
Citation: Ashfaq, K.; Mahmood, M.T.

Directional Ring Difference Filter for

Robust Shape-from-Focus.

Mathematics 2023, 11, 3056. https://

doi.org/10.3390/math11143056

Academic Editor: Samaneh Mazaheri

Received: 12 June 2023

Revised: 2 July 2023

Accepted: 7 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Directional Ring Difference Filter for Robust Shape-from-Focus
Khurram Ashfaq and Muhammad Tariq Mahmood *

Future Convergence Engineering, School of Computer Science and Engineering, Korea University of Technology and
Education, 1600 Chungjeolro, Byeongcheonmyeon, Cheonan 31253, Republic of Korea; khurram@koreatech.ac.kr
* Correspondence: tariq@koreatech.ac.kr; Tel.: +82-041-560-1483

Abstract: In the shape-from-focus (SFF) method, the quality of the 3D shape generated relies heavily
on the focus measure operator (FM) used. Unfortunately, most FMs are sensitive to noise and provide
inaccurate depth maps. Among recent FMs, the ring difference filter (RDF) has demonstrated excellent
robustness against noise and reasonable performance in computing accurate depth maps. However,
it also suffers from the response cancellation problem (RCP) encountered in multidimensional kernel-
based FMs. To address this issue, we propose an effective and robust FM called the directional ring
difference filter (DRDF). In DRDF, the focus quality is computed by aggregating responses of RDF
from multiple kernels in different directions. We conducted experiments using synthetic and real
image datasets and found that the proposed DRDF method outperforms traditional FMs in terms of
noise handling and producing a higher quality 3D shape estimate of the object.

Keywords: focus measure; shape-from-focus; ring difference filter; depth map; 3D shape recovery
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1. Introduction

The depth of a scene has become an increasingly important task in the field of computer
vision, with a wide range of applications in areas such as autonomous navigation, aug-
mented and virtual reality, robot control [1], and 3D model reconstruction [2]. Among the
methods used to infer the depth of a scene, the shape-from-focus (SFF) method is one of the
optical methods known for its simplicity and accurate depth maps [3]. SFF operates on the
principle that the depth of a scene can be inferred by utilizing the information from in-focus
pixels. The main steps involved in SFF techniques are shown in Figure 1. Its pipeline
commences with capturing a series of images by using a single camera with varying focus
settings for each image. Such a sequence can also be obtained by translating objects toward
or away from the camera in small steps and then capturing images. Next, a focus measure
operator (FM) is applied to each image in the stack to determine the sharpness of each pixel.
This results in an initial focus volume (FV) that provides focus information for each pixel
in the image sequence. The initial FV may contain erroneous focus values, which can affect
the accuracy of depth values. Therefore, an appropriate filtering technique is applied to
the initial FV and an improved FV is obtained. Next, an initial depth map is obtained by
locating the pixels with maximum sharpness along the optical axis. However, the resultant
depth map may still contain noisy depth estimates. To address this issue, the final step
involves using a cost aggregation method to refine the initially found depth map and an
improved final depth map is obtained [4].

