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Abstract: The viral spread of online content can lead to unexpected consequences such as extreme
opinions about a brand or consumers’ enthusiasm for a product. This makes the prediction of
viral content’s future popularity an important problem, especially for digital marketers, as well as
for managers of social platforms. It is not surprising that conventional methods, which heavily
rely on either hand-crafted features or unrealistic assumptions, are insufficient in dealing with
this challenging problem. Even state-of-art graph-based approaches are either inefficient to work
with large-scale cascades or unable to explain what spread mechanisms are learned by the model.
This paper presents a temporal-spatial cascade convolutional learning framework called ViralGCN,
not only to address the challenges of existing approaches but also to try to provide some insights
into actual mechanisms of viral spread from the perspective of artificial intelligence. We conduct
experiments on the real-world dataset (i.e., to predict the retweet popularity of micro-blogs on
Weibo). Compared to the existing approaches, ViralGCN possesses the following advantages: the
flexible size of the input cascade graph, a coherent method for processing both structural and
temporal information, and an intuitive and interpretable deep learning architecture. Moreover, the
exploration of the learned features also provides valuable clues for managers to understand the
elusive mechanisms of viral spread as well as to devise appropriate strategies at early stages. By using
the visualization method, our approach finds that both broadcast and structural virality contribute
to online content going viral; the cascade with a gradual descent or ascent-then-descent evolving
pattern at the early stage is more likely to gain significant eventual popularity, and even the timing of
users participating in the cascade has an effect on future popularity growth.

Keywords: viral spread; information cascade; graph learning; popularity prediction

MSC: 68M11

1. Introduction

The viral spread of online content, which is also known as electronic word-of-mouth,
viral marketing, or information cascade, is generally understood as the rapid growth of pop-
ularity/cascade size through individual-to-individual information sharing processes [1,2].
As information efficiency is greatly enhanced by social media, online content on Twitter,
Facebook, or Weibo can go viral very quickly [3], and sometimes even cause an extremely fa-
vorable or disastrous consequence in a very short period. For example, in 2012, a 466-word
post by a disgruntled customer in Odeon Cinemas’ Facebook brand community mali-
ciously slandered the brand. This post went viral in only a few h and prompted more
than 94,000 likes at the end, which severely damaged the brand’s reputation and made it
lose thousands of customers [4]. Since the viral spread of online content, especially those
with massive cascade sizes has a significant impact on other consumers’ brand attitude [5]
as well as product sales [6], predicting the future popularity (or more precisely, the final
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cascade size in a social network) is greatly valuable for managers to make strategic deci-
sions or take precautions before the unexpected results [4,7,8]. Unfortunately, on the one
hand, the actual mechanisms of online viral spread are still inconclusive [2,9]. On the other
hand, conventional prediction methods, such as feature-based approaches and generative
approaches, are inadequate to cope with the rapid and complex information spread in
social media.

Historically, researchers firstly rely on hand-crafted features to build explainable mod-
els for popularity prediction [10–12]. Although most feature-based models have yielded
considerably competitive results, they are still not widely used in real applications since
some of the features are either unavailable (user features, browsing histories, etc.) due to
privacy concerns or cannot be generalized to different scenarios (micro-blogs, music, videos,
etc.) [9]. Some researchers also proposed generative approaches that regard the information
retweeting/sharing of consumers as event sequences in the continuous temporal domain
and predict the future popularity by modeling its temporal dynamics [13–15]. However,
almost all generative models are built on strong assumptions of viral spread mechanisms,
such as the uniform contribution of each new retweet for future popularity growth [14],
leaving huge gaps between the predicted results and the actual growth sizes. Recently,
graph learning algorithms that have been successfully applied in chemical structure classi-
fications and traffic predictions have shed new light on the popularity prediction of online
content. Several graph-based approaches are developed to make predictions through
informative structural features that are unsupervisedly extracted from the information
diffusion network/cascade graph. While the proposed graph-based approaches (e.g., Deep-
Cas [16], DeepHawkees [17], CasCN [18], etc.), which do not rely on user characteristics
or content features, are widely applicable to a variety of information spread scenarios, the
extant research still is yet to address the following challenges. First, due to the power-law
distribution of the online content popularity, some cascades can reach a considerable size at
the early stage; thus, handling those oversize cascades is one of the main obstacles encoun-
tered in real-life applications. Second, the end-to-end prediction manners and the graph
convolutions defined in the Fourier domain are helpless for understanding the actual viral
spread mechanism in social media. Lastly, since common graph learning algorithms are
originally designed for embedding structural features of nodes or graphs, it is a challenge
for a graph-based model to extract the spreading dynamics directly from a cascade graph
as well as to appropriately incorporate the temporal information into the model.

Our research proposes a spatial-temporal cascade convolution learning framework
called ViralGCN in response to these challenges. As shown in Figure 1, our framework
comprises 4 parts; it first starts with an adaptive node-sampling process to select a certain
number of nodes/users from the oversize cascade graph, followed by several bi-directional
spatial convolutional layers that extract the local structural features of each node from both
directions of information inflow and outflow; then, a temporal information aggregation
layer is incorporated to capture the spread dynamics as well as the time decay effects,
and finally an MLP layer makes the prediction. Compared to extant popularity prediction
methods, ViralGCN offers the following new capabilities:

1. Instead of calculating the whole cascade graph, we propose an adaptive node-sampling
process to input sufficient information of large-scale cascades, where to avoid the
omission of important structural information, the node with higher degrees (i.e.,
carrying more information) has a higher weight to be sampled.

2. The bi-directional spatial convolutional layer allows us to obtain each node’s repre-
sentation, which contains structural information from both directions of information
inflow and outflow, making it more helpful to explain which features of users are
extracted as well as to understand the actual mechanisms of online viral spread.

3. Our proposed temporal information aggregation layer provides an innovative way
to capture the spread dynamics directly from a cascade graph where the obtained
nodes’ representations are aggregated according to each divided time window, and it
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provides another example of the combination of structural and temporal information
in a graph-based popularity prediction model.

Figure 1. The framework of ViralGCN.

We conduct experiments on a real-world viral spread dataset, which is crawled from
famous social media platform Weibo and widely used in recent popularity prediction
studies [17,18]. The empirical investigation demonstrates that our proposed ViralGCN
remarkably outperforms not only the conventional feature-based models but also the
state-of-art graph-based models. In addition, to verify the effectiveness of ViralGCN’s
components, we also conduct an ablation experiment by developing several variants of the
proposed model. The results show that ViralGCN achieves a significant improvement in
computation efficiency, but its prediction accuracy is still comparable with the variant model
that does not use the node sampling method. Other modified models show performance
degradation at different levels compared with the original ViralGCN.

