An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model
Abstract
:1. Introduction
2. Related Work
3. Preliminary
3.1. Finite-Time Thermodynamics
3.2. Curzon and Ahlborn Engine
4. Materials and Methods
4.1. Gordon and Zarmi (GZ) Model
- The atmosphere absorbs solar radiation at low altitudes through two isothermal branches. At the same time, heat is pushed out at high altitudes through another branch, in which the atmosphere rejects the excess heat.
- There are two intermediate adiabats characterized by ascending and descending air currents, which occur instantaneously.
- represents the temperature of the working fluid in the isothermal branch situated at the lowest altitude. Here, the working fluid absorbs solar radiation during every half cycle.
4.2. Nonendoreversibility Parameter in G-Z
5. The Proposed Model
5.1. Greenhouse Factor
5.2. Greenhouse Factor in the Lowest Layer of the Atmosphere Average Surface Temperature
6. Experimental Results
- Linear regression: train_size = X_train, X_test, y_train, y_test =train_test_split(X, y, train_size = 0.8)
- Ridge regression: train_size = X_train, X_test, y_train, y_test =train_test_split(X, y, train_size = 0.8)
- Neural network optimizer was implemented by applying Adam’s algorithm. The regression loss was defined by MeanSquaredError. Moreover, four layers were established with the activation functions: linear, linear, relu, linear.
Data Preprocessing
7. Discussion
8. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirilenko, A.P.; Sedjo, R.A. Climate change impacts on forestry. Proc. Natl. Acad. Sci. USA 2007, 104, 19697–19702. [Google Scholar] [CrossRef] [PubMed]
- Carleton, T.A.; Hsiang, S.M. Social and economic impacts of climate. Science 2016, 353, aad9837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Louis, M.E.S.; Hess, J.J. Climate change: Impacts on and implications for global health. Am. J. Prev. Med. 2008, 35, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Nourani, V.; Tapeh, A.H.G.; Khodkar, K.; Huang, J.J. Assessing long-term climate change impact on spatiotemporal changes of groundwater level using autoregressive-based and ensemble machine learning models. J. Environ. Manag. 2023, 336, 117653. [Google Scholar] [CrossRef]
- Yeganeh-Bakhtiary, A.; EyvazOghli, H.; Shabakhty, N.; Kamranzad, B.; Abolfathi, S. Machine learning as a downscaling approach for prediction of wind characteristics under future climate change scenarios. Complexity 2022, 2022, 8451812. [Google Scholar]
- Rajaee, T.; Ebrahimi, H.; Nourani, V. A review of the artificial intelligence methods in groundwater level modeling. J. Hydrol. 2019, 572, 336–351. [Google Scholar] [CrossRef]
- Sattari, M.T.; Mirabbasi, R.; Sushab, R.S.; Abraham, J. Prediction of groundwater level in Ardebil plain using support vector regression and M5 tree model. Groundwater 2018, 56, 636–646. [Google Scholar] [CrossRef]
- Zare, M.; Koch, M. Groundwater level fluctuations simulation and prediction by ANFIS-and hybrid Wavelet-ANFIS/Fuzzy C-Means (FCM) clustering models: Application to the Miandarband plain. J. Hydro-Environ. Res. 2018, 18, 63–76. [Google Scholar] [CrossRef]
- Donnelly, J.; Abolfathi, S.; Pearson, J.; Chatrabgoun, O.; Daneshkhah, A. Gaussian process emulation of spatio-temporal outputs of a 2D inland flood model. Water Res. 2022, 225, 119100. [Google Scholar] [CrossRef]
- Nourani, V.; Khodkar, K.; Paknezhad, N.J.; Laux, P. Deep learning-based uncertainty quantification of groundwater level predictions. Stoch. Environ. Res. Risk Assess. 2022, 36, 3081–3107. [Google Scholar] [CrossRef]
- Zennaro, F.; Furlan, E.; Simeoni, C.; Torresan, S.; Aslan, S.; Critto, A.; Marcomini, A. Exploring machine learning potential for climate change risk assessment. Earth-Sci. Rev. 2021, 220, 103752. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E.; Ferreira, V.G. Identifying impacts of global climate teleconnection patterns on land water storage using machine learning. J. Hydrol. Reg. Stud. 2023, 46, 101346. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Obiwulu, A.U.; Ogbulezie, J.C. Machine learning and analytical model hybridization to assess the impact of climate change on solar PV energy production. Phys. Chem. Earth Parts A/B/C 2023, 130, 103389. [Google Scholar] [CrossRef]
- Nwokolo, S.C.; Ogbulezie, J.C.; Obiwulu, A.U. Impacts of climate change and meteo-solar parameters on photosynthetically active radiation prediction using hybrid machine learning with Physics-based models. Adv. Space Res. 2022, 70, 3614–3637. [Google Scholar] [CrossRef]
- Jusup, M.; Holme, P.; Kanazawa, K.; Takayasu, M.; Romić, I.; Wang, Z.; Geček, S.; Lipić, T.; Podobnik, B.; Wang, L.; et al. Social physics. Phys. Rep. 2022, 948, 1–148. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Schellnhuber, H.J.; Dube, O.P.; Dutreuil, S.; Lenton, T.M.; Lubchenco, J. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 2020, 1, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment. 2012. Available online: https://library.harvard.edu/sites/default/files/static/collections/ipcc/docs/AR5_WG2_n_SREX_chapters_and_review/ii_SREX/c_Final_draft_SREX/SREX-Chap3_FINAL.pdf (accessed on 12 March 2023).