After obtaining the image sequence, the next step in SFF is to compute the focus
quality for each pixel by applying an appropriate FM on the input image sequence. In the
literature, a large number of FMs have been proposed, which can be grouped into vari-
ous categories, such as statistical-based, first derivative-based, second derivative-based,
and transformation-based [5,6]. Statistical-based FMs operate by applying statistical mea-
sures on the local pixels. One such commonly used method is the gray-level variance
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(GLV) [7], which works by analyzing the variation in the intensity values of neighboring
pixels in a small window. Another technique is the absolute central moment (ACM) [8],
which evaluates the quality of focus of an image by utilizing both the histogram and
mean value of gray levels in an image. Additional techniques in this category include the
eigenvalues of a local window [9], polynomial coefficients and spectral radius-based focus
measure [10], and probability coefficients and modified entropy (PCME) [11]. The first
derivative-based focus measures work by calculating the gradient of an image. Tenengrad
focus measure (TFM) is the most commonly used; it calculates the gradient of an image
using the Sobel operator in both the x and y directions, and then sums up the squared
magnitude of the gradient over a small window to obtain the sharpness value. Other
common methods in this category include the local edge gradient analysis [12], modulus
of the gradient of the color channel (MCG) [13], and reduced Tenengrad (RT) [14], which
is a slight modification to the TFM. Second derivative-based focus measures utilize the
Laplacian of an image. Although they are more susceptible to noise than first derivative-
based methods, second derivative-based measures can provide more accurate assessments
of focus. The most widely used focus measure in this category is the sum of the modified
Laplacian (ML) [3], which involves taking the absolute value of the second derivative of
pixels in a small window in both the x and y directions and then summing their responses.
Its other examples are squares of the partial derivatives [15] and multi-scale weighted
modified Laplacian (MSWML) [16]. Transformation-based FMs use the energy of the
high-frequency component or the ratio between high- and low-frequency components to
measure sharpness. For instance, the energy ratio of the wavelet coefficient [17] employs
the wavelet transform of the image and determines the ratio between the norms of the
high-pass and low-pass bands to calculate the focus value. Several other techniques that
fall into this category include the energy of coefficients in discrete curvelet transform [18],
optimal discrete cosine transform coefficients [19], reorganized DCT coefficients [20,21],
and Chebyshev moments [22]. Additionally, there are some other FMs that do not fall in
the previously mentioned categories but produce exceptional results. For example, the sum
and spread focus measure (FMSS) [23] that calculates an image’s sharpness value by using
basic vector operations and incorporating information from different color channels. A
multi-scale morphological focus measure (MSM) [24] that uses morphological operations
i.e., dilation and erosion to obtain sharpness values and integrates them on different scales.
Another example is the ring difference filter (RDF) [25], which uses a unique combination
of ring and disk filter styles convolved with the image to determine the focus value. More-
over, steerable filters [26], quad-tree decomposition and edge-weighted focus measure [27],
and a perceptual-based robust focus measure based on the difference of Gaussian [28] are
additional examples that yield impressive results.

Figure 1. Main steps involved in the shape-from-focus technique.

The initial depth map obtained from the focus volume may contain outliers in the
data, resulting in noisy depth maps. To address this issue, cost aggregation methods
are applied, which consider neighboring pixels and their disparities within a window to
improve the focus volume. Cost aggregation methods can be categorized into two types:
focus volume enhancement and post-processing techniques. Focus volume enhancement
involves refining the focus volume first and then using the refined focus volume to generate
a depth map. A popular technique in this category involves using a Gaussian distribution to
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find the peak in the image stack that represents the highly focused image [3]. Other methods
include Gaussian process regression for focus curve fitting [29], weighted least squares
regression for focus curve fitting [30], using the gradient of the focus measure curve with the
adaptive derivative step to find the best-focused position [31], the phase correlation method
that applies a discrete Fourier transform on the focus volume for peak detection [32], and
optimizing the focus volume through energy minimization by exploiting the structural
similarity between the image sequence and the initially obtained focus volume [33]. Post-
processing techniques refine the depth map obtained from the initial focus volume. One of
these techniques is bilateral filtering, which combines nearby image values based on both
geometric closeness and photometric similarity while preserving edges [34]. Joint bilateral
filtering is an extension of bilateral filtering that allows for the simultaneous filtering of
multiple images or channels [35]. Another well-known technique is guided-image filtering,
which uses a reference image to guide the filtering process of another image. It aims to
preserve important edges and structures while smoothing out the rest of the pixels [36]. Due
to its effectiveness, many versions of guided-image filtering have been proposed to enhance
the depth map. A thorough study of these techniques is presented in [37]. The accuracy
of the depth maps in SFF relies heavily on the performance of the FMs. The errors at
the stage of focus computing will be propagated in the focus volume enhancement stage.
Consequently, the erroneous depth maps will be extracted. There are a number of factors
that can affect the performance of FM, such as scene texture, contrast, illumination, window
size, noise level, and imaging device characteristics. Hence, a robust and effective focus
measure is important for accurate depth maps in SFF.

