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Abstract: The criteria for measuring soil compaction parameters, such as optimum moisture content
and maximum dry density, play an important role in construction projects. On construction sites,
base/sub-base soils are compacted at the optimal moisture content to achieve the desirable level of
compaction, generally between 95% and 98% of the maximum dry density. The present technique
of determining compaction parameters in the laboratory is a time-consuming task. This study
proposes an improved hybrid intelligence paradigm as an alternative tool to the laboratory method
for estimating the optimum moisture content and maximum dry density of soils. For this purpose, an
advanced version of the grey wolf optimiser (GWO) called improved GWO (IGWO) was integrated
with an adaptive neuro-fuzzy inference system (ANFIS), which resulted in a high-performance hybrid
model named ANFIS-IGWO. Overall, the results indicate that the proposed ANFIS-IGWO model
achieved the most precise prediction of the optimum moisture content (degree of correlation = 0.9203
and root mean square error = 0.0635) and maximum dry density (degree of correlation = 0.9050 and
root mean square error = 0.0709) of soils. The outcomes of the suggested model are noticeably superior
to those attained by other hybrid ANFIS models, which are built with standard GWO, Moth-flame
optimisation, slime mould algorithm, and marine predators algorithm. The results indicate that
geotechnical engineers can benefit from the newly developed ANFIS-IGWO model during the design
stage of civil engineering projects. The developed MATLAB models are also included for determining
soil compaction parameters.

Keywords: soil compaction; adaptive neuro-fuzzy inference system; grey wolf optimiser; swarm in-
telligence

MSC: 68Txx

1. Introduction

In the parlance of geotechnical engineering, soil compaction is a method of com-
pressing soil particles by reducing air voids while maintaining steady water content [1,2].
Compaction can be used to enhance the mechanical qualities of soils in a number of differ-
ent ways. Proctor [3] recommended compacting soil with different water contents at an
appropriate compaction energy. As a result, the compaction curve can be used to determine
the optimum moisture content (OMC) and maximum dry density (MDD) of soils. To sustain
the long-term performance of various engineering structures, such as embankments of
railways, highways, and airport runways, these two compaction parameters are commonly
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used [4–8]. Understanding and predicting the compaction characteristics of different soils
is thus a crucial aspect of every construction project [9–13].

Analytical techniques and laboratory experiments can be used to calculate the OMC
and MDD [1,14,15]. However, to precisely characterise the compaction curve, at least 4
to 5 tests must be carried out in the laboratory, which takes a long time [9,14]. In order
to conduct tests and obtain accurate results, highly qualified technical staff and expert
personnel are needed. The laboratory values of OMC and MDD are utilised to compact
soils of sub-base/base layers to achieve 95–98% MDD in the field. Thus, it is important to
create smart, data-driven algorithms for calculating the OMC and MDD based on existing
experimental records [1,15,16]. To determine the OMC and MDD of soils, a number of
prediction models have previously been put forth. Regression analysis and different data
from particular soils were used to create the majority of these models. However, according
to the literature, the prediction accuracy of these models tends to decrease as the size of the
database increased [1,14,17].

In order to address the issue with a larger database and improved accuracy, machine
learning techniques (MLTs) have recently been employed to estimate the OMC and MDD
of soils. Using evolutionary polynomial regression (EPR) and artificial neural networks
(ANNs), the compaction characteristics of 55 soil samples were predicted [18]. The group
method of data handling (GMDH) was used by Ardakani and Kordnaeij [19] to estimate
the compaction parameters of 212 samples. Based on the results of 451 experiments using
the index properties and conventional proctor tests, Kurnaz and Kaya [16] employed
GMDH, support vector machine (SVM), extreme learning machine (ELM), and Bayesian
regularisation neural network to estimate the OMC and MDD of soils. Recently, Tiwari
et al. [17] used hybrid least square support vector machine (LSSVM) approaches to estimate
the OMC and MDD of soils, and found satisfactory results.

These prediction models, in comparison to regression analysis models, displayed
better determination coefficient (R2) values, ranging from 0.90 to 0.98 [1,14]. Nevertheless,
these studies used only a few different types of soils. Past studies have shown that within a
given soil range, forecast accuracy can be ensured; nevertheless, the issue of the limited soil
type and the inadequate consideration of soil factors may result in inaccurate predictions.
Prediction models constructed and validated with the fewest number of influential param-
eters, which are typically determined when samples are brought to the laboratory, are also
regarded as the most effective. In contrast, the nonlinear stress-strain relationships, the
stress-strain time-conditioning response, and the elasto-plastic behaviour under loading
and unloading conditions make soil materials highly complex [20–24]. Therefore, a high-
performance soft computing model is considered necessary to estimate the OMC and MDD
of soils, taking into account a wide range of soil types and the most influential variables
(such as grain size analysis, plasticity characteristics, etc.) that can be readily measured in
the laboratory.

According to the most recent literature, ensemble-based and hybrid MLTs are the best
suited approaches for estimating the anticipated outputs, such as load-carrying capacity
assessment of semi-rigid steel structures [25], patch load resistance of stiffened plate
girders [26], soil compaction parameters [27], compression index [24], etc. Additionally, due
to the complexity of the task at hand, it is required to look at a variety of advanced MLTs in
order to find more precise estimating models. A detailed review of the literature reveals
that the main advantage of the neuro-fuzzy system is that it combines neural network
properties with fuzzy logic; hence, eliminating the limitations of these two MLTs can be
found in the literature [28,29]. After ANN, Adaptive neuro-fuzzy inference system (ANFIS)
is one of the widely used MLTs and can be implemented easily to estimate the desired
output(s). ANFIS has the advantage of knowing both numbers and languages. ANFIS also
makes use of ANN’s capacity to classify data and recognise patterns. Specifically, ANFIS
is more transparent to the user than the ANN model and generates fewer memorisation
errors. The fundamental advantage of the neuro-fuzzy system is that it blends neural
network properties with fuzzy logic, removing the limitations of both. While fuzzy logic
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deals with knowledge that can be obtained and comprehended, neural networks deal with
knowledge that can be obtained only via optimised learning [28,30]. However, like many
other MLTs, ANFIS has some limitations, such as overfitting issues. Additionally, because
it is hard to define the exact global optimum, it may produce undesirable outcomes during
the validation phase [14,31].