- Wang, Z.; Jusup, M.; Guo, H.; Shi, L.; Geček, S.; Anand, M.; Perc, M.; Bauch, C.T.; Kurths, J.; Boccaletti, S.; et al. Communicating sentiment and outlook reverses inaction against collective risks. Proc. Natl. Acad. Sci. USA 2020, 117, 17650–17655. [Google Scholar] [CrossRef]
- Gordon, J.M.; Zarmi, Y. Wind energy as a solar-driven heat engine: A thermodynamic approach. Am. J. Phys. 1989, 57, 995–998. [Google Scholar] [CrossRef]
- Levario-Medina, S.; Valencia-Ortega, G.; Arias-Hernandez, L. Optimizacion Termodinámica de Algunas Plantas Generadoras de Energia Mediante la k-Potencia Eficiente. 2021. Available online: https://www.esfm.ipn.mx/assets/files/esfm/docs/RNAFM/articulos-2020/XXVRNAFM013.pdf (accessed on 23 April 2023).
- Curzon, F.L.; Ahlborn, B. Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 1975, 43, 22–24. [Google Scholar] [CrossRef]
- Arias-Hernandez, L.A.; Angulo-Brown, F. A general property of endoreversible thermal engines. J. Appl. Phys. 1997, 81, 2973–2979. [Google Scholar] [CrossRef]
- Angulo-Brown, F.; Rosales, M.A.; Barranco-Jimenez, M.A. The faint young Sun paradox: A simplified thermodynamic approach. Adv. Astron. 2012, 2012, 478957. [Google Scholar] [CrossRef] [Green Version]
- Sagan, C.; Mullen, G. Earth and Mars: Evolution of atmospheres and surface temperatures. Science 1972, 177, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Kasting, J.F.; Grinspoon, D.H. The faint young Sun problem. In The Sun in Time; University of Arizona Press: Tucson, AZ, USA, 1991; pp. 447–462. [Google Scholar]
- De Vos, A.; Flater, G. The maximum efficiency of the conversion of solar energy into wind energy. Am. J. Phys. 1991, 59, 751–754. [Google Scholar] [CrossRef]
- De Vos, A.; Van der Wel, P. The efficiency of the conversion of solar energy into wind energy by means of Hadley cells. Theor. Appl. Climatol. 1993, 46, 193–202. [Google Scholar] [CrossRef]
- Houghton, J. Global warming reports on progress. Physics 2005, 68, 1340–1403. [Google Scholar]
- Wang, R.; Li, L.; Gentine, P.; Zhang, Y.; Chen, J.; Chen, X.; Chen, L.; Ning, L.; Yuan, L.; Lü, G. Recent increase in the observation-derived land evapotranspiration due to global warming. Environ. Res. Lett. 2022, 17, 024020. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.c. Prediction of arctic sea ice concentration using a fully data driven deep neural network. Remote Sens. 2017, 9, 1305. [Google Scholar] [CrossRef] [Green Version]
- Asthana, T.; Krim, H.; Sun, X.; Roheda, S.; Xie, L. Atlantic hurricane activity prediction: A machine learning approach. Atmosphere 2021, 12, 455. [Google Scholar] [CrossRef]
- Nieves, V.; Radin, C.; Camps-Valls, G. Predicting regional coastal sea level changes with machine learning. Sci. Rep. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Khasnis, A.A.; Nettleman, M.D. Global warming and infectious disease. Arch. Med. Res. 2005, 36, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, B.S.; Mehrabi, Z.; Ramankutty, N.; Kandlikar, M. How can machine learning help in understanding the impact of climate change on crop yields? Environ. Res. Lett. 2023, 18, 024008. [Google Scholar] [CrossRef]
- Zheng, H. Analysis of global warming using machine learning. Comput. Water Energy Environ. Eng. 2018, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Cheremisin, G.; Egorov, D.; Kravchenko, O.; Dev, A. Deep convolutional neural network for reconstructing the cloud phase distribution from level-1b MODIS data. Proc. AIP Conf. Proc. 2023, 2819, 030005. [Google Scholar]
- Miloshevich, G.; Cozian, B.; Abry, P.; Borgnat, P.; Bouchet, F. Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data. Phys. Rev. Fluids 2023, 8, 040501. [Google Scholar] [CrossRef]
