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Abstract: Fractional systems have been widely utilized in various fields, such as mathematics, physics
and finance, providing a versatile framework for precise measurements and calculations involving
partial quantities. This paper aims to develop a novel polynomial controller for a power system
(PS) with fractional-order (FO) dynamics. It begins by studying the practical stability of a general
class of tempered fractional-order (TFO) nonlinear systems, with broad applicability and potential
for expanding its applications. Afterward, a polynomial controller is designed to guarantee the
practical stability of the PS, encompassing the standard constant controller as a specific instance.
The design conditions for this controller are resolved using the sum of squares (SOS) approach, a
powerful technique for guaranteeing stability and control design. To showcase the practical value of
the analytical findings, simulations of the PS are conducted utilizing SOSTOOLS.
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1. Introduction

In fractional calculus, non-integer order integrals and differential operators are studied,
as well as their applications. Fractional-order models are more accurate and efficient than
classical models, and non-integer derivative operators are essential for describing physical
events, for example, [1–4]. There has been considerable research on the benefits of fractional
calculus in a wide range of fields, including applied mathematics, biology, mechanics,
finance, engineering and control theory [5–17].

Stability is one of the most important concepts in control theory. The stability of
fractional differential equations (FDEs) has become a hot topic in mathematics and related
fields due to the rapid development of fractional calculus. For FDEs, most works on
stability are aimed at trivial solutions or equilibrium points [18–23]. On the one hand,
Ben Makhlouf et al. [24] introduced the idea of practical stability for FDEs, which is an
intrinsic alternative to Lyapunov’s original concept of stability, where the origin is not an
equilibrium point. In terms of the convergence of solutions to a small ball, practical stability
refers to the stability of the systems in a small neighbourhood of the origin [25–27].

On the other hand, due to the growing energy demand, researchers have shown
considerable interest in investigating control problems in the field of power systems (PSs).
Numerous methodologies have been suggested to generate contemporary outcomes in this
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particular field. The majority of the studies focus on PSs with integer-order characteristics.
For example, a PID controller is applied in [28] for load frequency regulation in PSs. The
Takagi Sugeno (TS) method is adopted in [29] to design a fuzzy controller for a single
machine infinite bus that is impacted by fault perturbation. It is worth mentioning that all
the previously cited results are presented in the form of linear matrix inequalities (LMIs),
which can be efficiently addressed through the utilization of the LMI toolbox.

As fractional-order (FO) models have gained significant popularity, numerous re-
searchers have recognized their ability to provide a clearer representation of physical
phenomena. For example, Yu et al. in [30] illustrate that the FO model of a PS can accu-
rately present the phenomenon of chaos compared to the integer-order model. However,
there have been minimal advancements in the literature regarding the stability and sta-
bilization of fractional-order power systems (FOPSs). For example, the authors of [31]
investigate the control design problem of time delay FOPSs.

In 2002, SOSTOOLS v1.00, a tool for polynomial convex optimization, appeared as
an alternative to the standard LMI toolbox. The main advantage of this tool compared
to the LMI Toolbox is that it allows users to solve polynomial LMI problems, which are
quite general and revert to the standard LMI problem when all polynomials are limited to
a constant. Recently, the attention of many researchers has been paid to sum of squares
(SOS) approach in control applications, e.g., fault tolerant control [32], observer-based
control [33] and tracking control [34].

To the best of the authors’ knowledge, the utilization of the SOS approach for resolving
the stabilization problem of a FOPS remains an unresolved matter.

The following is a list of the advantages and innovations of this paper:

• The TFO derivative is considered, which is more general than the Caputo frac-
tional derivative.

• The practical stability of TFO nonlinear systems is investigated.
• Compared to works [30,31], the proposed method allows us to eliminate a cross-

product term that arises in the derivative of the Lyapunov functional.
• Unlike the standard feedback controller, the gain N (ξ) is not constant; however, it

instead follows a polynomial function. Consequently, it allows for greater flexibility in
ensuring practical stability.

The subsequent sections of this paper are structured as follows. In Section 2, prelim-
inaries of the TFO and SOS approaches are presented. In Section 3, new results on the
practical stability of a TFO nonlinear system is proposed. Based on this result and the
SOS approach, a polynomial feedback controller is designed, in Section 4, to guarantee the
practical stability of a FOPS.

2. Preliminaries

In this section, some basics results on tempered fractional integrals (FIs) and TFOs
are presented.

Definition 1 ([23]). Let v > 0, ι ≥ 0 and u ∈ C
(
[a, b],R

)
. The tempered FI of order v of u is

defined by

Iv,ι
a+ u(ς) =

1
Γ(v)

∫ ς

a
(ς− l)v−1 exp

(
− ι(ς− l)

)
u(l)dl,

where Iv
a+ is the Riemann–Liouville FI of order v.

