m2j(α), if k = 2j, j = 1, 2, 3, . . .
(6)

where

m2j(α) =
2j

∑
y=0

(
4j
2y

) y

∑
s=0

(
y
s

)
α2(2j+s−y) [2(2j + s− y)]!

22j+s−y(2j + s− y)!
. (7)

Proof. From Definition 1 with µ = 0 and σ = 1, by the condition of independence of
Z ∼ normal(0, 1) and V ∼ BS(2α, 1), it follows that

E[X2j] = E
[(

Z
V

)2j
]
= E[Z2j]E[V−2j].

So, we observe that:

1. For an odd k, k = 2j + 1 with j = 0, 1, 2, . . ., E[Z2j+1] = 0 since Z ∼ normal(0, 1).
Thus, the kth raw moment of X is equal to 0.

2. For an even k, k = 2j with j = 1, 2, . . . , the result is obtained by noting that E[Z2j] =

(2j)!/(2j j!) and E[V−2j] = E[V2j] = m2j(α), where m2j(·) is as in Equation (7), which
finally leads to the result in Equation (6).
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From Proposition 2, the following corollaries are immediate:

Corollary 2. Let Y ∼ T2MS(µ, σ, α). Then, the rth raw moment of Y can be written as

E[Yr] = µr +
r

∑
k=1

(
r
k

)
µr−kσjE(Xk), r = 1, 2, 3, . . .

where E(Xk) is as in Equation (6).

Corollary 3. Let Y ∼ T2MS(µ, σ, α). Then, the expectation and the variance of Y can be written as

E[Y] = µ and V(Y) = σ2(24α4 + 8α2 + 1).

Corollary 4. Let Y ∼ T2MS(µ, σ, α). Then, the Fisher’s skewness (S) and kurtosis (K) coefficient
of Y are given by

S = 0 and K =
40320α8 + 11520α6 + 1440α4 + 96α2 + 3

(24α4 + 8α2 + 1)2 .

From Corollary 4, it is easy to see that the Fisher’s kurtosis coefficient of the T2MS(µ, σ, α)
distribution takes values in the interval (3, 70) depending on the assumed value for α. Con-
sequently, the T2MS(µ, σ, α) distribution presents heavier tails than the normal distribution.
Figure 2 describes the behavior of the Fisher’s kurtosis coefficient of the T2MS(µ, σ, α) dis-
tribution. Here, it is seen that the kurtosis level of the T2MS(µ, σ, α) distribution increases
as α increases.
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Figure 2. Plot of the Fisher’s kurtosis coefficient of the T2MS(µ, σ, α) (red line) and normal (black
circle) distributions.
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3. Parameter Estimation

Initially, this section discusses the parameter estimation for the T2MS(µ, σ, α) distribu-
tion via the moment and maximum likelihood methods. Secondly, a simulation study is
carried out in order to evaluate the behavior of the provided estimators.

3.1. Moment Estimation

Proposition 3. Let y1, . . . , yn be an observed random sample for the random variable Y ∼
T2MS(µ, σ, α). Then, the moment estimators µ̂M, σ̂M, and α̂M for µ, σ, and α satisfy the fol-
lowing equations:

ky(24α̂4
M + 8α̂2

M + 1)2 = 40320α̂8
M + 11520α̂6

M + 1440α̂4
M + 96α̂2

M + 3, (8)

σ̂M =

√
s2

y

24α̂4
M + 8α̂2

M + 1
, (9)

µ̂M = y, (10)

where y is the sample mean, s2
y is the sample variance, and ky is the sample Fisher’s kurtosis

coefficient.

Proof. Equations (8) and (9) are direct consequences of equating the mean, variance,
and Fisher’s kurtosis coefficient of the T2MS distribution—given in Corollaries 3 and 4—
with the corresponding mean, variance, and Fisher’s kurtosis coefficient of the sample.

3.2. Maximum Likelihood Estimation

Let y1, . . . , yn be an observed random sample of size n on Y ∼ T2MS(µ, σ, α). The log-
likelihood function for θ = (µ, σ, α)′ can be written as

`(θ; yi) = −n log(4)− n log(α)− n log(σ) +
n

∑
i=1

log
{∫ ∞

0
gα(t, zi) dt

}
, (11)

where

gα(t, zi) =
(t + 1)√

t
φ

(√
t−
√

t−1

2α

)
φ(zit),

and the components of the score vector U(θ) can be written as

Uµ(θ) =
∂`(θ)

∂µ
=

1
σ

n

∑
i=1

zirα(zi)

hα(zi)
, (12)

Uσ(θ) =
∂`(θ)

∂σ
= −n

σ
+

1
σ

n

∑
i=1

z2
i rα(zi)

hα(zi)
, (13)

Uα(θ) =
∂`(θ)

∂α
= −n

α
+

1
4α3

n

∑
i=1

sα(zi)

hα(zi)
, (14)

where
hα(zi) =

∫ ∞

0
gα(t, zi) dt, rα(zi) =

∫ ∞

0
t2gα(t, zi) dt,

and sα(zi) =
∫ ∞

0

(√
t−
√

t−1
)2

gα(t, zi) dt.