Moreover, this paper also tries to provide some insights into the actual viral spread
mechanisms from an artificial intelligence perspective and help managers’ decision-making.
The method for visualizing high-dimensional data is utilized to explain which structural
and temporal features are extracted and how these features affect future popularity growth.
Consequently, we find 3 main evolving patterns of early viral spread in which the gradual
descent and the ascent-then-descent evolving pattern are more likely to gain large final
popularity. In addition, the visualization of nodes’ embeddings helps us identify 4 types
of users (i.e., broadcasters, influential disseminators, active responders, and responder’s
responders), which is helpful for managers to tailor their strategies to specific types of users.
Furthermore, in response to the argument of whether broadcast diffusion or word-of-mouth
drives the popularity of online content, we find that both broadcast and structural virality
contribute to online content going viral. Moreover, the learned time decay effects indicate
that the timing of consumers’ retweeting/sharing also affects future popularity growth.
Overall, our empirical studies not only suggest that the proposed approach complements
existing graph-based prediction methods but also provide a promising new way to explain
the mechanisms of viral spread in social media.

In the rest of the paper, Section 2 makes a literature review of related works. In
Section 3, we define the problems and provide a specific illustration of our method. The
results of performance comparisons and ablation experiments are presented in Section 4.
We also make a study on what features are extracted and on the nature of the relationship
between the learned features and popularity growth in Section 4. The last Section 5
concludes the paper and introduces future work.
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2. Related Works

Perspectives of prediction. As the viral spread of online content often causes significant
consequences in social media, predicting whether an advertisement or eWOM can go viral
attracts significant attention from both managers and researchers [4]. Some researchers
in the management domain try to figure out what drives the popularity of online content
from a micro-level perspective, where the subjective factors such as consumers’ emotions
aroused by the content [19,20] and the social ties between consumers [21] are thought to
influence individuals’ sharing behaviors. Although the micro-level methods are effective
at predicting the activation of a specific individual, they are inefficient at predicting the
collective behaviors of a group of people (e.g., the future popularity of viral content) due to
the individual heterogeneity as well as the inaccessibility of consumer’s actual feelings [8].
On the contrary, the macro-level methods, which regard viral spread as the growth of a
cascade in the social network, are generally adopted by current researchers.

Features for prediction. One of the key issues for building a macro-level model is to
make sure which features can provide predictive information. The structural features of
the initial cascade graph (node degrees, edge density, diffusion depth, etc.) have been
proven to play an important role in popularity prediction by many researchers [12,22,23].
Specifically, the authors of [24] conducted a study on microblog diffusion networks and
found that regarding the initial cascade with a lower edge density but a higher diffusion
depth, diverse early adopters are more likely to go viral. On the other hand, Ref. [2]
argues against this opinion by analyzing billions of online diffusion events and finding
that a lot of cascades with relatively low structural virality can still obtain considerable
attention through broadcasting, in which only several influential opinion leaders produce
popularity growth. Although the researchers disagree on what type of initial cascade
structure could bring higher popularity, they both provide strong evidence of predictive
information underlying the structural features of the initial cascade graph. For instance,
the degree of an early adopter node implies its potential influence, and the diffusion depth
reveals the cascade virality.

Temporal features of spreading (mean arriving time [12], mean reaction time [22],
evolving patterns [22], etc.) are also considered valuable in popularity prediction. For
example, Ref. [25] finds a strong relationship between the cascade’s early popularity and its
final popularity. Ref. [26] indicates the existence of a log-norm distribution in users’ reac-
tions to a new post tweet. Additionally, some researchers modeling users’ retweet/sharing
time series also find the rich-get-richer and the time decay effect in cascades’ evolving
patterns [27,28]. Even in the medical field, temporal features are used to build deep learning
models for virus transmission prediction [29]. Since there is much evidence for the effect
of a cascade’s dynamics as well as its initial structural features on future popularity, our
model must make predictions by combining both features.

Except for the structural and the temporal features, the content features (topics [30],
sentiments [31], hashtags [32], etc.) are also widely adopted by extant studies as well. How-
ever, the efficacy of content features in predicting popularity is still controversial. Ref. [12]’s
empirical study shows that the content features are less important when the cascade’s size
grows larger. The conclusion is consensus with the herding theory [33] and the informa-
tional cascade theory [34], where individuals’ decision-making is significantly influenced
by others’ behaviors instead of their own knowledge. In addition, many researchers also
find that there can be a huge distance in terms of final popularity between two examples of
identical online content [35–37]. Moreover, another limitation of content features is that
they are not generalizable for different viral spread scenarios. For example, the semantic
features discussed above cannot be applied to predict the popularity of images [38] or
videos [39]. Therefore, considering the effectiveness of the content features as well as the
model generalizability, we do not incorporate the content features in the proposed model.

Methods for prediction. The extant methods for the prediction can be roughly divided
into three categories (e.g., the feature-based, the generative, and the graph-based ap-
proaches). The feature-based approaches are the most common in conventional research,
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which usually builds a regression or classification model by a bunch of well-designed
features [11,12,40,41]. The limitations of these feature-based approaches are apparent. First
of all, some extracted features such as the content features are too specific to the particular
type of information [32]. In addition, the current hand-craft features (degrees, centrality,
border edges, etc.) are insufficient to reveal the whole topological characteristics of a
graph. For instance, two nodes in a graph with the same degree of centrality may have
different structures, limiting the exploration of unknown spread mechanisms of online
content. Another type of cascade-prediction method, the generative approach, focuses
more on cascades’ evolving patterns and makes predictions by modeling the dynamics of
spreading. For example, Ref. [28] builds a time-relaxation function and a reinforcement
function to depict the decay effect and the rich-get-richer effect of cascade growth. Ref. [27]
employs the self-exciting point process model to simulate the spreading dynamics of tweets.
However, due to the cascade evolution mechanism remaining elusive, the models have
to be built based on strong assumptions and oversimplifications of reality. As a result,
there is often a big gap between the model predictions and the actual popularity in real
applications [9].

Recently, regarding the unsupervised data input and excellent nonlinear modeling
capabilities, the graph-based approaches combining both graph and deep learning methods
attract more attention in the popularity prediction area. Ref. [16] proposes the first end-to-
end cascade prediction system (DeepCas) that learns the representation of each cascade
graph through a series of node sequences sampled by random walks. Another model
called DeepHawkes [17] combines deep learning with the Hawkes process and considers
the time decay effect of each diffusion path. Ref. [18] proposes CasCN, which defines the
spectral convolution of cascade graphs and adopts a recurrent neural network to capture
the dynamics of spreading. DMT-LIC [42] adopts a multi-layer graph attention network
to embed the nodes in graphs and simply inputs each node to an LSTM by the order of
retweeting where only partial spreading dynamics can be captured. We compare extant
graph-based approaches in Table 1, in which the deficiencies of current models are apparent.
First, there is a lack of solutions to handle the input of oversize cascade graphs. Additionally,
some models partially or completely fail to take into account the temporal information
of viral spread, which has been proven valuable for popularity prediction. Moreover,
the outputs of the graph-learning method are mainly elusive graph embeddings that are
helpless to understand the actual viral spread mechanisms. Thus, in this study, we try to
propose an innovative graph learning framework ViralGCN to address these challenges.

Graph neural networks. Graph neural networks (GNNs) are motivated by the standard
convolutional neural networks (CNNs) that use a shared filter to extract the localized
spatial features and compose them to construct highly expressive representations [43].
Similar to the images, the whole representation of a graph can also be obtained by as-
sembling all localized structural features. However, the standard CNNs cannot directly
operate on non-Euclidean data, which usually relies on preprocessing work (e.g., random
walk) to transform the graph to regular Euclidean data (node sequences). As a result, the
conventional graph representation approaches, such as Deepwalk [44], Node2Vec [45],
and Struc2Vec [46], cannot deal with dynamic graphs, and non-shared parameters lower
computation efficiency as well.