Definition 2 ([23]). Let κ ∈ N, ς− 1 < v < ς, ι ≥ 0 and u ∈ ACς[a, b]. The TFO of order v of
u(t) is defined by

CDv,ι
a+ u(ς) =

exp(−ις)

Γ(κ −v)

∫ ς

a
(ς− l)κ−v−1u[κ]

ι (l)dl, (1)
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where

u[κ]
ι (ς) =

[
d
dς

]κ(
exp(ις)u(ς)

)
. (2)

For the case when 0 < v < 1, then the TFO of order v for an absolutely continuous function
u becomes:

CDv,ι
a+ u(ς) =

exp(−ις)

Γ(1−v)

∫ ς

a
(ς− l)−v d

dl
(exp(ιl)u(l))dl. (3)

Definition 3 ([35]). The Mittag–Leffler function with two parameters is defined as

Ed1,d2(l) =
+∞

∑
λ=0

lλ

Γ(λd1 + d2)
,

where d1 > 0, d2 > 0, l ∈ C.
When d2 = 1, we have Ed1(l) = Ed1,1(l).

Lemma 1 ([23]). Let 0 < v < 1, P ∈ Rn×n be a constant, symmetric, definite positive matrix
and x(ς) ∈ Rn be an absolutely continuous function, then

CDv,ι
a+ xT Px(ς) ≤ 2x(ς)T PCDv,ι

a+ x(ς). (4)

Lemma 2 ([23]). Let 0 < v < 1. The solution of the following system

CDv,ι
ς0

+u(ς) = ru + c(ς), (5)

where u ∈ Rn is given by

u(ς) = exp
(
− ι(ς− ς0)

)
Ev

(
r(ς− ς0)

v
)
u(ς0) (6)

+
∫ ς

ς0

(ς− l)v−1Ev,v
(
r(ς− l)v

)
exp

(
− ι(ς− l)

)
c(l)dl.

Definition 4 ([36]). Consider υ(y) = υ(y1, y2, . . . , yr) (in which y ∈ Rr) as a polynomial. υ(y)
is an SOS if there exist polynomials q1(y), q2(y), . . . , and qg(y) such that

υ(y) =
g

∑
j=1

q2
j (y). (7)

In the rest, ΠSOS denotes the set of SOSs.
It is clear that υ(y) ∈ ΠSOS implies that υ(y) ≥ 0, ∀y ∈ Rr.

Lemma 3 ([36]). ConsiderH(y) as a l × l symmetric polynomial matrix, a vector α ∈ Rr which
does not depend on y and a known positive polynomial ϕ(y), then

−αT
(
H(y) + ϕ(y)

)
α ∈ ΠSOS (8)

implies that

H(y) < 0. (9)

Lemma 4 ([37]). The inequality mentioned below holds for any scalar ε > 0 and matrices K and L
with suitable dimensions

KT L + LTK ≤ εKTK + ε−1LT L. (10)
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3. Practical Stability of Tempered Fractional-Order Nonlinear Systems

Let us examine the fractional-order system presented below

CDv,ι
ς0

x(ς) = F(ς, x), ς ≥ ς0, (11)

x(ς0) = x0,

where ς0 ∈ R+ and F(., .) ∈ C
(
R+ ×Rn,Rn).

Definition 5. The system (11) is called generalized practical Mittag-Leffler stable (PMLS) if the
following estimation of the solutions of the system (11) is satisfied:

‖x(ς; ς0, x0)‖ ≤ c1‖x0‖ exp
(
− c2(ς− ς0)

)(
Ev

(
− c3(ς− ς0)

v
))c4

+ r, ∀ς ≥ ς0 ≥ 0, (12)

where ci > 0, i = 1, . . . , 4 and r ≥ 0.

Remark 1. When r = 0, system (11) is said to be generalized Mittag-Leffler stable (MLS) (see [23]).

Theorem 1. Suppose that there is a C1 function V : R+ ×Rn −→ R, such that

1.
δ1‖x‖2 ≤ V(ς, x) ≤ δ2‖x‖2, ∀x ∈ Rn, ς ≥ ς0. (13)

2.
CDv,ι

ς0
V(ς, x(ς; ς0, x0)) ≤ −δ3‖x(ς; ς0, x0)‖2 + ϕ(ς), ∀ς ≥ ς0 ≥ 0, (14)

where δ1, δ2, δ3 > 0 and ϕ is continuous positive function that satisfies:

sup
ς≥0

∫ ς

0
(ς− l)v−1 exp

(
− ι(ς− l)

)
Eα,α

(
− δ3

δ2
(ς− l)v

)
ϕ(l)dl ≤ M

where M ≥ 0.
Then, the system (11) is PMLS.