In this paper, we introduce a new focus measure, the directional ring difference filter
(DRDF) for SFF, which is able to handle noise more robustly. In contrast to RDF, where a
2D mask is convolved with an image sequence and the energy of the responses is collected
as a focus measure, the proposed DRDF applies multiple 1D kernels in different directions.
To compute the focus measure, the average response of these kernels is computed. In this
way, the proposed measure helps to mitigate the response cancellation problem (RCP).
Experimental results, obtained from both synthetic and real image sequences, demonstrate
the effectiveness of DRDF in producing accurate and noise-robust depth maps.

The rest of the paper is organized as follows: the proposed method and motivation
behind it are presented in Section 2; the experimental setup, results, and comparative
analysis are provided in Section 3. Finally, Section 4 concludes this study.

2. Proposed Focus Measure

In this section, first, we provide the motivation for this work, which signifies the
rationale behind the proposed method. Then, the steps in the proposed method are
explained by using appropriate expressions and symbols.

2.1. Motivation

A thorough study of the focus measures is presented in [5], which reveals that the
modified Laplacian focus measure (ML) is best for assessing accurate focus quality. How-
ever, ML is sensitive to noise, which restricts its usage in many real-world applications.
In order to overcome this limitation, RDF, a modified version of the ML, is proposed [25].
RDF calculates the focus quality of each pixel by measuring the absolute differences with
the neighboring pixels, with gaps between them; it can be expressed as follows:

hrd f =


1

πr2
1

, |p− q| < r1

− 1
π(r2

3 − r2
2)

, r2 ≤ |p− q| ≤ r3

0, otherwise,

(1)

where p is the position of the pixel of interest (central pixel in the window), q is the pixel
index, r1 is the radius of region of interest (the disk in which the pixel of interest resides),
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r2 and r3 are inner and outer radii of the ring ( the circular ring that surrounds the region of
interest and gap pixels) respectively. Although RDF has shown excellent robustness against
noise and reasonable performance in computing accurate depth maps, it suffers from the
response cancellation problem (RCP). The RCP was pointed out in [3]. It was observed that

the responses of the 2D Laplacian on an image, specifically | ∂
2(.)
∂x2 + ∂2(.)

∂y2 |, canceled the effects
from the opposite directions, which deteriorated the focus measure. This problem was

fixed in ML | ∂
2(.)
∂x2 |+ |

∂2(.)
∂y2 |, where the responses from the x and y directions were calculated

separately and the focus measure was taken as the sum of these responses. As RDF is
also spread in multiple directions, the RCP technique significantly affects the resultant
measures. To overcome this problem, we propose a directional ring difference filter (DRDF)
that breaks a 2D RDF into multiple 1D kernels in various directions. The average response
from these 1D kernels is then taken as the final focus measure.

Further, we investigated the effects of RDF and DRDF on focus assessment by using the
datasets [38], which included 350 sharp and 350 blurred images (350× 1680× 1180 pixels
in each dataset). We considered an RDF operator for (r1 = 1, r2 = 1, r3 = 1) as shown
in Figure 2a, and the corresponding kernels hi, i ∈ {1, 2, 3, 4, 5, 6} in the directions θc,
c ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}, respectively as shown in Figure 2b. These kernels in
discrete form can be represented as follows:

h1 = [0 0 0 0 0; 0 0 0 0 0; −1 0 2 0 − 1; 0 0 0 0 0; 0 0 0 0 0], (2)

h2 = [0 0 0 0 0; 0 0 0 0 − 1; 0 0 2 0 0; −1 0 0 0 0; 0 0 0 0 0], (3)

h3 = [0 0 0 − 1 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 − 1 0 0 0], (4)

h4 = [0 0 − 1 0 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 0 − 1 0 0], (5)

h5 = [0 − 1 0 0 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 0 0 − 1 0], (6)

h6 = [0 0 0 0 0; −1 0 0 0 0; 0 0 2 0 0; 0 0 0 0 − 1; 0 0 0 0 0]. (7)

Absolute responses for RDF and DRDF kernels were computed for all images in the
datasets. Let f0 denote the measure from RDF and mi denote responses from DRDF kernel
hi, where the focus measure fi can be represented as follows:

fi =
i

∑
i=1

|mi|
i

, i ∈ {1, 2, 3, 4, 5, 6}. (8)

Figure 2. (a) ring difference filter, (b) directional ring difference filters, (c) average focus measure
from all pixels, (d) ratio between blurred and sharp pixels.