Therefore, the GNNs are developed as a generalization of CNNs to graphs and in-
herit the advantages of CNNs. For example, the GNN proposed in [47] is the first deep
learning method that directly processes graph data and makes embeddings for nodes by
aggregating the information of their neighbors. Following the GNN, many variants of
GNN are developed in the following studies. For example, the DGP [48] extends the GNN
for directed graphs; the G2S [49] incorporates the edge information into the model; and the
GGNN [50] combines GRU with the update process of the node hidden state.
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Table 1. The comparison of extant graph-based prediction models.

Models
The Method to Extract the
Structural Information of a
Cascade Graph

The Method to Deal with
the Oversize Cascade
Graphs

The Method to Extract the
Temporal Information of
Spreading

The Temporal Information
Considered by the Model

The Explanation of Learned
Popularity Growth
Mechanisms

DeepCas [16]
Transform the graph into a
set of node sequences by
random walk

Sample a certain number of
sequences that carry
sufficient information of a
cascade graph

DeepHawkes [17] Transform the graph into a
set of diffusion paths

Give a time decay effect for
each observation time window Time decay effect

CasCN [18]
Obtain the representations of
cascade graphs by computing
their Laplacian matrices

Input the sub-graph of each
observation time window to
an LSTM, and the time decay
effects are given

Time decay effect and
spread dynamics

DMT-LIC [42]
Adopt a multi-layer graph
attention network to embed
the nodes in graphs

Embed the diffusion process
by inputting nodes to an
LSTM in time order

Partial spread dynamics

The proposed VirGCN

Develop a bi-directional
spatial graph convolution of
cascade graph to extract nodes’
local structural features

Sample a certain number of
nodes that carry sufficient
information of oversize
cascade graphs

Aggregate the nodes of each
observation time window,
then adopt a GRU to capture
the spread dynamics; time
decay effects are given

Time decay effect and
spread dynamics

Explain the extracted features
of each node as well as the
time decay effects; explore
the effect of early evolving
patterns and cascade
structures on future
popularity growth
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In general, the current GNNs can be divided into two categories according to con-
volution approaches: the spectra methods and spatial methods. In a spectra method, the
convolution operation is defined in the Fourier domain by computing the eigendecomposi-
tion of the graph Laplacian [51]. However, the Fourier domain’s convolution is unintuitive
for people seeking to understand which features the model captures from data. In contrast,
the spatial method operates convolution directly following information diffusion paths [52],
which is also in accord with the real cascade evolution. Moreover, the spectral convolution
is inflexible for large cascade learning as it usually requires the computing of the Laplacian
of the whole graph, while the spatial convolution can be combined with the node sampling
method to efficiently handle those oversize cascade graphs.

Overall, existing studies have adequately demonstrated the advantages of graph
neural networks for online content popularity prediction, but conventional graph-based
methods still need to address the following issues: first, how to efficiently handle cascade
graphs with large scales, and additionally how to reveal the viral spread mechanisms
learned by the models. Therefore, our work will deal with the above challenges by de-
signing a spatial-temporal learning framework, which attempts to extract the information
in large cascade graphs through an efficient node sampling algorithm and explore the
diffusion mechanisms of viral content by visualizing the learned features of each node.

3. Method

In this study, we treat the viral spread of online content as the growth of information
cascade graphs, where the structural and temporal information of the initial graphs are con-
sidered as the key factors that decide their growth sizes, i.e., their future popularity [12,22],
since social media (Twitter, Weibo, etc.) usually precisely records who retweets a message,
and when this happens, it is feasible for managers to observe a dynamic cascade graph at
early stages and predict its future popularity. In this section, we first define the problem
and then introduce how our proposed ViralGCN makes predictions. The notations used in
this paper are shown in Table 2.

Table 2. Notations used in this paper.

Symbol Description

G A snapshot of the global social network.
C A set of retweet cascades of viral content in G.
c The retweet cascade of viral content.
gt

c The graph of cascade c within the time duration t after its origination.
Vt

c ,Et
c,Tt

c The set of nodes, edges, and retweet timestamps in gt
c.

∆t The fixed time interval.
∆sc The popularity increment size of cascade c after ∆t.
Rc The obtained representation of gt

c.
D(V) The degree of node v.
Vs

c The set of sampled nodes in gt
c.

Xc The stacked initial embedding of each node in Vs
c .

Ain
c , Aout

c The adjacency matrices of gt
c in distinct directions.

k The fixed aggregation depth.
Hk

c The hidden states of gt
c after k layers.

hk
v The hidden states of node v after k layers.

m The fixed number of divided time windows.
Sc The stacked retweet node sequences in each time window of gt

c.
ui

c The hidden state of ith time window.
λi The decay effect of ith time window.
n The number of sampled nodes.



Mathematics 2023, 11, 3059 8 of 29

3.1. Problem Definition

The core problem to be addressed in this study is how to predict the final popularity
of viral online content at an early stage of spreading, and the following definitions have to
be clarified before describing the problem by mathematical formulas.

3.1.1. Global Network

Suppose that at time t0 we take a snapshot of a social network G = (V, E), where V is
the set of nodes in this network at t0 and E ⊂ V ×V is the set of edges between nodes. A
node is a user in the social network, and an edge shows the relationship between two users.

3.1.2. Dynamic Cascade Graph

We denote a set of retweet cascades of viral content in the global social network G
as C. Each cascade c ∈ C with a duration t after its origination is described by a directed
graph gt

c = (Vt
c , Et

c, Tt
c), where Vt

c is a set of nodes that have been involved in the cascade c
within duration t after the original post, a directed edge (vi, vj) ∈ Et

c represents that node
vj retweets the message from node vi, and a timestamp tv ∈ Tt

c denotes the time elapsed
between the original post and node v’s retweet. Compared with previous definitions of
the cascade graph [16,18], the timestamp tv of each node that records when a user retweets
the message is added to gt

c. gt
c could vary with the observation time t, so we call gt

c, which
includes temporal information of spreading the dynamic cascade graph.

3.1.3. Popularity Growth Size

In this study, the popularity/cascade size is defined as the number of retweets of a
message. Due to the rich-get-richer phenomenon, there is usually an intrinsic correlation
between the observed cascade size and its final size. In order to exclude its impact on our
model, we predict the increment of a cascade’s size after a given time interval ∆t [16–18,42]
instead of directly predicting its final size. Let gt+∆t

c = (Vt+∆t
c , Et+∆t

c , Tt+∆t
c ) be the graph

at time t + ∆t. The popularity growth size can be denoted as ∆sc = |Vt+∆t
c | − |Vt

c |, and it is
known that the |Vt+∆t

c | is closer to the final size of a cascade when ∆t is larger. Figure 2
gives an illustrative example to show the growth of a cascade graph, i.e., the spread of viral
content in social media.

Figure 2. The spread of viral content in social media.