- Farhangmehr, V.; Cobo, J.H.; Mohammadian, A.; Payeur, P.; Shirkhani, H.; Imanian, H. A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model. Sustainability 2023, 15, 7897. [Google Scholar] [CrossRef]
- Hassan, K.M.A. Predicting Future Global Sea Level Rise From Climate Change Variables Using Deep Learnin. Int. J. Comput. Digit. Syst. 2023. [Google Scholar] [CrossRef]
- Ghimire, S.; Nguyen-Huy, T.; Prasad, R.; Deo, R.C.; Casillas-Perez, D.; Salcedo-Sanz, S.; Bhandari, B. Hybrid convolutional neural network-multilayer perceptron model for solar radiation prediction. Cogn. Comput. 2023, 15, 645–671. [Google Scholar] [CrossRef]
- Larson, A.; Hendawi, A.; Boving, T.; Pradhanang, S.M.; Akanda, A.S. Discerning Watershed Response to Hydroclimatic Extremes with a Deep Convolutional Residual Regressive Neural Network. Hydrology 2023, 10, 116. [Google Scholar] [CrossRef]
- Jonnalagadda, J.; Hashemi, M. Long Lead ENSO Forecast Using an Adaptive Graph Convolutional Recurrent Neural Network. Eng. Proc. 2023, 39, 5. [Google Scholar]
- Lacombe, R.; Grossman, H.; Hendren, L.; Lüdeke, D. Improving extreme weather events detection with light-weight neural networks. arXiv 2023, arXiv:2304.00176. [Google Scholar]
- Raman, R.; Mewada, B.; Meenakshi, R.; Jayaseelan, G.; Sharmila, K.S.; Taqui, S.N.; Al-Ammar, E.A.; Wabaidur, S.M.; Iqbal, A. Forecasting the PV Power Utilizing a Combined Convolutional Neural Network and Long Short-Term Memory Model. Electr. Power Components Syst. 2023, 1–17. [Google Scholar] [CrossRef]
- Lin, F.; Zhang, Y.; Wang, J. Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods. Int. J. Forecast. 2023, 39, 244–265. [Google Scholar] [CrossRef]
- Caldas, M.; Alonso-Suárez, R. Very short-term solar irradiance forecast using all-sky imaging and real-time irradiance measurements. Renew. Energy 2019, 143, 1643–1658. [Google Scholar] [CrossRef]
- Pedro, H.T.; Coimbra, C.F.; David, M.; Lauret, P. Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts. Renew. Energy 2018, 123, 191–203. [Google Scholar] [CrossRef]
- Kamadinata, J.O.; Ken, T.L.; Suwa, T. Sky image-based solar irradiance prediction methodologies using artificial neural networks. Renew. Energy 2019, 134, 837–845. [Google Scholar] [CrossRef]
- Barranco-Jimenez, M.A.; Chimal-Eguia, J.C.; Angulo-Brown, F. The Gordon and Zarmi model for convective atmospheric cells under the ecological criterion applied to the planets of the solar system. Rev. Mex. Fis. 2006, 52, 205–212. [Google Scholar]
- Ocampo-Garcia, A. Optimizacion Termodinamica y Termoeconomica de Modelos Extendidos de Maquinas Endorreversibles. Ph.D. Thesis, Instituto Politecnico Nacional, Mexico City, Mexico, 2020. [Google Scholar]
- Angulo-Brown, F.; Arias-Hernandez, L.A.; Santillan, M. On some connections between first order irreversible thermodynamics and finite-time thermodynamics. Rev. Mex. Fis. 2002, 48, 182–192. [Google Scholar]
- Norma Sanchez, F.; Angulo-Brown, M.B.J. Posibles futuros escenarios de la temperatura superficial de la Tierra con la evolucion de la constante solar. In Proceedings of the XXII Congreso Nacional de Termodinamica, Sociedad Mexicana de Termodinamica A.C., Mexico City, Mexico, 10–12 September 2007. [Google Scholar]
- Barranco-Jimenez, M.A.; Angulo-Brown, F. A simple model on the influence of the greenhouse effect on the efficiency of solar-to-wind energy conversion. Il Nuovo Cimento C 2003, 26, 535–552. [Google Scholar]
- Barranco-Jimenez, M.A.; Angulo-Brown, F. A nonendoreversible model for wind energy as a solar-driven heat engine. J. Appl. Phys. 1996, 80, 4872–4876. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Trends in Atmospheric Carbon Dioxide. 2023. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 3 July 2023).