To solve these issues, researchers have employed a number of meta-heuristic algo-
rithms (MHAs), such as GA, PSO, GWO, etc. [28,29,32], and a number of hybrid models
of traditional MLTs and MHAs were built for the estimation of desired output(s). It is
important to note that construction of an effective ANFIS model requires optimum selec-
tion of its consequent and antecedent (C&A) and fuzzy inference system (FIS) parameters.
These two parameters significantly affect how the learning phase turns out, which in turn
affects how well a hybrid ANFIS model can predict the desired variables. Due to the robust
global search capabilities of MHAs, the C&A parameters of ANFIS are iteratively adjusted,
resulting in improved performance. Over the past decade, several hybrid ANFIS models
have seen widespread use in addressing a wide range of engineering problems, including
compressive strength estimation [28,33], flood assessment [34], prophecy of groundwater
level [35], and so on.

Nevertheless, a detailed review of the literature reveals that no previous study has
employed hybrid ANFIS models constructed with a specific group of MHAs to predict soil
compaction parameters. On the other hand, it is important to highlight that no algorithm
provides perfect solutions for all optimisation problems due to improper exploration
and exploitation (E&E) processes [31,36]. Therefore, implementing a standard version of
MHA in hybrid modelling does not ensure optimum hybrid model generation. It may
also be noted that researchers reported modified versions of MHAs and demonstrated
that the performance of standard MHA could be improved by implementing different
strategies [37–39]. Considering these points as a reference, and to fill the gap in the
literature, an enhanced hybrid technique of ANFIS and an improved grey wolf optimiser
(IGWO), i.e., ANFIS-IGWO, has been constructed and presented in this study for the
estimation of OMC and MDD of soils. The performance of the ANFIS-IGWO model was
compared to that of three hybrid ANFIS models built using moth-flame optimisation (MFO),
slime mould algorithm (SMA), and marine predator algorithm (MPA). The performance of
the ANFIS-IGWO model was also compared with the standard hybrid model of ANFIS
and GWO, i.e., ANGIS-GWO. Thus, as a part of ongoing research and to extend the work
of Bardhan and Asteris [14], a suitable database of various soils was compiled from the
studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14] and a modified
database was prepared. Specifically, a total of 251 datasets from 15 different soils were
acquired and utilised in the current study for the estimation of the OMC and MDD of soils.

The remainder of this work is organised as follows. The significance of the present
study is presented in Section 2. Section 3 details the methodological development of
ANFIS-based hybrid models. Section 4 discusses data collection, descriptive details, and
the computer modelling procedure. Section 5 provides and discusses the realisations of the
developed models, followed by Section 6 with the limitations and future scope of the study.
At the end, summary and conclusions are presented.

2. Research Significance

In the last two decades, a multitude of modern computational methods, techniques,
and algorithms have been proposed and published with the aim of predicting the response
of complex phenomena whose strongly non-linear nature and behaviour make impossible
the widely accepted use of deterministic techniques [25,26]. In these methods, artificial
intelligence, machine learning, and MHAs have a dominant position. In fact, despite
the fact that these techniques started with the first applications in medicine [40], they
were particularly applied in the fields of sciences [30,41–43] and engineering [44–48]. The
use of contemporary intelligence techniques in geotechnical and geological engineering
domains, such as landslide susceptibility mapping [49], reliability analysis [50], and es-
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timation of various geotechnical parameters [24,27] can also be found in the literature.
However, the existing literature in the geotechnical engineering area does not demonstrate
sufficient implementation of enhanced/improved versions of MHAs in estimating various
geotechnical parameters. Taking the above discussion as a reference, this study proposes
a high-performance intelligence paradigm built using an upgraded version of MHA for
estimating the OMC and MDD of soils.

3. Methodology

This section presented the theoretical details of GWO and IGWO, followed by a short
discussion on MFO, SMA, and MPA. Subsequently, the methodological development of
hybrid ANFIS models is presented and discussed. However, before presenting the above
details, the working principles of the ANFIS are briefly presented.

3.1. Adaptive Neuro-Fuzzy Inference System

ANFIS, proposed by Jang [51], is an ANN-FIS integration, which was intended to
eliminate the drawbacks of the individual ANN and FIS approaches. ANFIS is grounded
in fuzzy logic and rules produced in the particular training procedure of the model. These
inference systems contain five layers (see Figure 1). The nodes of layer 0 are the inputs,
while the nodes of layer 5 represent the output in the connection-based structure. The fixed
adaptable nodes of the hidden layers stand for the membership functions (MFs).
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For a summarised description of the ANFIS approach, let x1 and x2 be the inputs.
Additionally, let f be the output. The ANFIS represents the relationship between the inputs
and output by fuzzy if–then rules. The Takagi–Sugeno fuzzy rules in the model are shown
as:

Rule-1: i f x1 is A1 and x2 is B1, then f1 = p1x1 + q1x2 + r1
Rule-2: i f x1 is A2 and x2 is B2, then f2 = p2x1 + q2x2 + r2

where A1, A2, B1, and B2 are linguistic symbols, while p1, q1, r1, p2, q2, and r2 are the
consequent variables. The layers include:

Layer 1: Fuzzification layer—it is assumed that node i has an adaptive function as:
O1,i = µAi (x), where O1,i is the output of node i, while µAi denotes the MF.
Layer 2: Ruler layer—Node i within this layer is assumed to be fixed (II). In addition, the node
output is generated by incoming signals, such as O2,i = wi = µAi (x)× µBi (x) f or i = 1, 2,
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where O2,i denotes the output of the second layer, and wi represents the firing strength of
rule i.
Layer 3: Normalisation layer—Node i undergoes normalisation in the third layer (firing
strengths). The ratio of the firing force of rule i to the total firing force can be obtained as:
O3,i = wi = wi/(w1 + w2), where O3,i is the output of the third layer, and wi stands for
the normalised firing strength.
Layer 4: Defuzzification layer—In this layer, each of the nodes is adaptive and has a
function representing the contribution of rule i to the total output.
Layer 5: Output layer—Eventually, this layer yields the final output.