Figure 2c shows the normalized average focus values of all pixels and Figure 2d shows
the ratio of focus measures between blurred and sharp pixels for RDF and DRDF kernels
respectively. It can be observed that adding responses to DRDF kernels improved the
focus measure, with the final DRDF response ( f6) being better than the RDF response ( f0),
as indicated by the higher average measure per pixel and lower per pixel ratio.
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2.2. Method

Let the input image sequence be represented by Iz(x, y)c, where x, y, and z denote
the indices for the width, height, and image numbers, while c ∈ {r, g, b} denotes the color
channel of a vector-valued image. The ranges of x, y, and z are defined as (1, . . . , X),
(1, . . . , Y) and (1, . . . , Z), respectively, such that there are Z images, each of size X × Y
pixels, and every image has three color channels.

First, the image sequence is aligned by employing a global homography-based align-
ment method [25]. It will fix any slight translation or magnification that may have occurred
during the image-capturing process. After properly aligning the focal stack, the proposed
DRDF focus measure is applied to it. A focus measure for each pixel is computed through
the convolution of the images in the sequence with the directional kernels and then adding
their responses. Consequently, an initial focus volume is obtained as follows:

Fz(x, y) = ∑
c

∑
i
|Iz(x, y)c ⊗ hi|, (9)

where hi denotes the ith directional kernel and ⊗ represents the convolution operator.
The initial depth is then obtained on the basis of a ’winner takes it all’ formula, where
for any pixel (x, y), the image number giving the maximum value of the focus measure is
considered the initial depth for that pixel. Thus, a dense depth map is obtained as follows:

d(x, y) = arg max
z

(Fz(x, y)), (10)

Based on the initial depth map, we can extract the all-in-focus (AIF) image of the focus
stack by stitching pixels from the images in the sequence corresponding to the labeled
depth. The pixel value of IAIF at location (x, y) is then represented as follows:

IAIF(x, y) = Id(x,y)(x, y), (11)

where I denotes the original image in the sequence and d(x, y) acts as an image index
of the sequence representing the value of the initial depth at location (x, y). Usually, the
initial depth maps obtained from the initial focus volume are noisy. A cost aggregation
method Γ(.) is then involved, which takes the initial focus volume Fz(x, y) and IAIF(x, y) as
input and provides an improved focus volume as output. We applied the cost aggregation
method used in [25] to refine the initial volume. It uses a guided filtering operation to
preserve edges while smoothing the focus volume.

F̂z(x, y) = Γ(Fz(x, y), IAIF(x, y)), (12)

d̂(x, y) = arg max
z

(F̂z(x, y)), (13)

where F̂z(x, y) and d̂(x, y) are the improved focus volume and the improved depth map,
respectively.

3. Results and Discussion

In this section, first, we explain the experimental setup, which includes information
about the datasets, methods for comparing results, and metrics used to evaluate the results.
A comparative analysis of the results obtained through the state-of-the-art methods and
the proposed methods is then presented.

3.1. Experimental Setup

The performance of the proposed method was evaluated through experiments using
image sequences of synthetic and real objects. Synthetic image sequences of 14 objects, each
consisting of 30 images, were obtained from the 4D light field benchmark [39], in which
ground truth (GT) depth maps were available. Additionally, three real image sequences,
i.e., Balls, Kitchen, and Buddha, were obtained from [25]. In the synthetic datasets, as ground
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truth (GT) depth maps were provided, we quantitatively compared the estimated depth
maps with the GT depth maps. To achieve this, we computed the root mean square error
(RMSE) and correlation (CORR) to measure the degree of similarity between the estimated
depth maps and the GT depth maps. RMSE is calculated as follows:

RMSE =

√
1
|XY|∑x

[D(x)− D̂(x)]2, (14)

where D(x) and D̂(x) represent the GT and the estimated depth maps, respectively,
and |XY| represents the total number of pixels in the depth map. A lower value of RMSE
indicates a better depth map estimation. The correlation measure is computed as follows:

CORR =
∑x [D(x)− D̄] [D̂(x)− ¯̂D]√

∑x[D(x)− D̄]2
√

∑x[D̂(x)− ¯̂D]2
, (15)

where D̄ and ¯̂D represent the mean of the GT and the estimated depth maps, respectively.
A higher value of the CORR measure depicts a better depth map estimation.

3.2. Comparative Analysis

First, we analyzed the performances of RDF and DRDF on all 14 synthetic datasets.
RDF and DRDF, having the same filter size (r1 = 1, r2 = 1, r3 = 1), were applied to all
datasets to compute the focus volumes. The depth maps were estimated by taking the
image number with the best focus measure in the optical direction. Without applying any
enhancement method or post-processing of the focus volume or initial depth maps, RMSE
and CORR measures were calculated with reference to the GTs. Figures 3 and 4 show the
RMSE and CORR metrics, respectively. From the figures, it can be observed that the DRDF
has shown a reasonable improvement for all datasets compared to the RDF. The depth maps
computed for all synthetic objects from the DRDF provided lower RMSE and higher CORR
in relation to their GTs. This indicates the effectiveness of the proposed focus measure.

Furthermore, in order to evaluate the performances of RDF and DRDF, with respect
to different kernel sizes, we conducted experiments on the Cotton dataset. For the sake
of simplicity, we fixed r1 = 1 and changed the sizes of r2 and r3. We applied kernels of
different sizes on the image sequence, and RMSE and CORR measures were calculated of
the estimated depth maps with respect to the GT depth map. Table 1 shows the RMSE,
whereas Table 2 shows the CORR measures. It can be observed that DRDF consistently
outperforms RDF across all different filter sizes. However, the results also indicate that
increasing the sizes of the filters for both RDF and DRDF leads to a greater deviation from
the ground truth and, hence, results in a loss of details.

Figure 3. RMSE measures for synthetic datasets using RDF and DRDF. Datasets are labeled on the x-axis.
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Figure 4. CORR measures for synthetic datasets using RDF and DRDF. Datasets are labeled on the x-axis.

Table 1. RMSE measure comparison: RDF vs. DRDF with varying ring sizes, r2 and r3, and keeping
r1 = 1 for the Cotton dataset.

RDF DRDF RDF DRDF RDF DRDF
rsize r2 = 1 r2 = 1 r2 = 2 r2 = 2 r2 = 3 r2 = 3

r3 = 1 6.1262 5.2878 6.7047 5.5958 6.9941 5.9153
r3 = 2 6.5750 5.5910 6.8765 5.8888 7.1658 6.1661
r3 = 3 6.7978 5.8843 7.0922 6.1584 7.2921 6.3805

Table 2. CORR measure comparison: RDF vs. DRDF with varying ring sizes, r2 and r3, and keeping
r1 = 1 for the Cotton dataset.

RDF DRDF RDF DRDF RDF DRDF
rsize r2 = 1 r2 = 1 r2 = 2 r2 = 2 r2 = 3 r2 = 3

r3 = 1 0.6728 0.7481 0.6190 0.7207 0.5885 0.6933
r3 = 2 0.6313 0.7207 0.6007 0.6926 0.5717 0.6718
r3 = 3 0.6087 0.6927 0.5786 0.6679 0.5608 0.6511