Thus, the maximum likelihood estimator θ̂ML = (µ̂ML, σ̂ML, α̂ML)
′ of θ = (µ, σ, α)′

can by obtained be solving the system of equations U(θ) = 0. However, it is not possible
to obtain a closed form for θ̂, so the maximum likelihood estimates must be obtained by
solving the system using numerical procedures.
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Based on the approximation of the asymptotic variance of the maximum likelihood
estimator, the interval estimation and the hypothesis tests for µ, σ, and α can be performed
by computing the observed information matrix Jn(θ). This matrix is given by

Jn(θ) =−

Jµµ Jµσ Jµα

Jσσ Jσα

Jαα

,

Jθrθp =− ∂2`(θ; yi)

∂θrθp

∣∣∣
θ=θ̂ML

, r = p = 1, 2, 3,

where θ1 = µ, θ2 = σ, θ3 = α, `(θ, yi) is as in Equation (11), and the second partial
derivatives are presented in Appendix B.

So, the observed covariance matrix is the inverse of Jn(θ), J−1
n (θ), and the diagonal

elements of J−1
n (θ̂) are the variances of µ̂, σ̂, and α̂, which we denote by v̂ar(µ̂), v̂ar(σ̂), and

v̂ar(α̂), respectively. Then, the asymptotic (1− γ)100% confidence intervals for µ, σ, and
α are µ̂± zδ/2

√
v̂ar(µ̂), σ̂± zδ/2

√
v̂ar(σ̂), and α̂± zδ/2

√
v̂ar(α̂), respectively, where zδ/2

stands for the upper percentile δ/2 of the standard normal distribution.

3.3. Practical Considerations

Regarding the parameter estimate via the moment method, we calculate the root
of Equation (8) using the rootSolve::uniroot.all( ) function [21] in the R programming
language. Once the estimate α̂M is obtained, we use it to obtain the estimate σ̂M of σ from
the computation of Equation (9).

Regarding the maximum likelihood estimation of the parameters of the T2MS(µ, σ, α)
distribution, since the system of score equations does not lead to closed analytical expres-
sions of the estimators, it is necessary to use a computational routine to obtain the root of
this system. For this, we suggest the use of the rootSolve::multiroot( ) function [21] in the R
programming language. This function implements the Newton–Raphson method to obtain
an approximation of the root of the system of nonlinear equations to be solved.

In this case, one may alternatively prefer to address the optimization problem maxθ `(θ;
yi), subject to µ ∈ R, σ > 0 and α > 0, where `(·; ·) is as in Equation (11). Here, we suggest
using the stats::optim( ) function in the R programming language. In particular, we suggest
the L-BFGS-B method [22], which allows the parameter space to be specified by box
constraints. We use the moment estimates discussed in Section 3.1 as the values to initialize
the iterative process.

The R codes used to obtain the estimates are provided in Appendix A.2.

3.4. Simulation Study

In this section, we consider a simulation study aimed at evaluating the behavior of the
moment and maximum likelihood estimators of the T2MS(µ, σ, α) distribution parameters.
We generate 1000 random samples from the T2MS(µ, σ, α) distribution under scenarios
A (µ = −5, σ = 1, α = 0.5) and B (µ = 5, σ = 1, α = 0.2), and for each of the sample
sizes n = 25, 50, 100, 200, and 400. The samples were generated considering the following
steps, which were formulated from the stochastic representation of the T2MS(µ, σ, α)
random variable:

1. Choose values for µ, σ, α, and n.
2. Generate w ∼ normal(0, 1).
3. Compute v = [αw +

√
(αw)2 + 1]2.

4. Generate z ∼ normal(0, 1).
5. Compute y = µ + σ z

v .
6. Repeat steps 2 to 5 n times.