ANFIS can be equipped for MF parameter identification through hybrid learning
approaches. Such approaches define the parameters of the defuzzification layer using the
forward least squares technique. Errors undergo backpropagation to modify ai, bi, and ci as
the premise parameters through gradient descent. For more details, the works of Paryani
et al. [49], Piro et al. [30], Golafshani et al. [28], can be referred to.

3.2. Grey Wolf Optimiser

GWO [52] is comes under the category of evolutionary algorithm developed for
optimisation based on the imitation of the grey wolves’ social behaviour. Specifically, this
algorithm mimics the process that grey wolves utilise to capture their prey, along with
the structure of their leadership. For the recreation of the hierarchical structure in GWO,
grey wolves of four different types are assumed for every wolf pack. The leader and the
most significant wolf in the pack are called α, β and δ wolves. ω wolves with minimum
responsibility are placed at the bottom of the food. In GWO, the entire hunting process can
be classified as searching, encircling, hunting, and attacking. The mathematical expression
for encircling prey is given by:

D =
∣∣∣C.Xp(t) − X(t)

∣∣∣ (1)

X(t+1) = Xp(t) − A.D (2)

where X and Xp are the position vectors of the grey wolf and the prey, respectively; t and
t + 1 represent current and subsequent epochs, respectively. A and C are two vectors given
by:

A = 2a.r1 − a (3)

C = 2.r2 (4)

where r1 and r2 are the two random vectors that are uniformly distributed [0 1], and the
components of a are linearly decreased from 2 to 0. When |A| > 1, the exploration of prey
location is possible by diverting the search agents. Conversely, with |A| < 1, convergence
of search agents can be used to achieve exploitation. The hunting process in GWO can be
mathematically modelled as follows:

Dα = |C1.Xα − X|; Dβ =
∣∣C2.Xβ − X

∣∣; Dδ = |C3.Xδ − X| (5)

Xi1 = Xα − A1.(D α) ; Xi2 = Xβ − A2.(D β

)
; Xi3 = Xδ − A3.(Dδ) (6)

X(t+1) = (Xi1 + Xi2 + Xi3)/3 (7)

In GWO, E&E is handled using parameters a and C, in which the parameter a is
decreased from 2 to 0. Additionally, it is seen that the final position would be in a random
place within a circle, which is defined by the positions of α, β, and δ in the search space.
More mathematical details can be found in the original work of Mirjalili et al. [52].
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3.3. Improved Grey Wolf Optimiser

In GWO, α, β, and δ guide ω wolves toward regions of the search space where the
optimal solution is likely to be located. This approach may result in entanglement in a
locally optimal solution. Another drawback is the decline in population diversity, which
causes GWO to approach the local optimum. Nadimi-Shahraki et al. [53] proposed IGWO
to address these problems. According to the study of Nadimi-Shahraki et al. [53], the
enhancements involve a new search strategy involving a step of selecting and upgrading.
Therefore, IGWO consists of three phases, as discussed below.

Initialising phase: During the initialisation phase, N wolves are randomly distributed
in [lj, uj], as:

Xij = lj + randj[0, 1]×
(
uj − lj

)
, i ∈ [1, N], j ∈ [1, D] (8)

The position of the i-th wolf in the t-th iteration, represented by Xi(t) = {xi1, xi2, . . . ,
xiD}, where D is the dimension number. The fitness value of Xi(t) is calculated using f
(Xi(t)).

Movement phase: The IGWO, proposed by Nadimi-Shahraki et al. [53], includes a
different mobility tactic known as the dimension learning-based hunting (DLH) method,
in which each wolf is learned by its neighbours to be a different contender for the new
position, Xi(t).

Selecting and updating phase: During this stage, the best candidate is first chosen by
contrasting the fitness ratings between two candidates Xi-GWO(t + 1) and Xi-DLH(t + 1), given
by:

Xi(t + 1) =

{
Xi−GWO(t + 1), i f f (Xi−GWO) < f (Xi−DLH)

Xi−DLH(t + 1) otherwise
(9)

Then, to update the position of Xi(t + 1), if the fitness of the selected candidate is less
than Xi(t), Xi(t) is updated by the selected candidate. Otherwise, Xi(t) remains unchanged.
After this procedure, the iteration count is increased by 1, and the search operation is
repeated until the predetermined number of epochs has been reached.

3.4. Brief Overview of MFO, SMA, and MPA

The other employed MHAs, viz., MFO, SMA, and MPA, are briefly discussed in this
sub-section. All of these MHAs are swarm-based and they have been widely used in
different engineering disciplines [54–57].