According to the framework of our model shown in Figure 1, we take the cascade
graph at an early stage (i.e., the time duration t after posting) as the input, and the output
is the predicted increment of the cascade size at time t + ∆t. The model automatically
embeds the structural information of nodes, temporal dynamics of spreading, and time
decay effects for the final prediction. Let Rc be the obtained representation of the dynamic
cascade graph gt

c. Then, the future popularity prediction can be formulated as, given t,
∆t, and {gt

c}c∈C, finding the optimal mapping function f that minimizes the following
objective function:
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O =
1
|C|

|C|

∑
c=1

( f (Rc)− ∆sc)
2 (1)

3.2. Model

The architecture of ViralGCN has been given in Figure 1. In the following, we explain
its components. More details can be found at https://github.com/XUDZX/ViralGCN,
accessed on 6 December 2021.

3.2.1. Node Embedding

We first generate an initial embedding for each node in the global graph G. Each node
is represented as a one-hot vector q ∈ RNnode , where Nnode is the number of nodes. All
of the nodes share an embedding matrix A ∈ Rd×Nnode that transforms each node into its
initial embedding vector x = Aq such that x ∈ Rd.

3.2.2. Adaptive Nodes Sampling Process

The sizes of cascades in social media may vary in a huge range; however, the graph-
learning models usually require a fixed input size. In contrast with the extant research
that makes the input size of the model as large as possible, we develop an adaptive nodes
sampling process to select a certain number of nodes that carry sufficient information of
those oversize cascade graphs. As a sub-graph of the global social network, the cascade
graph has scale-free property as well [53], where only a few nodes with high degrees play
a key role in both information diffusion and graph structure maintenance. Therefore, to
ensure the selected nodes carry sufficient information of a cascade graph, we apply the rule
of sampling in Algorithm 1.

Algorithm 1 Node sampling algorithm

for c ∈ C do
Vs

c ← {}
if |Vt

c | < n then
Vs

c ← Vt
c

padding Vs
c with 0 until |Vs

c | = n
else

while |Vs
c | < n do

random sample a node from (Vt
c −Vs

c )

with the probability of P(v) =
D(v)

∑u∈(Vt
c−Vs

c )
D(u)

end while
end if
return Vs

c
end for

It should be noted that D(v) is the degree of node v. The probability is calculated
to ensure that the selected nodes carry sufficient information about the cascade graph.
Meanwhile, n is the number of nodes that need to be selected as well as the input size of
the model. Since the best value of n could vary in different datasets, instead of setting a
fixed value we make n a hyper-parameter that is trainable in our model. According to our
algorithm, a few high-degree nodes that carry important information are more likely to be
captured, and the value of n decides how many other nodes are enough to reveal the main
structure of a cascade graph.

3.2.3. Bi-Directional Spatial Convolutional Layer

Since the structural features of the initial cascade graph can provide important clues
about how the message will spread in the future, the main objective of this component

https://github.com/XUDZX/ViralGCN


Mathematics 2023, 11, 3059 10 of 29

is to extract the predictive structural information from the graph. Additionally, since the
conventional graph representation approaches as well as the spectral graph convolution
methods are less explainable, in this work, we are trying to develop a spatial cascade
convolutional method not only to extract the structural information of cascades but also to
explain which different roles users play in the viral spread by obtaining the representation
of each node.

Bi-directional aggregation: Taking into account the information diffusion directions, we
develop a bi-directional aggregation approach. As shown in Figure 3, when the model
extracts the structural features of node E, green arrows with a circle and blue arrows
represent that the model aggregates E’s neighbors from the information inflow and outflow
directions. As the viral spread of online content is a one-way process, distinguishing
nodes from different directions provides more structural information of a cascade. For
example, the edge directions let the model know that node A is the original poster, and
node E retweets the message from node D. Therefore, we extract the cascade’s structural
information by generating two adjacent matrices Ain

c ∈ {0, 1}n×n and Aout
c ∈ {0, 1}n×n that,

respectively, record each node’s neighbors in distinct directions. Take a row of Aout
c as an

example; the positions of its child nodes are 1, and the rest of the positions are 0, while in a
row of Ain

c , the positions of its parent nodes are 1, and the rest of the positions are 0.

Figure 3. The process of structural and temporal information extraction.

Aggregator function: As the localized structure of a node is determined by its neigh-
bors, the main job of the cascade convolutional layer is to aggregate the information of
each node’s local neighbors. Due to the fact that the aggregator function should be sym-
metric (i.e., invariant for the input order of nodes) and trainable for maintaining high
representational capacity, a mean aggregator is adopted in our model.

Aggregation depth: We also make k convolutional layers to extract the deeper structural
information of each node. Figure 3 clearly illustrates how the process works. When k = 1,
the node E embeds the information of its local neighbors into its hidden state h1

E (the row
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of H1
c ). Meanwhile, the updated hidden states of node F also include the information from

its local neighbor, i.e., node G, which is one of the 2-hop neighbors of node E. After that,
the information of node G will be captured by node E in the next layer. As a result, after k
spatial convolutional layers, the obtained node v’s hidden state hk

v contains the information
of its k-hop neighbors.

Then, the bi-directional spatial cascade convolutional layers can be represented as follows:
First, each node in cascade c obtains an initial embedding, and the gt

c can be repre-
sented as H0

c = Xc, where Xc ∈ Rn×d is the stacked initial embedding of each node in gt
c, n

is the number of sampled nodes, and d is dimension size of node embedding. Then, the
bi-directional spatial convolution of cascade c can be represented as:

Hk
N(c_in) = mean(Ain

c ·Hk−1
c ) (2)

Hk
N(c_out) = mean(Aout

c ·Hk−1
c ) (3)

Hk
c = relu((Hk

N(c_in), Hk
N(c_out), Hk−1

c ) ·Wk + bk) (4)

where Hk
N(c_in) ∈ Rn×d and Hk

N(c_out) ∈ Rn×d are, respectively, the aggregated information

of nodes’ neighbors from the information inflow and outflow directions, Wk ∈ R3d×d and
bk ∈ Rn×d are parameters learned during training, and Hk

c ∈ Rn×d is the stacked hidden
states of each node after k layers. In the end, we can obtain the Hk

c that contains the updated
embedding of each node as well as the structural information of the cascade graph.

3.2.4. Temporal Information Aggregation Layer

The time effect has been proven to have a critical effect on the viral spread of online
content, where the rich-get-richer effect and the time decay effect are pervasive in cascade
evolving patterns [14]. However, the extant graph representation approaches [16,54]
focus on the structural information at the path level or graph level, making it difficult to
incorporate the temporal information of nodes’/users’ retweeting behaviors. In our work,
we propose an innovative approach to capture the spreading dynamics by aggregating the
information of nodes in the same time window.

Dynamic features extraction: We assume that a dynamic cascade graph gt
c = (Vt

c , Et
c, Tt

c)
is observed with a time duration t after its origination, and the time label of node v is
{tv = tr

v − tc
0}(0 6 tv 6 t, v ∈ Vt

c ), where tr
v is the time when node v retweets the message

and tc
0 is the original post time. We divide the time duration t into m time windows.