- Berkeley Earth. Global Warming Data Overview. 2023. Available online: https://berkeleyearth.org/data/ (accessed on 3 July 2023).
- National Center for Atmosferic Research. Global Surface Temperatures: BEST: Berkeley Earth Surface Temperatures. 2023. Available online: https://climatedataguide.ucar.edu/climate-data/global-surface-temperatures-best-berkeley-earth-surface-temperatures (accessed on 3 June 2023).
- National Aeronautics and Space Administration. GISS Surface Temperature Analysis (GISTEMP v4). 2023. Available online: https://data.giss.nasa.gov/gistemp/ (accessed on 3 June 2023).
- Pierrehumbert, R.T. Infrared radiation and planetary temperature. Phys. Today 2011, 64, 33–38. [Google Scholar] [CrossRef]
- Curry, J.A.; Webster, P.J. Thermodynamics of Atmospheres and Oceans; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- von Paris, P.; Rauer, H.; Grenfell, J.L.; Patzer, B.; Hedelt, P.; Stracke, B.; Trautmann, T.; Schreier, F. Warming the early Earth—CO2 reconsidered. Planet. Space Sci. 2008, 56, 1244–1259. [Google Scholar] [CrossRef] [Green Version]
- Krasnopolsky, V.M.; Fox-Rabinovitz, M.S. Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction. Neural Netw. 2006, 19, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.A.; Sherwood, S. A practical philosophy of complex climate modelling. Eur. J. Philos. Sci. 2015, 5, 149–169. [Google Scholar] [CrossRef]
- Knutti, R.; Rugenstein, M.A. Feedbacks, climate sensitivity and the limits of linear models. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20150146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, G. Fundamentals of Physics and Chemistry of the Atmosphere; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- North, G.R.; Cahalan, R.F.; Coakley, J.A., Jr. Energy balance climate models. Rev. Geophys. 1981, 19, 91–121. [Google Scholar] [CrossRef] [Green Version]
- Levario Medina, S. Estudio de Algunas Funciones Compromiso y Sus Efectos en la Optimización Termodinámica en Los Modelos de Convertidores de Energía. Ph.D. Thesis, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City, Mexico, 2021. [Google Scholar]
Year | ||
---|---|---|
1975 | 8.74 | 8.41 |
1976 | 8.34 | 8.44 |
1977 | 8.85 | 8.48 |
1978 | 8.69 | 8.51 |
1979 | 8.73 | 8.55 |
1980 | 8.98 | 8.58 |
1981 | 9.16 | 8.62 |
1982 | 8.63 | 8.65 |
1983 | 9.02 | 8.69 |
1984 | 8.65 | 8.73 |
1985 | 8.65 | 8.77 |
1986 | 8.83 | 8.80 |
1987 | 8.99 | 8.84 |
1988 | 9.20 | 8.88 |
1989 | 8.922 | 8.92 |
1990 | 9.23 | 8.96 |
1991 | 9.17 | 9.00 |
1992 | 8.83 | 9.04 |
1993 | 8.86 | 9.08 |
1994 | 9.03 | 9.12 |
1995 | 9.34 | 9.16 |
1996 | 9.03 | 9.21 |
1997 | 9.20 | 9.24 |
1998 | 9.52 | 9.29 |
1999 | 9.28 | 9.33 |
2000 | 9.20 | 9.37 |
2001 | 9.41 | 9.38 |
2002 | 9.57 | 9.46 |
2003 | 9.52 | 9.50 |
2004 | 9.32 | 9.48 |
2005 | 9.70 | 9.59 |
2006 | 9.53 | 9.64 |
2007 | 9.73 | 9.73 |