MFO, proposed by Mirjalili [58], is an innovative MHA that draws inspiration from
the intriguing behaviour of moths attracted to flames. MFO incorporates the unique phe-
nomenon of moths spiralling around a flame into its search strategy. This behaviour, while
seemingly irrational and perilous for the moths, serves as a metaphor for E&E in optimisa-
tion problems. MFO leverages a chaotic search mechanism that emulates the unpredictable
flight patterns of moths around a flame. This mechanism enables the MFO to efficiently ex-
plore diverse solution spaces, avoiding stagnation in the local optima. By introducing chaos,
the MFO promotes global exploration while maintaining its ability to exploit promising
regions of the search space. The core idea behind MFO is to strike a balance between E&E,
mimicking the trade-off faced by moths as they navigate the dangerous allure of flames. By
dynamically adjusting the balance between E&E strategies, the MFO adaptively evolves its
search behaviour, allowing it to effectively handle complex optimisation problems with
varying landscapes. The effectiveness of MFO has been demonstrated across a wide range
of applications, including engineering design, data mining, and image processing. Its
ability to handle both continuous and discrete optimisation problems make it a versatile
tool in the field of MHAs.

SMA [59] simulates the nutritive phase of a slime mould as a unique approach that is
grounded in nature (a single-celled eukaryote). The foraging behaviour of slime moulds
is simulated by this programme. By smelling potential food sources, slime moulds locate
them, wrap them, and then digest them by secreting enzymes. In SMA, the phase of
iterations to produce the highest smell concentration is the theoretical description of how
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to approach the optimal solution. The slime mould’s flexible weight ensures rapid conver-
gence and prevents it from becoming stranded in regional extremes. This approach enables
the slime mould to advance along any viable path in the direction of the ideal outcome,
which mimics the slime mould’s eating-related architecture. The next stage is wrapping
the meal using contractions of the intravenous framework inside the upper and lower
limitations. The vein with the maximum contraction of food generates more bio-oscillator
waves, which cause the cytoplasm to flow more quickly through the vein, increasing its
thickness. The search patterns in SMA are altered in response to the opposing signals from
veins regarding the concentration of food.

MPA [60], a MHA inspired by the natural principles governing optimal foraging
strategies and encounter rates between predator and prey in marine ecosystems. Marine
predators adopt a Lévy strategy when navigating environments with scarce prey, while
employing Brownian movement in areas abundant with prey. Throughout their lifetimes,
these predators exhibit a consistent balance of Lévy and Brownian movement as they
traverse diverse habitats. Environmental factors, such as eddy formation, influence their
behaviour, prompting adaptive changes to explore regions with varying prey distributions.
Leveraging their remarkable memory capabilities, they capitalise on the recollection of
successful foraging locations and associations with other individuals. MPA harnesses these
concepts to guide its search process, mimicking the adaptive foraging behaviour of marine
predators. By integrating these nature-inspired mechanisms, MPA demonstrates a powerful
optimisation approach capable of addressing complex problems in diverse domains.

Note that the detailed working principles of these OAs are not presented in this study
because they are well established, and the original studies of MFO [58], SMA [59], and
MPA [60] can be referred to for more details.

3.5. Hybrid Modelling of ANFIS and MHAs

In this work, the C&A parameters of ANFIS were optimised using MHAs. It is
important to note that proper setting of the FIS and C&A parameters is necessary for
creating an optimum ANFIS model because learning parameters have a significant impact
on the model’s performance. Notably, the selection of all of the ANFIS hyperparameters
at once is a challenging operation because they must be searched in continuous domains,
leading to an infinite number of parameters sets. As a result, it is possible to define the
problem of ANFIS parameter tweaking as an optimisation problem. Thus, the values of the
FIS and C&A parameters were optimised using IGWO, GWO, MFO, SMA, and MPA, and
five hybrid ANFIS models, i.e., ANFIS-IGWO, ANFIS-GWO, ANFIS-MFO, ANFIS-SMA,
and ANFIS-MPA, were created. A flow chart of the construction procedure of the hybrid
ANFIS models is presented in Figure 2.
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4. Data Description and Modelling

A broad variety of experimental results of soil compaction parameters were acquired
from the studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14]. Specifi-
cally, a total of 372 results were obtained, the details of which are presented in Table 1. The
work of Günaydın [15] consists of 126 compaction results of nine distinct soil types (CH, CI,
CL, GC, GM, MH, MI, ML, and SC) with six influencing parameters, viz., fines content (F),
sand content (S), gravel content (G), specific gravity, liquid limit (LL), and plastic limit (PL).
Wang and Yin [1] gathered a total of 226 records from the literature. The database includes
G, S, F, LL, PL, and compaction energy of various soil types, such as CL, CL-ML, CH,
MH, ML, SC, SP-SC, SW-SC, SM, GC, GP-GC, GW-GC, and GM. Bardhan and Asteris [14]
presented 20 experimental records of soil compaction parameters, including four distinct
soil types (CH, CI, CL, and SC) and six influencing parameters, identical to Günaydn [15].
According to the study of Wang and Yin [1], the majority of 226 soil compaction experiments
were conducted using either the conventional Proctor or the reduced compaction energy.
Additionally, thirty modified Proctor compaction tests were incorporated into the database.

Table 1. Details of data pre-processing for OMC and MDD estimation.

Particulars No. of Actual
Data

Actual Data
Dimension

No. of Data
Selected

Final Data
Dimension

Günaydın [15] 126 126 × 8 126 126 × 7
Wang and Yin [1] 226 226 × 8 105 105 × 7
Bardhan and Asteris [14] 20 20 × 8 20 20 × 7
Final dataset (for this study) - - 251 251 × 7

Note: The data dimension also includes OMC and MDD parameters.

In this study, the database presented by Wang and Yin [1] has been revised, and a total
of 105 records were chosen. Additionally, all datasets of Günaydın [15] and Bardhan and
Asteris [14] were used. Therefore, 126, 105, and 20 experimental records were acquired from
the studies of Günaydın [15], Wang and Yin [1], and Bardhan and Asteris [14], respectively.
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The details of data dimension are also presented in Table 2. Therefore, the final database
includes 251 records and five influential parameters viz., F in %, S in %, G in %, LL in
%, and PL in %, of 15 different soil types. These five influential parameters were used to
estimate the OMC and MDD of soils. Descriptive details of the final dataset are given in
Table 2. In addition, the minimum and maximum values of influential (soil-type wise) and
compaction parameters are presented in Table 3. Note that the abbreviations of soil types
are presented as per the Indian Standard Soil Classification System (ISSCS) and ASTM [61].