Next, the proposed method was compared to seven focus computation methods, i.e.,
gray-level variance (GLV) [7], modulus of the gradient of the color channel (MCG) [13],
modified-Laplacian (ML) [3], sum and spread focus measure (FMSS) [23], reduced Tenen-
grad (RT) [14], multi-scale-morphological focus measure (MSM) [24], and ring difference
filter (RDF) [25]. For visual comparisons, we constructed depth maps of synthetic datasets,
Antinous, Cotton, and Pens, using different methods, as shown in Figure 5. The first column
of each dataset represents the initial unaggregated depth maps, while the second column
shows the cost-aggregated depth maps using the cost aggregation method proposed in [25].
The Antinous dataset presented a challenge to all methods in the unaggregated depth maps,
except MSM, RDF, and DRDF, which correctly captured the impact of shadows on the
depth map. In contrast, other methods misinterpreted the shadows as significant edges
in the dataset, resulting in erroneous depth representations. When aggregated, MCG also
performed well, along with RDF and DRDF, by discarding shadows and carefully detecting
the edges; but, the performance of MSM deteriorated as it did not carve out the edges
properly. For the Cotton dataset, GLV, MCG, RT, and FMSS attempted to detect the detailed
features, but those detailed features appeared as white lines instead of distinct grayscale
fades in the unaggregated depth maps. This became evident in aggregated depth maps,
where FMSS showed an irregular depiction of the object in the dataset, GLV showed a
side corner that did not exist in the initial depth map, and MCG compacted the edges,
resulting in an irregular bump on the head of the object in the depth map. However,
ML, MSM, RDF, and DRDF had relatively distinct grayscale fades in the unaggregated
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depth maps, which became more evident in the aggregated depth maps. Lastly, in the
Pens dataset, GLV, FMSS, and DRDF outperformed others in suppressing the noise in the
background, while MCG, ML, RT, and RDF showed some speckle noise in the initial depth
map, and MSM completely misrepresented the shape of the container of the pens. When
aggregated, MCG and RT showed a black patch at the bottom of the pen container in the
depth map, ML did not properly carve out the edges of the pens, FMSS and MSM showed
completely irregular shapes that did not coincide with the objects in the dataset, and GLV
inaccurately represented some pens in the depth map as being very near, which they were
not. On the other hand, RDF and DRDF played better roles in capturing details and not
misrepresenting items very close or far away in the aggregated depth maps. Among RDF
and DRDF, DRDF had more grayscale fadedness and fewer patches in the objects than
RDF. Hence, some methods performed well in one dataset or were good in either the initial
depth map representation or aggregated depth map representation, but not all; DRDF
proved to be one of the best-performing focus measures in all datasets and unaggregated
and aggregated depth maps.

Figure 5. Depth maps of synthetic datasets, i.e., Antinous, Cotton, and Pens, using different methods.
The first column of each dataset represents the initial depth maps before aggregation, while the
second column shows the depth maps after applying the cost aggregation method.
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For real datasets, we constructed depth maps of Balls, Kitchen, and Buddha as shown in
Figure 6. The first column of each dataset represents the initial unaggregated depth maps
while the second column represents the cost-aggregated depth maps. The Balls dataset
consists of 25 images, each with a resolution of 640 × 360. In the unaggregated depth
maps, MSM produced the most smoothest depth map followed by ML while others tried to
show detailed texture of the objects present in the dataset. However, when aggregated, ML
produced a blurry depth map as it failed to capture the extra details in the objects, FMSS
misrepresented the objects and their boundaries, and GLV produced some black patches.
While RDF, RT, and DRDF performed better than others, MCG and MSM produced the
best results with the fewest black patches and the best edge detection. The Kitchen dataset,
comprising of 11 images with a resolution of 774× 518, did not provide much detail on the
generated depth maps due to the limited number of images. In the unaggregated depth
maps, MCG showed the noisiest background, followed by RDF and RT. However, after the
aggregation, GLV had some unusual black patches, ML showed white patches in some
objects, FMSS distorted the shapes of the objects, MSM merged two objects together, giving
them the same depth values and RT produced small visible white patches in the depth map.
MCG, RDF, and DRDF were among the best-performing methods, but MCG had a visible
white dot in the object shape, which indicates inaccurate depth estimates. In addition, RDF
showed some discontinuities in-depth maps, which also indicates imprecise depth values,
while DRDF provided smoother depth maps, which indicates a better perception of depth
values. Finally, the Buddha dataset, consisting of 29 images with varying focus settings, and
a resolution of 768 × 768 pixels, showed that ML produced the noisiest depth map in the
unaggregated state, followed by RDF and DRDF. However, after the aggregation, DRDF
performed the best. FMSS distorted the shapes of the objects; RT and MCG showed white
dots inside the depth map, which stipulates inaccuracies. ML provided a false perception
of depth in some areas. GLV, MSM, RDF, and DRDF were among the better-performing
methods for this dataset; however, GLV, MSM, and RDF incorporated a white dot inside
the object in the depth map when examined closely. In contrast, DRDF reduced the white
dot, which indicates a reduction in the discontinuities and an improved depth map.