Proof. From inequalities (13) and (14) we get:

CDv,ι
ς0

V(ς, x(ς; ς0, x0)) ≤ −
δ3

δ2
V(ς, x(ς; ς0, x0)) + h(ς). (15)

Let h(ς) =C Dv,ι
a+ V(ς, x(ς; ς0, x0)) +

δ3
δ2

V(ς, x(ς; ς0, x0)), then we get from Lemma 2

V(ς, x(ς; ς0, x0)) = exp
(
− ι(ς− ς0)

)
Ev

(
− δ3

δ2
(ς− ς0)

v
)
V(ς0, x0)

+
∫ ς

ς0

(ς− s)v−1Ev,v
(
− δ3

δ2
(ς− s)v

)
exp

(
− ι(ς− s)

)
h(s)ds

≤ exp
(
− ι(ς− ς0)

)
Ev

(
− δ3

δ2
(ς− ς0)

v
)
V(ς0, x0)

+
∫ ς

ς0

(ς− s)v−1Ev,v
(
− δ3

δ2
(ς− s)v

)
exp

(
− ι(ς− s)

)
ϕ(s)ds

≤ exp
(
− ι(ς− ς0)

)
Ev

(
− δ3

δ2
(ς− ς0)

v
)
V(ς0, x0) + M

(16)
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for every ς ≥ ς0.
It follows from inequality (13) that

‖x(ς; ς0, x0)‖ ≤

√
δ2

δ1
exp

(
− ι

2
(ς− ς0)

)(
Ev

(
− δ3

δ2
(ς− ς0)

v
)) 1

2 ‖x0‖+
√

M,

for every ς ≥ ς0.
Thus, the system (11) is PMLS.

Remark 2. When ϕ(ς) = 0, we get the MLS for system (11) (see [23]).

4. Practical Stabilization for a Class of Power Systems with Load Disturbance

Now, we consider a power system with load disturbance. Based on the definition
of TFO of order v, this system is modeled by the following fractional-order nonlinear
model [31]: { CDv,ι

ς0 δ(ς) = ω(ς)
CDv,ι

ς0 ω(ς) = −η sin(δ(ς))− γω(ς) + ρ + µ cos(βς)
(17)

where

η =
Qe

M
, γ =

H
M

, ρ =
Qm

M
, µ =

Qe

M

in which Qe refers to the electrical power, H refers to the damping coefficient, M refers to the
inertia time constant, Qm refers to the mechanical power and Qe refers to the disturbance
power amplitude.

In the following, to keep it concise, we omit the time variable t.
Using the Taylor expansion, sin(δ) can be approximated by the following polynomial

functions [38,39]:
sin(δ) ≈ δ for small angles δ

sin(δ) ≈ δ− 40
243 δ3 for |δ| < 7π

18 = 70
sin(δ) ≈ δ− 40

243 δ3 + 1
131 δ5 for |δ| < 2π

3 = 120
(18)

The fifth-order approximation is illustrated in Figure 1.

δ

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-1.5

-1

-0.5

0

0.5

1

1.5

sin(δ)

δ −
40
243

δ
3 + 1

131
δ
5

Figure 1. Polynomial approximation to sin(δ) for δ ∈ [−2π/3, 2π/3].

In this case, the system with feedback gains is given as follows:
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{ CDv,ι
ς0 δ = ω +N11(δ, ω)δ +N12(δ, ω)ω

CDv,ι
ς0 ω = −η

(
δ− 40

243 δ3 + 1
131 δ5

)
− γω + ρ + µ cos(βς) +N21(δ, ω)δ +N22(δ, ω)ω

(19)

Subsequently, the system is expressed in a compact form as follows:

CDv,ι
ς0

ξ =
(
A(ξ) +N (ξ)

)
ξ + J (20)

where

ξ =
[

ξ1, ξ2
]T

=
[

δ, ω
]T ,A(ξ) =

[
0 1

−η
(

1− 40
243 ξ2

1 +
1

131 ξ4
1

)
−γ

]
,

N (ξ) =

[
N11(ξ) N12(ξ)
N21(ξ) N22(ξ)

]
,J =

[
0

ρ + µ cos(βς)

]
and J satisfies ‖J ‖ ≤ c, where c is a positive constant.