For an arbitrary node in the cascade, which time window it belongs to is decided by the
following process:

If (i− 1)× t
m ≤ tv < i× t

m (i ∈ Z, i ≤ m): node v belongs to the ith time window.
As shown in Figure 3, according to the nodes in each time window, the matrix

Sc ∈ {0, 1}m×n, which contains the spread information of each time window, can be gener-
ated. To model the temporal dependence of viral spread, we first aggregate the information
of nodes in each time window and then input the aggregated results to a gated recurrent
unit (GRU). The process of extracting temporal features of cascade c can be represented as:

Tc = Sc ·Hk
c (5)

where Tc ∈ Rm×d is the stacked initial states of observation time windows. Let ti
c ∈ Rd

denote the initial state of ith time window, which is a row of Tc; the reset gate ri
c ∈ Rd is

computed as:

ri
c = σ((ti

c, ui−1
c ) ·Wr) (6)
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where σ is the sigmoid activation function, Wr ∈ R2d×d are parameters learned during
training, and ui−1

c is the output state of (i− 1)th time window. The update gate zi
c ∈ Rd is

shown as Equation (7), where Wz ∈ R2d×d are also trainable parameters.

zi
c = σ((ti

c, ui−1
c ) ·Wz) (7)

After that, the output state of ith time window is computed as:

ui
c = (1− zi

c)� ui−1
c + zi

c � ũi
c (8)

where ũi
c = tanh((ti

c, ri
c � ui−1

c ) ·W), � is the element-wise multiply between vectors,
W ∈ R2d×d. The output hidden state of each time window contains information on
spreading dynamics as well as the structural information of the diffusion network.

Time decay effect: Since the influence of the message usually declines with time passing,
the time decay effect is considered as another important factor in popularity prediction. In
our work, due to the observation time t being divided into several time windows, instead
of constructing functions to describe the time decay effect of viral spread, our proposed
model directly learns the time decay effect of each divided time window. Specifically, a
trainable parameter λi, which is used to depict the time decay effect of the ith time window,
is given. A weighted sum-pooling approach is adopted to aggregate all the output states of
m time windows where the final representation Rc of cascade c that captures both structural
and temporal information is obtained.

Rc =
m

∑
i=0

λiui
c (9)

3.2.5. Output Layer

The output layer of our model is a fully connected neural network, taking the learned
cascade representation Rc as input and outputting the final prediction of growth size
MLP(Rc), where MLP stands for a multi-layer perception. In the end, the eventual objective
function to be minimized is defined as:

O =
1
|C|

|C|

∑
c=1

(MLP(Rc)− ∆sc)
2 + 0.001n (10)

where ∆sc is the cascade c’s actual growth size, |C| is the total number of retweet cascades,
n is the number of sampled nodes, and 0.001 is the weight which means that it is acceptable
if an increase in sampling volume of 100 results in a loss reduction of more than 0.1.

4. Empirical Investigation

In this section, we apply our model to the real viral spread scenario in social media to
evaluate the performance of our model. We also compare our model with other state-of-the-
art popularity prediction methods to illustrate the advantages of ViralGCN. In addition,
we make several variants of our model to test the effectiveness of three main components
in our model. Moreover, we adopt T-SNE to visualize the learned representations of nodes
as well as cascade graphs to explain what ViralGCN learns from the initial cascade graphs
and how they influence future popularity.

4.1. Dataset

The dataset used in our research is the Sina Weibo retweet dataset, which is generated
by [17] and is widely used in recent popularity prediction studies [17,18,54] as well. This
dataset records the diffusion paths in 24 h of 119,313 original micro-blogs that were posted
on 1 June 2016. In addition, the exact timing of each user’s retweet is also included in
this dataset, allowing our model to capture the dynamic features of spreading. Because
the spread dynamics are different between day and night, we follow [17,18] and filter
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out micro-blogs posted before 6:00 AM or after 18:00. Moreover, according to previous
experiments [16–18], the length of the observation time window (i.e., the time duration
t after posting) can significantly influence models’ performances, and the proportion of
small cascades that have little future growth in the dataset may also affect the model’s
overall prediction errors. Therefore, to comprehensively test the performance of ViralGCN,
we construct five sub-datasets based on different observation times and initial cascade
sizes. Specifically, the observation time in W1, W2, W3 is, respectively, 1 h, 2 h, and 3 h
after posting, and the micro-blogs with an initial cascade size no less than 10 are selected.
W4 and W5 include the micro-blogs with an initial cascade size of no less than 20 and 30,
respectively, and both observation times are 3 h after posting. The statistics are reported in
Table 3. Moreover, in this study, the retweet popularity of a micro-blog within 24 h after
origination is regarded as its final popularity. Thus, the actual growth size of cascade c
is computed as ∆sc = |V24

c | − |Vt
c |, where t is the observation time. Figure 4 shows the

distribution of popularity growth of all five datasets.

Figure 4. The distribution of five datasets.

Table 3. Statistics of datasets

Dataset W1 W2 W3 W4 W5
Observation Time 1 h 2 h 3 h 3 h 3 h
The Initial Retweet Popularity N ≥ 10 N ≥ 10 N ≥ 10 N ≥ 20 N ≥ 30

Number of micro-blogs
Train 27,487 33,207 36,365 23,148 18,010
Val 5890 7116 7792 4960 3859
Test 5890 7116 7793 4960 3859

Avg. number of nodes per graph
Train 115.27 132.24 143.74 214.7 265.36
Val 118.00 130.95 146.90 217.82 264.13
Test 125.00 134.94 146.86 224.43 268.28

Avg. number of edges per graph
Train 127.30 148.95 164.28 247.33 307.40
Val 133.61 152.84 159.80 247.51 310.86
Test 136.38 153.72 164.88 253.78 313.53
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4.2. Evaluation Metric

The mean squared log-transformed error (MSLE), an effective indicator to measure the
difference between predicted values and actual values, is adopted as the evaluation metric
in this paper. The MSLE is a variant of MSE (mean squared error), and it is frequently
applied in regression tasks and popularity prediction studies [16–18]. The definition of
MSLE is shown as follows:

MSLE =
1
|C|

|C|

∑
c=1

SLE2
c (11)

where |C| is the total number of cascades, an arbitrary cascade c’s squared log-transformed
error SLEc = (log(∆s′c + 1)− log(∆sc + 1))2, ∆s′c is the predicted increment of cascade size,
and ∆sc is the actual growth size of the cascade.

4.3. Performance Comparison Experiment

In this experiment, we adopt several common and state-of-the-art cascade prediction
approaches as the baselines to compare with our proposed ViralGCN, including the feature-
based methods, the DeepCas, the DeepHawkes, the DMT-LIC, and the CasCN.

4.3.1. Baseline Methods

Feature-linear: The linear regression is one of the most common approaches used to model
the relationship between online content popularity and the hand-crafted features [11,12,40,41].
In this paper, we extract several frequently used structural and temporal features that can
be generalized across all the datasets in this study, including the number of leaf nodes, the
average and the max degree of nodes, the average and max path length, the average time
that elapsed between the message origination and each retweet, and the average and the
maximum time interval between two successive retweets.

Feature-deep: Except for linear regression, we also use a neural network to combine
the selected features with the cascade growth size in a non-linear model. We calculate the
values of the selected features for each observed cascade graph in our datasets. Then, the
obtained features vectors are fed to both the linear regression model and fully connected
neural network to estimate the increment of cascade sizes.