3.3. Complexity Analysis

When comparing the time complexity of RDF with the proposed DRDF, it is obvious
that RDF is more efficient than DRDF. In RDF, a single kernel is used, while in DRDF, 2D
convolutions are used with six kernels for each image in the sequence. Considering the
image size X×Y for Z images and kernel size k× k, then the time complexity for RDF for
point-wise operations is O(XYZk2), whereas the time complexity for DRDF is O(6XYZk2),
which is six times more than RDF. In addition, there are many algorithms proposed in the
literature to conduct the convolution in optimal time [40].

We implemented the proposed method in MATLAB, and for most of the comparative
methods, we utilized the MATLAB code of the authors. We performed experiments on a
PC with Intel(R) CPU, 16GB RAM, and the computational time was recorded. The compu-
tational times taken by all the comparative methods, including ours, for both synthetic and
real datasets, are shown in Table 3. In the synthetic datasets, the size of each image was
not very large, resulting in the generation of their depth maps at relatively quicker times.
However, the MSM method took the longest time compared to the other methods. On the
other hand, in real datasets, the image sizes were larger compared to the synthetic datasets,
which led to longer computation times when generating their depth maps. It is evident
from the results that the time complexity of our method is comparable to the other methods
in both the synthetic and real datasets. Our proposed method (DRDF) was more efficient
than the GLV, FMSS, and MSM methods in synthetic datasets as well as outperforming
MCG in real datasets. However, it was still slower than ML, RT, and RDF methods in both
synthetic and real datasets.
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Figure 6. Depth maps of real datasets, i.e., Balls, Kitchen, and Buddha, using different methods.
The first column of each dataset represents the initial depth maps before aggregation, while the
second column shows the depth maps after applying the cost aggregation method.

Table 3. Computational times (in seconds) for the comparative methods and the proposed method
for symmetric and real datasets.

Synthetic Real

Methods Antinous Cotton Pens Balls Kitchen Buddha

GLV 0.24 0.17 0.17 0.92 0.64 2.55
MCG 0.14 0.09 0.09 0.38 0.26 0.98
ML 0.07 0.06 0.06 0.16 0.13 0.42

FMSS 0.47 0.44 0.41 1.49 1.08 4.33
RT 0.06 0.04 0.04 0.15 0.10 0.40

MSM 1.23 1.07 0.99 2.10 1.21 4.41
RDF 0.09 0.06 0.06 0.02 0.14 0.54

DRDF 0.15 0.14 0.14 0.32 0.24 0.92

4. Conclusions

In this article, we propose a robust focus measure called the directional ring difference
filter (DRDF), which improves the performance of the state-of-the-art method called the
ring difference filter (RDF). In order to fix the response cancellation problem, instead of a 2D
single kernel, multiple directional kernels were applied to images, and their responses were
aggregated to compute the level of sharpness. Extensive experiments were conducted on
both synthetic and real image datasets, and the results demonstrate that DRDF outperforms
traditional focus measures in terms of noise handling and producing high-quality 3D shape
estimates of objects.
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Abbreviations
The following abbreviations are used in this manuscript:
FM focus measure
ML modified Laplacian
SFF shape-from-focus
DRDF directional ring difference filter
RDF ring difference filter
RCP response cancellation problem
GT ground truth
FV focus volume
FMSS focus measure sum and spread
MCG modulus color gradient
GLV gray-level variance
RT reduced Tenengrad
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