Table 2. Descriptive statistics of the employed dataset.

Particulars F (%) S (%) G (%) LL (%) PL (%) OMC (%) MDD
(kN/m3)

Min. 8.60 0.00 0.00 16.00 6.10 7.00 13.73
Avg. 63.76 27.95 8.29 40.14 20.63 17.16 17.25
Max. 100.00 83.60 67.10 70.00 32.50 31.00 21.48
Stnd. Error 1.49 1.09 0.74 0.63 0.28 0.24 0.08
Stnd. Dev. 23.62 17.19 11.78 9.93 4.50 3.87 1.29
Variance 557.68 295.50 138.65 98.62 20.21 15.00 1.67
Kurtosis −0.90 −0.31 3.55 0.20 0.15 0.87 0.54
Skewness −0.20 0.33 1.85 0.67 −0.06 0.38 0.02

Table 3. Soil type-wise details of the employed dataset.

Soil Types
F S G LL PL OMC MDD

Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

CH 53.80 100.00 0.00 41.16 0.00 20.00 50.00 70.00 18.00 31.00 17.50 30.80 13.93 17.42
CI 49.00 75.00 21.00 44.95 0.05 23.07 35.15 49.40 14.40 26.72 13.95 23.75 15.19 19.41
CL 33.00 99.00 1.00 65.00 0.00 22.00 23.00 49.30 6.10 27.00 11.00 22.00 15.89 19.28
CL-ML 81.00 81.00 19.00 19.00 0.00 0.00 27.00 27.00 21.00 21.00 17.00 17.00 17.46 17.46
GC 13.00 41.50 19.90 45.61 30.39 67.10 27.60 63.20 13.40 26.11 7.60 18.80 16.43 20.51
GM 40.00 50.00 17.25 28.69 24.69 37.75 40.20 50.90 26.00 26.61 13.85 20.40 16.36 17.55
GP-GC 9.40 9.40 41.90 41.90 48.70 48.70 37.80 37.80 14.70 14.70 8.40 8.40 20.60 20.60
GW-GC 8.60 8.60 44.30 44.30 47.10 47.10 29.50 29.50 14.10 14.10 7.00 7.00 21.48 21.48
MH 60.00 100.00 0.00 36.48 0.00 3.52 50.40 64.00 26.00 32.50 19.40 31.00 13.73 16.09
MI 59.00 74.00 24.24 34.61 1.76 6.39 47.90 49.35 28.41 28.85 18.00 21.95 16.36 16.39
ML 53.00 90.00 10.00 37.00 0.00 10.00 25.00 47.00 14.55 28.00 10.40 22.00 15.89 19.24
SC 15.00 48.00 30.90 71.26 0.00 39.00 16.00 61.10 9.00 26.24 9.00 18.50 16.28 20.50
SM 44.00 44.00 56.00 56.00 0.00 0.00 16.00 16.00 9.00 9.00 9.00 9.00 20.01 20.01
SP-SC 8.80 8.80 83.60 83.60 7.60 7.60 31.20 31.20 19.30 19.30 10.80 10.80 19.13 19.13
SW-SC 9.60 9.60 77.30 77.30 13.10 13.10 30.40 30.40 18.80 18.80 9.80 9.80 19.72 19.72

Figure 3 shows the comparative histograms for each influential variable. To better
illustrate, the correlation matrices between influential variables and compaction parameters
are presented in Figure 4. From the information given in Table 2, Figures 3 and 4, it can be
seen that the OMC has a negative correlation with the contents of S and G, whereas F, LL,
and PL show a positive correlation. In contrast, F, LL, and PL exhibit negative correlations,
while S and G contents have positive correlations with MDD. Notably, these figures are
particularly useful, as they indicate the range of values of the parameters for which the
reliability is limited, and further experimental investigation is required for values of the
parameters included in these regions and not with the aim of updating the database in the
future.

After finalising the database, it was divided into two subsets: a training (TR) subset
that contained 80% of the overall dataset and a testing (TS) subset that contained the
remaining 20% of the data. The following steps can be used to describe the computational
modelling process for estimating soil compaction parameters: (a) choosing the main dataset;
(b) data normalisation; (c) data partitioning and selection of TR and TS subsets; (d) model
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construction using a training subset; (e) check model performance; (f) check terminating
criteria; (g) model validation if terminating criteria are satisfied; and (h) performance
assessment. The steps of computational modelling are illustrated in Figure 5.
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Figure 3. (a–e) Comparative histogram (values are in normalised form).
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5. Results and Discussion

The outcomes of the hybrid ANFIS models used to estimate soil compaction param-
eters are described in this section. As previously mentioned, the primary dataset was
divided into training (201 samples) and testing (50 samples) subsets before the models were
built. Note that all models were constructed and validated using identical training and
testing subsets. The output of the developed models was then assessed using a number
of indices, namely performance index (PFI), correlation coefficient (R), variance account
factor (VAF), Willmott’s Index of agreement (WI), mean absolute error (MAE), root mean
square error (RMSE), RMSE to observation’s standard deviation ratio (RSR), and weighted
mean absolute percentage error (WMAPE). Notably, these indices are frequently used
to evaluate the generalisability of any prediction model from a variety of perspectives,
including correlation accuracy, related error, amount of variation, and so on.

In contrast, the deterministic parameters of MHAs, such as swarm size, maximum
iteration number, and upper and lower bounds, play a vital part in hybrid modelling; thus,
they were calibrated throughout the optimisation process. The details of the deterministic
and hyper-parameters of hybrid ANFIS models in estimating soil compaction parameters
are described in the following sub-section, followed by a comparative assessment of the
results.