For each generated sample, we calculate the M and ML estimates under the practical
considerations of Section 3.3. Table 1 reports the average estimate and standard deviation
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for each 1000 moment and maximum likelihood estimates obtained in scenarios A and
B, under the different sample sizes considered. In the table, the consistency property of
the estimators provided by both estimation methods can be observed; note that as the
sample size increases, the AEs obtained with both estimation methods approach the true
values of the parameters and that the SDs decrease to zero. However, maximum likelihood
estimators show greater efficiency and provide estimates with less bias; note that the bias
associated with the maximum likelihood estimates is smaller (especially in small samples)
and that the SDs are smaller.

Table 1. The average estimate (AE) and standard deviations (SD) for each 1000 moment and maximum
likelihood estimates obtained in scenarios A (µ = −5, σ = 1, α = 0.5) and B (µ = 5, σ = 1, α = 0.2),
under the different sample sizes considered in the study.

Scenario n AE (µ̂M) AE (µ̂ML) AE (σ̂M) AE (σ̂ML) AE (α̂M) AE (α̂ML)

A 25 −5.023 −5.002 1.581 0.966 0.227 0.528
50 −5.010 −5.001 1.463 0.984 0.289 0.507

100 −5.006 −5.001 1.371 0.998 0.343 0.502
200 −5.004 −5.000 1.280 1.000 0.386 0.501
400 −5.000 −5.000 1.200 1.000 0.431 0.500

B 25 5.007 5.004 1.063 0.922 0.146 0.268
50 5.005 5.004 1.055 0.976 0.156 0.221

100 5.004 5.003 1.041 0.997 0.165 0.202
200 5.001 5.001 1.020 0.999 0.178 0.201
400 5.000 5.000 1.016 1.000 0.183 0.200

Scenario n SD (µ̂M) SD (µ̂ML) SD (σ̂M) SD (σ̂ML) SD (α̂M) SD (α̂ML)

A 25 0.421 0.181 0.499 0.287 0.187 0.183
50 0.304 0.120 0.324 0.197 0.151 0.122

100 0.217 0.083 0.280 0.142 0.141 0.080
200 0.146 0.054 0.262 0.100 0.133 0.055
400 0.105 0.038 0.255 0.069 0.124 0.040

B 25 0.240 0.214 0.207 0.206 0.087 0.086
50 0.165 0.153 0.143 0.141 0.075 0.071

100 0.118 0.105 0.107 0.103 0.064 0.062
200 0.079 0.070 0.087 0.070 0.058 0.044
400 0.059 0.052 0.068 0.050 0.047 0.032

4. Illustrations

In this section, we present two applications to real data that illustrate the usefulness of
the type II modified slash (T2MS) distribution in fitting high kurtosis data. In each applica-
tion, we compare the performance of the T2MS distribution with that of other heavy-tailed
distributions, such as the slash (S), extended-slash (ES), modified-slash (MS), and general-
ized modified-slash (GMS) distributions. Below are the pdfs of these distributions:

1. The S pdf;

f (y; µ, σ, q) =
q
σ

∫ 1

0
tqφ

(
y− µ

σ
t
)

dt,

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is the scale parameter, q > 0 is a
kurtosis parameter, and φ(·) is the pdf of the standard normal distribution.

2. The ES pdf [12];

f (y; µ, σ, q, q2) =
1

σB(q, q2)

∫ 1

0
φ

(
y− µ

σ
t
)

tq(1− t)q2−1 dt,

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is the scale parameter, q, q2 > 0 are
kurtosis parameters, and φ(·) is the pdf of the standard normal distribution.
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3. The MS pdf [11];

f (y; µ, σ, q) =
2q√
2πσ

∫ ∞

0
tq exp

{
−1

2

[(
y− µ

σ

)2
t2 + 4tq

]}
dt,

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is the scale parameter, and q > 0 is
a kurtosis parameter.

4. The GMS pdf [13];

f (y; µ, σ, q) =
(2q)q

√
2πσΓ(q)

∫ ∞

0
tq exp

{
− t2

2

(
y− µ

σ

)2
− 2qt

}
dt,

where y ∈ R, µ ∈ R is a location parameter, σ > 0 is the scale parameter, and q > 0 is
a kurtosis parameter.

In addition, we include the normal (N) distribution in the analysis because it is a
limiting case of most of the aforementioned distributions.

In each application, we used the Anderson–Darling (AD) test to assess the quality of
fit of the T2MS distribution. This test is computed using the goftest::ad.test( ) function [23]
of the R programming language. The comparative performance of the fitted distributions is
evaluated using the Akaike Information Criterion (AIC) [24] and the Bayesian Information
Criterion (BIC) [25].