DeepCas [16]: It is one of the state-of-the-art graph representation models for popularity
prediction, which extracts the structural features of information diffusion networks by
using the random walk to sample a series of node sequences from the initial cascade graph.

DeepHawkes [17]: It combines the deep learning method with the generative approach
(i.e., the Hawkes process), which makes each information diffusion path an input of a
recurrent neural network. This approach mainly considers the temporal information of
cascade growth.

DMT-LIC [42]: Another one of the state-of-art graph-based deep learning frameworks
for popularity prediction, which uses a deep multi-task learning framework to capture
both spatial and temporal dynamics of a cascade.

CasCN [18]: It is a model that predicts cascade growth size through graph convolution
in the Fourier domain. It adopts a recurrent neural network to model temporal dynamics.

4.3.2. Experiment Settings

For DeepCas, we set the number of random walk K = 200 sequences with walk length
T = 10. DeepHawkes’s hidden layer of each GRU has 32 units. The CasCN’s Chebyshev
coefficient K = 2. For DMT-LIC, the hidden layer of each RNN is 32 units, and the hidden
dimensions of the one-layer MLP are 32. In addition, some shared parameter settings are
as follows: the dimensionality of node embeddings is 64, the length of the divided time
window is 10 min, the dimensionality of nodes’ hidden states is 32, the batch size is 20, the
hidden dimensions of the two-layer MLP are 32 and 16, and the learning rate is 1× 10−3.
For our proposed ViralGCN, the hidden layer of each GRU is 32 units, and the number of
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spatial cascade convolution layers is k = 3. The hyper-parameter n ranges from 100 to 1000
taking intervals of 100, and the training process will stop when the model converges.

4.3.3. Results

We apply our proposed model and seven baseline methods on five datasets generated
from real viral spread events on Weibo. In this section, we are going to compare the
performances of all models. The result statistics are shown in Table 4. The differences
between the five datasets are the observation time and initial sizes of selected cascades, by
which we can better investigate the models’ prediction abilities.

It can be clearly seen from the results of W1, W2, and W3 that the overall performances
of all models upgrade with the extending observation time window, suggesting that longer
observation brings more predictive information. In results of W3, W4 and W5 where the
observation time is fixed, the performances of all of the models degrade with the growing
initial sizes of selected cascades. The results show that the balance of the dataset affects the
models’ overall performances, and accurate predictions for cascades with large initial sizes
are much more difficult than for small ones. To better illustrate the effect of observation
time and dataset balance, we provide the validation loss of the proposed ViralGCN on five
datasets with training epochs in Figure 5.

Feature-based vs. graph-based. Compared to the other graph-based models, two feature-
based models, i.e., the feature-linear and the feature-deep, achieve relatively high prediction
errors for all of the five datasets. For instance, when the observation time was 1 h and
the minimum initial popularity is set to 10, the feature-linear model obtained the highest
prediction error with MSLE = 3.768 and the feature-deep model obtained the second
highest prediction error with MSLE = 3.523. The results indicate that some predictive
information is excluded by the hand-crafted features, and the performance of the feature-
based model significantly depends on the quality of adopted features. In addition, the
better performances of the deep learning model over the linear model show that possible
non-linear relationships exist between adopted features and future popularity growth.

Structural information only vs. a combination of temporal information. We compare the
performances of the graph-based models that only consider cascades’ structural information
(i.e., DeepCas) with the models that combine both structural and temporal information (i.e.,
DeepHawkes, DMT-LIC, CasCN, and the proposed ViralGCN). It is clear from Table 4 that
the prediction error for DeepCas on the five data sets is 2.922, 2.694, 2.603, 2.710, and 2.847,
which is significantly higher than DeepHawk, DMT-LIC, and CasCN, respectively. The
results strongly show that the overall prediction errors can be decreased by incorporating
temporal information into the model.

ViralGCN vs. other graph-based methods. Finally, our proposed model performs signif-
icantly better than not only the feature-based models but also mainstream graph-based
models for all five datasets with varying observation time windows and initial sizes of
selected cascades. Specifically, ViralGCN achieves excellent prediction results with MSLEs
of 2.068, 1.460, 1.206, 1.423, and 1.527 on the five datasets. Compared with the current
state-of-the-art method CasCN, the errors are reduced by 10.7%, 31.9%, 37.0%, 29.1%, and
26.7%, respectively. Overall, our proposed ViralGCN model shows a strong ability to
predict the popularity of online viral content.
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Table 4. Comparison of performances.

Data Set W1 W2 W3 W4 W5
Observation Time 1 h 2 h 3 h 3 h 3 h
The Initial Retweet Popularity N ≥ 10 N ≥ 10 N ≥ 10 N ≥ 20 N ≥ 30

Feature-linear 3.768 3.594 3.267 3.383 3.496
Feature-deep 3.523 3.440 3.105 3.287 3.331
DeepCas 2.922 2.694 2.603 2.710 2.847
DeepHawk 2.430 2.202 2.168 2.251 2.337
DMT-LIC 2.474 2.310 2.129 2.183 2.297
CasCN 2.317 2.146 1.915 2.008 2.082
ViralGCN (Proposed) 2.068 * 1.460 * 1.206 * 1.423 * 1.527 *

* means the result is significantly different from the extant models at 0.01 level.

Figure 5. Loss of ViralGCN on the validation set of all five datasets.

4.4. Ablation Experiment

The main objective of this experiment is to evaluate the effectiveness of components
in our proposed model so that we make several variants of ViralGCN and compare the
performances of these modified models on the above five datasets.

4.4.1. The Variants of ViralGCN

ViralGCN-fixed: The first component of ViralGCN is the node-sampling process that is
developed to handle oversize cascade graphs and to improve the computation efficiency. To
test if our node-sampling process harms the model’s performance, we create ViralGCN-fixed,
the input size of which is set to fix 1000.

ViralGCN-max: The aggregator function is one of the most important components in
the spatial cascade convolutional layer. The original ViralGCN adopts the mean aggregator
to assemble information about a node’s neighbors. Due to the max aggregator being
also widely used in the graph learning domain, we build ViralGCN-max, which uses the
max aggregator to test the effectiveness of ViralGCN’s mean aggregator by comparing
their performances.

ViralGCN-undirected: To test the effectiveness of our proposed bi-directional spatial
graph convolutional method, which extracts features of both information inflow and
outflow directions, we make ViralGCN-undirected, which treats cascades as undirected
graphs and does not distinguish a node’s neighbors from different directions.

ViralGCN(no time effect): It is a variant of ViralGCN without considering any spreading
dynamics or time decay effects, which makes predictions only based on the representations
obtained from the spatial convolutional layer. This model is constructed to test if it is
necessary to consider the temporal information in popularity prediction.
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4.4.2. Results

The statistical results of all modified models are shown in Table 5. We can see that
there is no significant difference between the performances of ViralGCN-max and the
original ViralGCN, demonstrating that both max-pooling and mean-pooling are effective
aggregator functions for ViralGCN to extract nodes’ local structural features.

Additionally, compared with ViralGCN-undirected, the original ViarlGCN with a
bi-directional convolution obtains remarkably better overall performances for all datasets.
The results prove that information directions can provide more useful information about
cascade structure, and it is better to distinguish different information diffusion directions
in cascade prediction.