PFI = adj.R2 + 0.01VAF− RMSE (10)

R =

√
∑n

i = 1(yi − ymean)2 −∑n
i = 1(yi − ŷi)2

∑n
i = 1(yi − ymean)2 (11)

VAF (%) =

(
1− var(yi − ŷi)

var(yi)

)
× 100 (12)

WI = 1−
[

∑n
i = 1

(
yi − ŷi)

2

∑n
i = 1{|ŷi − ymean|+ |yi − ymean| }2

]
(13)

MAE =
1
n

n

∑
i = 1
|(ŷi − yi)| (14)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)2 (15)
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RSR =
RMSE√

1
n ∑n

i = 1(yi − ymean)2
(16)

WMAPE =
∑n

i = 1

∣∣∣ yi−ŷi
yi

∣∣∣× yi

∑n
i = 1 yi

(17)

where yi = actual ith value; ŷi = estimated ith value; n = is the number of samples; and
ymean = mean of the actual value. Note that for a perfect predictive model, the values of the
aforementioned indices should be identical to their identical values, the details of which
can be obtained from the literature [14,17].

5.1. Model Performance

The results of the hybrid ANFIS models that were built to estimate soil OMC and
MDD are presented in this sub-section. As stated above, the optimum selection of hyper-
parameters is a challenging operation, and hence, proper tuning of FIS and C&A parameters
was performed during the course of hybrid modelling. The number of FIS parameters (NFIS)
were investigated between 2 and 15. Using Gaussian MF and RMSE as fitness functions,
the most appropriate value of NFIS was determined to be 5. Notably, Gaussian and linear
MFs were used in the input and output layers, respectively. A total of 60 C&A membership
functions of ANFIS were optimised for the nine-dimensional input space. Note that the
optimised values of NFIS and C&A were chosen following a trial-and-error approach and
according to the performance during the testing phase. The convergence behaviour and
computational time of the developed hybrid ANFIS models are presented in Figures 6 and 7,
respectively. It should be noted that the computational time of the developed ANFIS-IGWO
model was found to be longer due to the use of an upgraded version of GWO that required
changed mathematical calculations to handle E&E operations. Moreover, it is seen that all
the developed hybrid models converge within 500 epochs; hence, they are considered to be
sufficient as the maximum iteration count.

The performance of the developed ANFIS models is presented in Tables 4 and 5,
respectively, for the OMC and MDD estimations. The abilities of the constructed models
for training, testing, and total outputs are shown here. It should be underlined that the
training subset performance was used to define the goodness of fit of the developed models,
while the testing dataset was used to evaluate their generalisation potential. According to
Table 4, it is seen that the developed ANFIS-MPA achieved the highest R and lowest RMSE
values of 0.9335 and 0.0590, respectively, during the training phase of OMC prediction.
However, during the testing phase, the constructed ANFIS-IGWO achieved the most precise
precision, with R = 0.8645 and RMSE = 0.0754. According to the overall results of the OMC
estimation, the ANFIS-IGWO was determined to be the best-fitted model with R = 0.9203
and RMSE = 0.0635, followed by ANFIS-MFO (R = 0.9191 and RMSE = 0.0636), ANFIS-
GWO (R = 0.9167 and RMSE = 0.0647), and ANFIS-MPA (R = 0.9153 and RMSE = 0.0652).
The developed ANFIS-SMA model was the least performing model, with R = 0.9139 (lowest
among other developed models) and RMSE = 0.0658 (highest among other developed
models).

On the contrary, the results of Table 5 exhibit that the developed ANFIS-MPA (R = 0.9142
and RMSE = 0.0692) and ANFIS-MFO (R = 0.9131 and RMSE = 0.0697) models were
found to be the top-two models during the training phase of MDD estimation, while the
constructed ANFIS-IGWO (R = 0.8619 and RMSE = 0.0738) and ANFIS-GWO (R = 0.8562
and RMSE = 0.0749) models were found to be the best-two models in the testing phase.
According to the overall results of the MDD estimation, the ANFIS-IGWO was determined
to be the best-fitted model with R = 0.9050 and RMSE = 0.0709, followed by ANFIS-
GWO (R = 0.8973 and RMSE = 0.0735), ANFIS-SMA (R = 0.8964 and RMSE = 0.0739), and
ANFIS-MFO (R = 0.8935 and RMSE = 0.0752). The developed ANFIS-MPA model was
the least performing model, with R = 0.8866 (lowest among other developed models) and
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RMSE = 0.0774 (highest among other developed models). These findings demonstrate the
good predictive performance of the suggested ANFIS-IGWO model during both the OMC
and MDD predictions.
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Table 4. Performance indices for OMC prediction.

Phases Models PFI R VAF WI MAE RMSE RSR WMAPE

Training ANFIS-IGWO 1.6686 0.9307 86.5973 0.9636 0.0479 0.0602 0.3662 0.1088
ANFIS-GWO 1.6550 0.9274 86.0065 0.9610 0.0473 0.0615 0.3741 0.1081
ANFIS-MFO 1.6757 0.9328 86.8809 0.9622 0.0453 0.0598 0.3636 0.1036
ANFIS-SMA 1.6439 0.9247 85.5093 0.9594 0.0487 0.0626 0.3808 0.1106
ANFIS-MPA 1.6801 0.9335 87.1078 0.9638 0.0449 0.0590 0.3591 0.1025