2008 | 9.43 | 9.74 |
2009 | 9.50 | 9.78 |
2010 | 9.703 | 9.82 |
2011 | 9.51 | 9.87 |
2012 | 9.507 | 9.92 |
2013 | 9.606 | 9.97 |
2014 | 9.570 | 10.02 |
2015 | 9.831 | 10.07 |
Year | with LR | with LR | with RR | with NN | with GZM |
---|---|---|---|---|---|
2016 | 9.839 | 10.049 | 9.845 | 10.089 | 10.121 |
2017 | 9.842 | 10.094 | 9.860 | 10.094 | 10.176 |
2018 | 9.845 | 10.135 | 9.869 | 10.099 | 10.228 |
2019 | 9.860 | 10.178 | 9.884 | 10.105 | 10.281 |
2020 | 9.885 | 10.219 | 9.907 | 10.110 | 10.334 |
2021 | 9.913 | 10.251 | 9.937 | 10.115 | 10.387 |
2022 | 9.941 | 10.292 | 9.967 | 10.120 | 10.440 |
2023 | 9.969 | 10.333 | 9.996 | 10.125 | 10.495 |
2024 | 9.997 | 10.374 | 10.026 | 10.130 | 10.550 |
2025 | 10.025 | 10.426 | 10.056 | 10.135 | 10.606 |
2026 | 10.053 | 10.456 | 10.086 | 10.140 | 10.663 |
2027 | 10.081 | 10.497 | 10.116 | 10.144 | 10.720 |
2028 | 10.109 | 10.538 | 10.146 | 10.149 | 10.777 |
2029 | 10.137 | 10.579 | 10.175 | 10.154 | 10.836 |
2030 | 10.165 | 10.620 | 10.205 | 10.159 | 10.895 |
2031 | 10.193 | 10.661 | 10.235 | 10.164 | 10.954 |
2032 | 10.221 | 10.702 | 10.265 | 10.169 | 11.014 |
2033 | 10.249 | 10.743 | 10.295 | 10.174 | 11.018 |
2034 | 10.277 | 10.784 | 10.325 | 10.179 | 11.138 |
2035 | 10.305 | 10.825 | 10.354 | 10.184 | 11.200 |
2036 | 10.333 | 10.866 | 10.384 | 10.189 | 11.263 |
2037 | 10.361 | 10.907 | 10.414 | 10.194 | 11.327 |
2038 | 10.389 | 10.948 | 10.444 | 10.199 | 11.392 |
2039 | 10.417 | 10.989 | 10.474 | 10.204 | 11.456 |
2040 | 10.445 | 11.030 | 10.504 | 10.209 | 11.524 |
2041 | 10.473 | 11.071 | 10.533 | 10.213 | 11.591 |
2042 | 10.501 | 11.112 | 10.563 | 10.218 | 11.659 |
2043 | 10.529 | 11.153 | 10.593 | 10.223 | 11.728 |
2044 | 10.557 | 11.194 | 10.623 | 10.233 | 11.798 |
2045 | 10.585 | 11.235 | 10.653 | 10.238 | 11.868 |
2046 | 10.613 | 11.276 | 10.683 | 10.243 | 11.939 |
2047 | 10.641 | 11.317 | 10.713 | 10.246 | 12.012 |
2048 | 10.669 | 11.358 | 10.742 | 10.248 | 12.085 |
2049 | 10.697 | 11.399 | 10.772 | 10.253 | 12.159 |
2050 | 10.725 | 11.440 | 10.802 | 10.258 | 12.234 |
2051 | 10.753 | 11.481 | 10.832 | 10.263 | 12.311 |
2052 | 10.781 | 11.522 | 10.862 | 10.268 | 12.388 |
2053 | 10.809 | 11.563 | 10.892 | 10.272 | 12.465 |
2054 | 10.837 | 11.604 | 10.921 | 10.277 | 12.545 |
2055 | 10.865 | 11.645 | 10.951 | 10.282 | 12.625 |
2056 | 10.893 | 11.686 | 10.981 | 10.287 | 12.707 |
2057 | 10.921 | 11.727 | 11.011 | 10.292 | 12.789 |
2058 | 10.949 | 11.768 | 11.041 | 10.297 | 12.872 |
2059 | 10.977 | 11.809 | 11.071 | 10.302 | 12.957 |
2060 | 11.005 | 11.850 | 11.100 | 10.307 | 13.043 |
2061 | 11.033 | 11.891 | 11.130 | 10.312 | 13.129 |
2062 | 11.061 | 11.932 | 11.160 | 10.317 | 13.218 |
2063 | 11.089 | 11.973 | 11.190 | 10.322 | 13.308 |
2064 | 11.117 | 12.014 | 11.220 | 10.327 | 13.398 |
2065 | 11.145 | 12.055 | 11.250 | 10.332 | 13.490 |