4.1. Ant Movement Direction Data

In this section, we consider a set of observations on the initial direction of move-
ment of 730 ants subjected to a visual stimulus. These data were originally presented in
Jander [26] and subsequently analyzed in Batschelet [27], Sengupta and Pal [28], and Jones
and Pewsey [29]. Figure 3 shows the boxplot of these data and Table 2 shows the statistical
summary. Here, it can be seen that the data present a very smooth level of negative skew-
ness and a high level of kurtosis, explained by the presence of atypical observations. Taking
these properties into account, we expect that the T2MS distribution can fit this dataset
appropriately.

Table 3 reports the maximum likelihood estimates and the AIC and BIC values for the
distributions fitted to the ants data. In this table, it is observed that the T2MS distribution
has the lowest AIC and BIC values, suggesting that it should be selected for fitting the
ant data. For the T2MS distribution, we obtain an observed statistic equal to 2.328 and a
p-value equal to 0.798 in the AD test, suggesting that this distribution performs well in
fitting the data. Figure 4 presents the histogram for the ants data and the pdfs fitted via
the maximum likelihood method. In the figure, it can be seen that the pdf of the T2MS
distribution is closest to the empirical frequencies both in the center and in the extremes of
the histogram.

Table 2. Descriptive statistics for ants data set.

Size Average Standard Deviation Skewness Kurtosis

730 176.438 62.643 −0.205 4.587
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Figure 4. Left: Histogram of the ants data and densities fitted via the maximum likelihood method.
Right: Zoom the tails of the histogram.
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Table 3. Maximum likelihood estimates and values of the information criteria (AIC and BIC) for the
distributions fitted to the ants data.

Parameter N S ES MS GMS T2MS

µ
176.487 181.526 181.739 181.738 181.724 181.791
(2.317) (1.270) (1.231) (1.224) (1.229) (0.050)

σ
62.606 16.819 1.275 16.762 14.722 36.980
(1.638) (1.246) (1.066) (1.245) (0.884) (1.832)

q - 1.172 1.920 1.505 1.978 0.464
(0.085) (0.195) (0.095) (0.201) (0.024)

q2
- - 42.544 - - -

(37.623)

AIC 8115.474 7950.532 7914.972 7921.978 7911.628 7882.058

BIC 8124.660 7964.311 7933.344 7935.757 7925.407 7895.837

4.2. DEM/GBP Exchange Rate Returns Data

In this section, we consider a set of 1974 observations on the percentage returns of
Deutsche mark/British pound (DEM/GBP) exchange rates from 1984 through 1991. This
dataset can be found under the name MarkPound in the AER statistical package [30] of
the R programming language. Table 4 shows some descriptive statistics for these data and
Figure 5 presents the boxplot. From these, it can be seen that the data present a smooth
level of skewness and an important level of kurtosis explained by the presence of several
atypical observations.

Table 4. Descriptive statistics for returns data.

Size Average Standard Deviation Skewness Kurtosis

1974 −0.016 0.047 −0.248 6.621

●● ●● ●●●● ●● ● ●●●● ●● ● ● ●●● ● ●●●● ● ● ●●● ●●●● ●●● ●●● ●● ●● ●●● ●●● ●●●●● ● ●●● ●●● ●● ●●● ●●● ●●● ● ●●●● ●●● ●●● ● ●●●●●●●● ●●●● ●● ●● ● ●● ●●● ●●●● ● ●●● ●● ●●●●●● ●● ● ●● ●● ●
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Percentage returns

Figure 5. Boxplot for returns data.
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Table 5 reports the maximum likelihood estimates and the AIC and BIC values for the
distributions fitted to the returns data. In this table, it is observed that the T2MS distribution
has the lowest AIC and BIC values, suggesting that it should be selected for fitting the
returns data. For the T2MS distribution, we obtain an observed statistic equal to 3.169 and
a p-value equal to 0.635 in the AD test, suggesting that this distribution performs well in
fitting the data. Figure 6 presents the histogram for the returns data and the pdfs fitted via
the ML method. In the figure, it can be seen that the pdf of the T2MS distribution is closest
to the empirical frequencies both in the center and in the extremes of the histogram.

Table 5. Maximum likelihood estimates and values of the information criteria (AIC and BIC) for the
distributions fitted to the returns data.