Testing ANFIS-IGWO 1.3766 0.8645 73.3267 0.9167 0.0604 0.0754 0.5607 0.1627
ANFIS-GWO 1.3726 0.8625 73.3937 0.9132 0.0602 0.0762 0.5666 0.1623
ANFIS-MFO 1.3494 0.8560 72.4010 0.9107 0.0584 0.0770 0.5729 0.1573
ANFIS-SMA 1.3526 0.8604 71.9109 0.9143 0.0625 0.0772 0.5742 0.1683
ANFIS-MPA 1.2137 0.8395 62.7992 0.9041 0.0641 0.0854 0.6353 0.1726

Total ANFIS-IGWO 1.6265 0.9203 84.6266 0.9577 0.0504 0.0635 0.3932 0.1182
ANFIS-GWO 1.6125 0.9167 84.0233 0.9549 0.0499 0.0647 0.4004 0.1176
ANFIS-MFO 1.6222 0.9191 84.4224 0.9555 0.0479 0.0636 0.3936 0.1130
ANFIS-SMA 1.6012 0.9139 83.5102 0.9536 0.0515 0.0658 0.4071 0.1207
ANFIS-MPA 1.6066 0.9153 83.7206 0.9551 0.0488 0.0652 0.4032 0.1147

Note: Bold values indicate best-obtained performance.

Table 5. Performance indices for MDD prediction.

Phases Models PFI R VAF WI MAE RMSE RSR WMAPE

Training ANFIS-IGWO 1.5872 0.9116 83.0798 0.9526 0.0540 0.0702 0.4114 0.1202
ANFIS-GWO 1.5551 0.9036 81.6465 0.9471 0.0559 0.0731 0.4284 0.1243
ANFIS-MFO 1.5933 0.9131 83.3592 0.9532 0.0529 0.0697 0.4085 0.1178
ANFIS-SMA 1.5528 0.9030 81.5383 0.9464 0.0564 0.0734 0.4300 0.1256
ANFIS-MPA 1.5981 0.9142 83.5737 0.9535 0.0522 0.0692 0.4053 0.1160

Testing ANFIS-IGWO 1.3740 0.8619 73.4131 0.9244 0.0620 0.0738 0.5229 0.1257
ANFIS-GWO 1.3524 0.8562 72.4607 0.9213 0.0636 0.0749 0.5308 0.1291
ANFIS-MFO 1.0522 0.7831 57.7198 0.8794 0.0709 0.0943 0.6679 0.1438
ANFIS-SMA 1.3428 0.8538 72.0656 0.9189 0.0646 0.0759 0.5381 0.1311
ANFIS-MPA 0.8772 0.7560 45.8550 0.8642 0.0771 0.1042 0.7382 0.1564

Total ANFIS-IGWO 1.5630 0.9050 81.8582 0.9493 0.0556 0.0709 0.4256 0.1214
ANFIS-GWO 1.5328 0.8973 80.5090 0.9442 0.0574 0.0735 0.4407 0.1254
ANFIS-MFO 1.5161 0.8935 79.7219 0.9429 0.0565 0.0752 0.4514 0.1234
ANFIS-SMA 1.5292 0.8964 80.3568 0.9431 0.0580 0.0739 0.4433 0.1268
ANFIS-MPA 1.4878 0.8866 78.3472 0.9401 0.0571 0.0774 0.4644 0.1247

Note: Bold values indicate best-obtained performance.

To better demonstrate the performance of the developed ANFIS models, scatterplots
are presented in Figures 8 and 9 for the OMC and MDD estimations, respectively. Herein,
the illustrations of actual and estimated values for the best three models (based on RMSE
value) are shown. The amount of variance in these diagrams can be visualised by viewing
red-coloured dotted lines put at 10% levels. The performance of the generated hybrid mod-
els is compared in the following sub-section, and a comparative assessment is presented
using a variety of graphical illustrations.
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Figure 8. Scatter plot of OMC prediction for the best three models (based on RMSE index) in
(a–c) training and (d–f) testing phases.
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Figure 9. Scatter plot of MDD prediction for the best three models (based on RMSE index) in
(a–c) training and (d–f) testing phases.
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5.2. Discussion of Results

It is critical to highlight that a data-driven model is incomplete without a visual
representation of the results. Visualisations enable the identification of the degree of
accuracy and associated errors in a model that is easier to comprehend. Therefore, the
results are displayed in the form of an accuracy matrix, Taylor diagrams, and radar plots.
Notably, the Taylor diagrams are shown for the testing dataset only, since the performance
of a data-driven model during the testing dataset should be accepted with more certainty.
For thoroughly assessing a model’s overall correctness, these diagrams are quite beneficial.
An accuracy matrix is a heat map matrix that is used to measure the level of accuracy that
a model achieves in terms of certain performance criteria. This matrix makes it simple to
evaluate a model’s correctness without having to look up each index’s value. As previously
stated, a number of indices must be created to assess a model’s accuracy from multiple
angles; however, interpreting results by looking at each index’s values takes time and
necessitates in-depth observation. Figure 10 shows the accuracy matrix for the models
created for the OMC and MDD predictions. The accuracy matrix demonstrates that the
constructed ANFIS-IGWO attained higher predictive precision against each index during
the testing phase.

On the other hand, the Taylor diagram [62] is used to provide a quick assessment of a
model’s accuracy in terms of the coefficient of correlation, ratio of standard deviations, and
RMSE index. Generally, a point inside a Taylor diagram indicates a model. The position of
the point should line up with the reference point for an ideal model. The Taylor diagrams
for the hybrid ANFIS models developed for OMC and MDD predictions are shown in
Figure 11. In addition to the accuracy matrix and Taylor diagrams, radar plots representing
the R value are also presented in Figure 12 for the training, testing, and total cases of OMC
and MDD estimations. A ridgeline chart and distribution with Kernel smooth of error
between actual and estimated values are presented in Figure 13. From these diagrams, the
predictive capability of hybrid ANFIS models can be assessed from different perspectives.