Moreover, it can also be seen that omitting the time effect leads to a significant increase
in prediction errors where the ViralGCN (no time effect) does not perform as well as the
original ViralGCN on all data sets. It suggests that temporal information is as crucial as
cascade structures to predict the popularity of viral spread.

Moreover, it can be found that compared to the original ViralGCN, ViralGCN-fixed’s
MSLE in all five datasets is, respectively, reduced by 1.69%, 0.062%, 3.07%, 3.87%, and
4.65%, but the average consuming time of one epoch training is, respectively, increased
by 549%, 317%, 190%, 160%, and 132%. The results clearly show that the proposed node-
sampling process is effective to extract the main information of the oversize cascade without
inputting the whole graph.

In summary, the bi-directional spatial convolution layers and the temporal information
aggregation layer of our proposed ViralGCN are effective to extract valuable information
from cascades. Moreover, both structural features of the cascade graph and temporal
dynamics of viral spread play important roles in reducing errors of popularity prediction.
The node sampling method can greatly enhance the computation efficiency by sacrificing
a little prediction accuracy. The experimental results demonstrate the effectiveness and
necessity of all three components in the ViralGCN model.

Table 5. Comparison of ViralGCN and its variants.

Data Set W1 W2 W3 W4 W5
Observation Time 1 h 2 h 3 h 3 h 3 h
The Initial Retweet Popularity N ≥ 10 N ≥ 10 N ≥ 10 N ≥ 20 N ≥ 30

ViralGCN-max 2.063 1.468 1.195 1.423 1.521
ViralGCN-undirected 2.195 * 1.603 * 1.525 * 1.710 * 1.907 *
ViralGCN-no time effect 2.594 * 2.512 * 2.463 * 2.553 * 2.680 *
ViralGCN-fixed 2.033 1.451 1.169 * 1.368 * 1.456 *
ViralGCN (original) 2.068 1.460 1.206 1.423 1.527
Best sampling volume of ViralGCN 300 400 500 500 500
Avg. 1 epoch training time of ViralGCN 204s 415s 780s 708s 651s
Avg. 1 epoch training time of ViralGCN-fixed 1324s 1732s 2269s 1842s 1511s

* means the result is significantly different from the original ViralGCN at 0.01 level.

4.5. Study of the Learned Features

In this section, we are going to provide some insights into actual viral spread mecha-
nisms from the perspective of artificial intelligence. Specifically, we try to use the T-SNE
(i.e., t-distributed stochastic neighbor embedding) to project the output high-dimensional
nodes’ embeddings and cascades’ embeddings onto a two-dimensional plane, combining
with the visualization method to investigate which features are learned by our proposed
spatial-temporal cascade convolutional framework and how they affect the future popular-
ity growth of viral online content. Although ViralGCN does not achieve the best overall
performance on dataset W5, it learns more valuable relationships between the features of
early viral spread and its future popularity growth. Hence, for presentation convenience,
only the visualizations of dataset W5’s test results are given. The visualization results of the
other datasets are provided in the Appendix A.
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4.5.1. The Learned Users’ Features

We first take the T-SNE to project 789854 nodes’ embeddings, which are output by
the bi-directional spatial convolutional layers onto a two-dimensional plane, as shown in
Figure 6. The T-SNE (i.e., t-distributed stochastic neighbor embedding) [55] is a widely used
method for visualizing high-dimensional data, by which similar objects are modeled into
the same cluster, while dissimilar objects are vice versa. It can be seen from Figure 6 that all
the nodes are projected into five different clusters. To further investigate the differences
between nodes in distinct clusters, we, respectively, color every node according to its 1,
2, and 3-hop in-degrees and out-degrees as the feature of a node in the graph is mainly
determined by its neighbors. After that, the results in Figure 6 show that four main types
of users that play different roles in the viral spread are identified by ViralGCN. Specifically,
the first type of users that only have relatively high 1-hop out-degrees are projected in
the top left cluster. We call these users broadcasters; they are usually influential in their
communities and can easily bring retweets from their friends but are less effective in
forming a long diffusion path. The second type of users whose 1-hop and 2-hop out-
degrees are both relatively high is projected into the top right cluster. We call these users
influential disseminators; they can bring retweets not only from their friends but their
friends’ friends as well (i.e., longer diffusion paths). Both broadcasters and influential
disseminators are usually root posters in the viral spread. Three clusters of nodes with
relatively high 1-hop in-degrees are projected to the bottom left of the figures. These users
are called active responders; they frequently retweet messages from others but are less
influential at bringing new retweets. Note that the right cluster of active responders also
have relatively high 2-hop in-degrees, which means that they not only retweet messages
from those influential users but also other active responders. We call these users the
responders’ responders; they can be easily influenced by others and usually play the role
of followers. Moreover, almost all nodes have low 3-hop out-degrees and 3-hop in-degrees,
implying that the length of the most retweet paths at an early stage (t = 3 h in dataset W5)
is within three users.

Figure 6. The projections of learned nodes’ representations.

4.5.2. The Learned Cascades’ Features

After identifying two important types of users (i.e., broadcasters and influential
disseminators) that are capable of influencing others’ retweet behaviors, the next objective
is to find out which ViralGCN learns about the effects of these users on making online
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content go viral. Hence, we project the output representation of each initial cascade graph
Rc onto a two-dimensional plane and, respectively, color each cascade by its max. 1-hop
out-degree, max. 2-hop out-degree, and actual popularity growth, as shown in Figure 7.
The figure on the top left is the distribution of cascades’ max. 1-hop out-degrees, from
which it can be found that broadcasters generally exist in the initial cascades. Additionally,
compared with the distribution of actual popularity growth on the bottom left, there
is a clear overlap between the cascade with a strong broadcaster and the cascade with
a relatively high growth size. In contrast, it can be seen from the top right figure that
the distribution of the initial cascades’ max. 2-hop out-degrees is extremely imbalanced,
whereas a few cascades with influential disseminators are mainly concentrated in orange
circles. Given that it is difficult to illustrate the effects of influential disseminators, we try
to investigate the relationship between the popularity growth and the cascade’s structural
virality by calculating the Wiener Index. The Wiener Index is the mean value of the
lengths of the shortest paths between all pairs of nodes [2], where the longer retweet
paths generated from those influential disseminators can lead to a larger Wiener Index.
We color the projected cascade representations by its Wiener Index in the bottom right
figure. Compared with the distribution of cascades’ actual popularity growth, it is apparent
that the cascade with a relatively high Wiener Index is also likely to achieve relatively
large popularity growth in the future. In summary, our proposed ViralGCN is effective at
extracting not only nodes’ features but the structural features of diffusion networks as well.
Moreover, the visualization of cascades’ representations suggests that both broadcast and
structural virality have a positive effect on future popularity growth.

Relatively
High

Relatively
Low

Distribution of Max. 1-hop out-degrees Distribution of Max. 2-hop out-degrees

Distribution of actual popularity growth Distribution of Wiener Index

Figure 7. The projections of learned cascades’ representations.