Theorem 2. For given positive scalars ϕ1, ϕ2 and positive polynomial ϕ3(ξ), the system (20) is
PLMS if there exist symmetric matrices P ,R and polynomial matrix N̂ (ξ) such that the following
optimization problem holds:
Minimize ε satisfying the following conditions:

γT
1

(
P − ϕ1 I

)
γ1 ∈ ΠSOS, (21)

γT
1

(
R− ϕ2 I

)
γ1 ∈ ΠSOS, (22)

−γT
2

(
Ξ(ξ) + ϕ3(ξ)I

)
γ2 ∈ ΠSOS, (23)

where γ1 and γ2 are vectors that are not dependent on ξ,

Ξ(ξ) =

[
Ξ11(y) P
∗ −εI

]
,

in which

Ξ11(ξ) = PA(ξ) + N̂ (ξ) +A(ξ) + N̂ T(ξ)P +R

In this case, N (ξ) = P−1N̂ (ξ)

Proof. Choose the following polynomial Lyapunov function

V(ξ) = ξTPξ, (24)

Based on Lemma 1, we obtain

CDv,ι
ς0 V(ξ) ≤ 2CDv,ι

ς0 xTPx = ξTΩ(ξ)ξ + ξTPJ + J TPξ (25)

where Ω(ξ) = P
(
A(ξ) +N (ξ)

)
+
(
A(ξ) +N (ξ)

)T
P .

By applying Lemma 4, we obtain

ξTPJ + J TPξ ≤ 1
ε
‖Pξ‖2 + εc2 = ξT

(1
ε
PP

)
ξ + εc2 (26)
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Taking into account the previous inequality, we obtain

V̇(ξ) ≤ ξT
(

Ω(ξ) + 1
εPP

)
ξ + εc2 (27)

The SOS condition (23) implies that Ξ(ξ) < 0 and by applying the Schur comple-
ment, we obtain

Ω(ξ) +
1
ε
PP < −R (28)

Then, we obtain

V̇(ξ) ≤ −λmin(R)‖ξ‖2 + εc2 (29)

It is clear from (22) that λmin(R) > 0. Then, according to Theorem 1, the system (20) is
PLMS. The proof is complete.

Remark 3. In contrast to the conventional feedback controller synthesis for PSs with FO dynam-
ics [30,31], the gain N (ξ) in this case is not constant but instead varies according to a polynomial
function. As a result, this approach offers increased flexibility in achieving practical stability.

Now, we apply Theorem 2 to PS (17) in which the parameters are selected as in [31]:

η = 1, γ = 0.0052, ρ = 0.03, β = 0.026, µ = 0.5.

The polynomial gain of the controller is obtained as follows:

N (ξ) =

[
N11(ξ) N12(ξ)
N21(ξ) N22(ξ)

]
where

N11(ξ) = −8.123ξ4
1 − 0.868× 10−6ξ3

1 − 6.819ξ2
1 + 0.907× 10−6ξ1 − 9.987

N12(ξ) = = 0.013ξ4
1 − 0.162× 10−4ξ3

1 − 0.052ξ2
1 − 0.264× 10−7ξ1 + 0.392× 10−2ξ1

N21(ξ) = = 0.013ξ4
1 − 0.162× 10−4ξ3

1 − 0.052ξ2
1 − 0.251× 10−7ξ1 + 0.390× 10−2ξ1

N22(ξ) = −8.101ξ4
1 − 0.972× 10−5ξ3

1 − 6.791ξ2
1 + 0.126× 10−6ξ1 − 9.967

The trajectory simulation of the corresponding solution, denoted as ω(ς) and δ(ς),
for System (17) is presented in Figure 2 by using the software Matlab 7.5.0 (R2007b). To
initiate this simulation, the initial conditions are specified as (δ(ς0), ω(ς0)) = (0.5,−2),
where ς0 = 0.3. The simulation employs the parameter values v = 0.95 and ι = 0.1.
Furthermore, in Figure 3, we demonstrate the trajectory simulation of system (19) using
the same parameter values. This simulation serves to illustrate the practical stability of
system (19).
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0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2. Time evolution of the states ω(ς) and δ(ς) of system (17) for ς ∈ [0.5, 20].

0 2 4 6 8 10 12 14 16 18 20

-2

-1.5

-1

-0.5

0

0.5

Figure 3. Time evolution of the states ω(ς) and δ(ς) of system (19) for ς ∈ [0.5, 20].

5. Conclusions

In this paper, a polynomial model has been employed to present an SOS approach for
the modeling and stabilization of PSs with FO dynamics. First, we have proposed a PMLS
stability analysis of a new class of fractional-order systems, specifically employing the TFO
model. Building upon this fundamental analysis, the study aims to design a polynomial
feedback controller using the SOS approach, ultimately ensuring the practical stabilization
of an FOPS. In order to demonstrate the practical significance of the analytical results,
simulations on the PS were carried out using SOSTOOLS. By addressing this objective,
this study aims to contribute to the advancement of control strategies for fractional-order
systems, particularly in the context of power systems.

In future work, we plan to extend these findings by generalizing our results to include
tempered fractional-order systems with time delays.
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