Parameter N S ES MS GMS T2MS

µ
−0.016 0.003 0.003 0.004 0.003 0.003
(0.010) (0.008) (0.008) (0.008) (0.008) (0.008)

σ
0.470 0.238 0.034 0.225 0.159 0.354

(0.007) (0.009) (0.003) (0.005) (0.003) (0.008)

q - 2.223 4.063 2.615 4.321 0.286
(0.146) (0.336) (0.049) (0.333) (0.015)

q2
- - 33.750 - - -

(2.521)

AIC 2626.192 2333.100 2300.656 2311.604 2296.674 2286.606

BIC 2637.368 2349.863 2323.007 2328.367 2313.437 2303.369
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Figure 6. Left: Histogram of the returns data and densities fitted via the maximum likelihood method.
Right: Zoom the tails of the histogram.

5. Final Comments

In this article, we propose an alternative distribution for modeling high kurtosis data.
The new distribution can be understood as a modified version of the slash distribution that
—like other slash distributions in the literature—arises as a quotient of independent random
variables. The novelty here is to consider a random variable with a Birnbaum–Saunders dis-
tribution in the denominator, something that we believe has not been previously explored.
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We observe that this modification of the representation of a slash random variable leads to
a new distribution with extremely heavy tails, which can outperform other distributions in
the analysis of high kurtosis data.

The fundamental properties of the new distribution are derived, among them the
stochastic representation, the density function, and the raw moments with associated
measures. Parameters in the proposed distribution are estimated using the moment and
maximum likelihood methods. Through Monte Carlo simulation experiments, it is observed
that both estimation methods provide consistent estimators. However, it could be observed
that the maximum likelihood estimators are more efficient. Two applications to real data
are considered. In each application, it is illustrated that the proposed distribution performs
well in modeling high kurtosis data, even better than other heavy-tailed distributions in
the literature.
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Appendix A. R Codes

In this section, we present R codes for pdf computation, pseudorandom number
generation, and the parameter ML estimation of the T2MS distribution.

Appendix A.1. Code for the Computation of the T2MS Pdf

dT2MS <- function(y,m,s,a){
n = length(y)
f = rep(0,n)
for(i in 1:n){
f[i] = stats::integrate(function(t,y,m,s,a){
(t+1)/sqrt(t)*dnorm((sqrt(t)-sqrt(1/t))/(2*a))*dnorm(((y-m)/s)*t)
},lower=0,upper=Inf,y=y[i],m=m,s=s,a=a)$value
}
return(f/(4*s*a))
}

Appendix A.2. Code to Obtain the Moment and Maximum Likelihood Estimates

kurtT2MS <- function(u){
(40320*u^8+11520*u^6+1440*u^4+96*u^2+3)/(24*u^4+8*u^2+1)^2
}
loglik <- function(p,y){
-sum(log(dT2MS(y,p[1],p[2],p[3])))
}

n <- 500
m <- 5
s <- 1
a <- 0.5
w <- rnorm(n)
v <- (a*w+((a*w)^2+1)^{1/2})^2
z <- rnorm(n)
y <- m+s*z/v



Mathematics 2023, 11, 3018 14 of 15

estM_alpha <- rootSolve::uniroot.all(function(u,w)kurtT2MS(u)
-moments::kurtosis(w), lower=1e-12, upper=50, tol=1e-12, w = y)
estM_sigma <- sqrt((mean(y^2)-mean(y)^2)/(24*estM_alpha^4+8*estM_alpha^2+1)
)
estM_mu <- mean(y)
estML <- stats::optim(par=c(estM_mu,estM_sigma,estM_alpha), fn=loglik,
method=c(‘‘L-BFGS-B’’), lower=c(-Inf,1e-15,1e-15), upper=c(Inf,Inf,Inf),
y=y)

Appendix B. Elements of the Observed Information Matrix

If y1, . . . , yn is a random sample from a TIIMS(µ, σ, α) population and zi =
yi − µ

σ
,

the second partial derivatives of the log-likelihood function with respect to all the parame-
ters are given by

∂2`(θ)

∂µ2 =
1
σ2

n

∑
i=1

z2
i r2

α(zi)

h2
α(zi)

− 1
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where θ = (µ, σα)′, hα(zi), rα(zi) and sα(zi) are as in Equations (12)–(14), and

uα(zi) =
∫ ∞

0
t4gα(t, zi) dt, vα(zi) =

∫ ∞

0
(
√

t−
√

t−1)2t2gα(t, zi) dt

and wα(zi) =
∫ ∞

0
(
√

t−
√

t−1)4gα(t, zi) dt.

Abbreviations
The following abbreviations are used in this manuscript:

S Slash
MS Modified-slash
GMS Generalized modified-slash
ES Extended-slash
T2MS Type II modified-slash
AE Average estimate
SD Standard deviation
AIC Akaike information criteria
BIC Bayesian information criteria
AD Anderson–Darling
pdf Probability density function
cdf Cumulative distribution function
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