2066 | 11.173 | 12.096 | 11.279 | 10.336 | 13.584 |
2067 | 11.201 | 12.137 | 11.309 | 10.341 | 13.659 |
2068 | 11.229 | 12.178 | 11.339 | 10.346 | 13.775 |
2069 | 11.257 | 12.219 | 11.369 | 10.351 | 13.872 |
2070 | 11.285 | 12.260 | 11.399 | 10.356 | 13.972 |
2071 | 11.313 | 12.301 | 11.429 | 10.361 | 14.072 |
2072 | 11.341 | 12.342 | 11.458 | 10.366 | 14.174 |
2073 | 11.369 | 12.383 | 11.488 | 10.371 | 14.277 |
2074 | 11.397 | 12.424 | 11.518 | 10.376 | 14.383 |
2075 | 11.425 | 12.465 | 11.548 | 10.381 | 14.490 |
2076 | 11.453 | 12.506 | 11.578 | 10.386 | 14.599 |
2077 | 11.481 | 12.547 | 11.608 | 10.390 | 14.709 |
2078 | 11.509 | 12.588 | 11.637 | 10.396 | 14.820 |
2079 | 11.537 | 12.629 | 11.667 | 10.401 | 14.935 |
2080 | 11.565 | 12.670 | 11.697 | 10.405 | 15.050 |
2081 | 11.593 | 12.711 | 11.727 | 10.410 | 15.168 |
2082 | 11.621 | 12.752 | 11.757 | 10.415 | 15.287 |
2083 | 11.649 | 12.793 | 11.787 | 10.420 | 15.408 |
2084 | 11.677 | 12.834 | 11.816 | 10.425 | 15.533 |
2085 | 11.705 | 12.875 | 11.846 | 10.430 | 15.658 |
2086 | 11.733 | 12.916 | 11.876 | 10.435 | 15.786 |
2087 | 11.761 | 12.957 | 11.906 | 10.440 | 15.916 |
2088 | 11.789 | 12.998 | 11.936 | 10.445 | 16.048 |
2089 | 11.817 | 13.039 | 11.966 | 10.450 | 16.183 |
2090 | 11.845 | 13.080 | 11.995 | 10.455 | 16.320 |
2091 | 11.873 | 13.121 | 12.025 | 10.460 | 16.460 |
2092 | 11.901 | 13.162 | 12.055 | 10.465 | 16.601 |
2093 | 11.929 | 13.203 | 12.085 | 10.469 | 16.746 |
2094 | 11.957 | 13.244 | 12.115 | 10.474 | 16.894 |
2095 | 11.985 | 13.285 | 12.145 | 10.479 | 17.043 |
2096 | 12.013 | 13.326 | 12.174 | 10.484 | 17.196 |
2097 | 12.041 | 13.367 | 12.204 | 10.489 | 17.352 |
2098 | 12.069 | 13.408 | 12.234 | 10.494 | 17.511 |
2099 | 12.097 | 13.449 | 12.264 | 10.499 | 17.673 |
2100 | 12.125 | 13.490 | 12.294 | 10.504 | 17.838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Ramírez, S.; Torres-Ruiz, M.; Quintero, R.; Chui, K.T.; Guzmán Sánchez-Mejorada, C. An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model. Mathematics 2023, 11, 3060. https://doi.org/10.3390/math11143060
Vázquez-Ramírez S, Torres-Ruiz M, Quintero R, Chui KT, Guzmán Sánchez-Mejorada C. An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model. Mathematics. 2023; 11(14):3060. https://doi.org/10.3390/math11143060
Chicago/Turabian StyleVázquez-Ramírez, Sebastián, Miguel Torres-Ruiz, Rolando Quintero, Kwok Tai Chui, and Carlos Guzmán Sánchez-Mejorada. 2023. "An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model" Mathematics 11, no. 14: 3060. https://doi.org/10.3390/math11143060
APA StyleVázquez-Ramírez, S., Torres-Ruiz, M., Quintero, R., Chui, K. T., & Guzmán Sánchez-Mejorada, C. (2023). An Analysis of Climate Change Based on Machine Learning and an Endoreversible Model. Mathematics, 11(14), 3060. https://doi.org/10.3390/math11143060