4.5.3. The Learned Spreading Dynamics

Except for spatial cascade convolutional layers, another core component of the pro-
posed ViralGCN is the temporal information aggregation layer, which is used to extract
the dynamic features of online viral spread. To explain what ViralGCN learns through the
temporal information aggregation layer and how the learned temporal features affect the
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popularity growth, we first try to figure out what the different types of evolving patterns
are in the early stage of online viral spread. Hence, we adopt the K-means method to
cluster the 3859 micro-blogs in the test dataset of W5 based on the spreading dynamics
during the observation time window, i.e., t = 3 h after origination. As a result, three early
evolving patterns of viral spread are identified from the test dataset of W5, as shown in
the bottom of Figure 8, where the x-axis is the divided time windows and the y-axis is
the log of retweet popularity growth, the blue line is the mean value, and the top and
bottom shades are pluses or minus one standard deviation, respectively. We call the left
one the rapid descent evolving pattern, whose retweet popularity is relatively lower than
the other two patterns initially and declines rapidly over time. The middle one is called
the gradual descent evolving pattern, which makes relatively higher popularity initially
than the rapid descent pattern and declines gradually over time. The last one is called the
ascent-then-descent evolving pattern, from which not only a relatively high initial popu-
larity but also a remarkable rise at the second time window can be seen. Additionally, the
retweet popularity of the ascent-then-descent evolving pattern declines gradually as well.
After this, we color the projected cascades by their early evolving pattern in the top right of
Figure 8 to investigate the effects of different early evolving patterns on future popularity
growth. Compared with the distribution of actual popularity growth, it is obvious that the
cascades with the gradual descent or ascent-then-descent evolving patterns are more likely
to gain relatively larger popularity growth in the future.

Figure 8. The learned cascade evolving patterns.

4.5.4. The Learned Time Decay Effects

In the temporal information aggregation layer, ViralGCN adopts several trainable
parameters λi to learn the time decay effect of each time window. To investigate whether
the time decay effects can be learned by ViralGCN and how the time decay effects influence
popularity prediction, we plot the learned λi of each time window as a bar chart in Figure 9.
According to the absolute value of the learned λi, it can be seen that the height of bars
increases with the time window number, suggesting that the more recent retweets are more
valuable for predictions. In other words, the proposed ViralGCN is capable of learning
the time decay effects of online viral spread. In addition, we also find that some of the
learned λi is less than 0. The results explain that the timings of retweets may have different
effects on future popularity growth. Since the length of the time window is 10 min, the
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results of learned λi imply that the retweets within 20–40 min and 70–80 min after posing,
as well as the last 1 h before observation time, can make positive contributions for future
popularity growth.

Retweets in recent 1 
hour play a much more 
important role in future 

popularity growth

20-40 minutes 
after posting

70-80 minutes 
after posting

Figure 9. The learned time decay effects.

5. Conclusions

In this paper, we propose an innovative temporal-spatial cascade convolutional frame-
work to predict the future popularity of viral online content that has not been seen before.
Our research suggests that the proposed method could provide the following new capabili-
ties to complement existing graph-based popularity prediction methods. First, compared
to extant methods, the proposed ViralGCN adopting the adaptive node-sampling process
is particularly efficient for handling cascade graphs with large scales. Our ablation experi-
ment shows that the original ViralGCN using the sampling process has more than 100%
improvement in computational efficiency over the modified model with expanded input
size. Second, we demonstrate that the bi-directional spatial convolution provides a possible
solution for the problem of model interpretability, which is a long-standing challenge in
graph-based methods. The visualization of node representations allows us to investigate
different roles that users play in the viral spread of online content and their effects on future
popularity growth. Last, we develop an effective temporal convolution method combined
with the time decay effects to fully capture the dynamic features of online viral spread. The
results of the ablation experiment show that the model performance can be reduced by up
to 73% without considering temporal information.

Another contribution of this paper is that we provide some insights into viral spread
mechanisms from the perspective of artificial intelligence. ViralGCN successfully identifies
four types of users and three evolving patterns of online viral spread. The visualization
results show that both broadcast and structural virality have a positive relationship with
future popularity growth. In addition, the cascades with the gradual descent or the ascent-
then-descent evolving patterns are more likely to gain large popularity growth in the future,
implying that maintaining high popularity for a long duration is one of the keys to making
online content go viral. Moreover, our results also indicate that the timing of users getting
involved in the cascade could have different effects on its final popularity.

With regard to extensions, our future research may further explore the application of
ViralGCN in different online viral spread scenarios. To further validate the ViralGCN model
performance and the generalizability of the learned viral spread mechanisms, we consider
using more richly sourced data (videos on Youtube, news on Twitter, etc.) in the future.
In terms of the ViralGCN framework, figuring out how to better integrate ViralGCN with
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existing information cascade models is another valuable problem to be studied in the future.
A recent study [54] has shown that combining the classical information cascade model with
the graph-learning method may help to explain the actual viral spread mechanisms. Such
endeavors are fruitful areas for future research.
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Appendix A

In this appendix, we are going to report the visualization results of the other test
datasets as what we have done in Section 4. It should be noted that the visualization results
of W1’s test set are less informative since the observation time within 1 h provides little
information for ViralGCN to learn. As a result, we only provide the projected cascade’s
representations of W1’s test set where a lot of cascades are clustered at several points,
showing that there is not sufficient information to distinguish the cascades with different
popularity growth.

Distribution of actual popularity growth

Relatively
High

Relatively
Low

Figure A1. The projected cascade’s representations of W1 test set.

The visualization results of W2’s test set are shown below:

https://github.com/CaoQi92/DeepHawkes
https://github.com/CaoQi92/DeepHawkes
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Figure A2. The projections of learned node’s representations of W2 test set.

Distribution of Max. 1-hop out-degree Distribution of Max. 2-hop out-degree

Distribution of actual popularity growth Distribution of Wiener Index

Relatively
High

Relatively
Low

Figure A3. The projections of learned cascade’s representations of W2 test set.



Mathematics 2023, 11, 3059 24 of 29

Figure A4. The learned cascade’s evolving patterns of W2 test set.

The visualization results of W3’s test set are shown below:

Figure A5. The projections of learned node’s representations of W3 test set.
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Distribution of Max. 1-hop out-degree Distribution of Max. 2-hop out-degree

Distribution of actual popularity growth Distribution of Wiener Index

Relatively
High
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Figure A6. The projections of learned cascade’s representations of W3 test set.

Figure A7. The learned cascade’s evolving patterns of W3 test set.

The visualization results of W4’s test set are shown below:
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Figure A8. The projections of learned node’s representations of W4 test set.

Distribution of Max. 1-hop out-degrees Distribution of Max. 2-hop out-degrees

Distribution of actual popularity growth Distribution of Wiener Index

Relatively
High

Relatively
Low

Figure A9. The projections of learned cascade’s representations of W4 test set.
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The rapid descent evolving pattern The gradual descent evolving pattern The ascent-then-descent evolving pattern

Distribution of actual popularity growth Distribution of 3 evolving patterns

Ascent then descent evolving pattern

Gradual descent evolving pattern

Rapid descent evolving pattern

Figure A10. The learned cascade’s evolving patterns of W4 test set.

The learned time decay effects of W2’s, W3’s and W4’s test sets are shown below:

Figure A11. The learned time decay effects of W2, W3 and W4 test sets.
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