However, according to the aforementioned results, the ANFIS-IGWO model was found
to be the best-obtained model in both instances of prediction. As indicated previously, eight
indices were used to evaluate the performance of the developed ANFIS models. Based
on the overall results against OMC prediction, the developed ANFIS-IGWO achieved
the highest level of accuracy, with R = 0.9203 and RMSE = 0.0635, whereas against MDD
prediction, R = 0.9050 and RMSE = 0.0709 achieved the highest level of accuracy. Therefore,
the suggested ANFIS-IGWO model can be used to approximate the OMC and MDD ranges
for various soil types. This will aid engineers and practitioners in reducing the operational
time required for laboratory compaction experiments. The developed MATLAB models,
as well as the employed dataset, are included as Supplementary Materials for future use.
The details of MATLAB implementations of the developed models are also presented in
Appendix A. For better demonstration, the steps of OMC and MDD estimations using basic
soil parameters and the developed MATLAB models are illustrated in Figure 14.
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Figure 13. Ridgeline chart (left) and distribution with Kernel smooth (right) plots for (a,b) OMC and
(c,d) MDD predictions.
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6. Limitations and Future Research

In this section, the limitations of the proposed ANFIS-IGWO model are presented,
as well as the main points that need to be further investigated. Regarding the estimation
of the OMC and MDD of soils, it is worth noting that despite the excellent prediction it
achieves, and which are presented in the previous section, it only applies to values of the
input parameters between the minimum and the maximum values (refer to Table 2) that
have the corresponding parameters of the database used to train and develop the model.
Additionally, the reliability of the proposed model is limited for parameter value ranges,
where the number of experimental data and soil types are not sufficient. That is, in cases in
which the number of data is very small, and thus unable to satisfactorily describe the soil
compaction. For example, based on the histograms of Figure 3, it was found that there is
not enough data in some regions. Such value ranges, where there is a shortage of each of
the input parameters, should be studied experimentally in the near future and updated the
database with the aim of future development of more efficient forecasting soft computing
models.

7. Summary and Conclusions

Soil compaction parameters play a vital role in construction projects. They are crucial
for comparing the level of compaction achieved in the field. However, the traditional
laboratory method for determining OMC and MDD is time consuming. Therefore, the main
objective of this study is to sidestep the need for multiple laboratory tests by leveraging the
predictive capabilities of high-performance hybrid intelligence paradigms. Taking these
points into consideration, the current study proposes a high-performance hybrid model
to sidestep the operation of typical laboratory testing of soil compaction parameters. To
achieve this goal, an ANFIS-IGWO model was constructed, and the performance of this
model was compared with four hybrid ANFIS models, namely ANFIS-GWO, ANFIS-MFO,
ANFIS-SMA, and ANFIS-MPA. The experimental results clearly demonstrate that the
proposed ANFIS-IGWO model effectively predicts soil compaction parameters. With an
accuracy range of 92.5% to 94%, according to the RMSE index, the developed ANFIS-IGWO
model exhibits superior generalisation abilities for estimating soil compaction parameters.
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According to the overall outcomes, the proposed ANFIS-IGWO model offers a signifi-
cant advantage by transforming the C&A parameters of the model into the coordinates of
individual wolves within the community. Each wolf’s position represents a result of the
ANFIS-IGWO model, with NFIS = 5 and 500 epochs utilised. However, a drawback of the
ANFIS-IGWO model is its high computational cost due to the implementation of a modified
approach. Multiple runs were performed to identify the most suitable search space for accu-
rate output estimation, further increasing the time required. Other limitations encompass
no external validation performed and the exclusion of factors such as compaction energy
and the parental significance of soils during modelling. Therefore, additional research is
needed to expand the application of the suggested ANFIS-IGWO model in estimating soil
compaction parameters. Future directions should involve (a) a comprehensive assessment
of the model’s superiority using real-life data from diverse construction sites; (b) external
validation using a real-life database of different soil types; (c) consideration of compaction
energy as an influencing variable; (d) the implementation of newly introduced MHAs
and their improved/enhanced, and (e) a comprehensive analysis of hybrid and traditional
ANFIS paradigms in estimating soil compaction parameters. Nevertheless, the employed
dataset and the MATLAB models developed in this study are provided as Supplementary
Materials to encourage further research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11143064/s1.
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version of the manuscript.
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Nomenclature

ANFIS
Adaptive neuro-fuzzy

MF Membership function
inference system

ANFIS-GWO Hybrid model of ANFIS and GWO MFO Moth-flame optimisation
ANFIS-IGWO Hybrid model of ANFIS and IGWO MHA Meta-heuristic algorithm
ANFIS-MFO Hybrid model of ANFIS and MFO MLT Machine learning technique
ANFIS-MPA Hybrid model of ANFIS and MPA MPA Marine predators algorithm
ANFIS-SMA Hybrid model of ANFIS and SMA NFIS Number of FIS parameters
ANN Artificial neural network OMC Optimum moisture content
C&A Consequent and antecedent PFI Performance index
E&E Exploration and exploitation PL Plastic limit
ELM Extreme learning machine R Correlation coefficient
EPR Evolutionary polynomial regression R2 Determination coefficient
F Fines content RMSE Root mean square error

FIS Fuzzy inference system RSR
RMSE to observation’s
standard deviation ratio

G Gravel content S Sand content
GMDH Group method of data handling SMA Slime mould algorithm
GWO Grey wolf optimiser SVM Support vector machine
IGWO Improved grey wolf optimiser TR Training subset
LL Liquid limit TS Testing subset

https://www.mdpi.com/article/10.3390/math11143064/s1
https://www.mdpi.com/article/10.3390/math11143064/s1
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LSSVM Least square support vector machine VAF Variance account factor

MAE Mean absolute error WI
Willmott’s Index of
agreement

MDD Maximum dry density WMAPE
Weighted mean absolute
percentage error

Appendix A

• MATLAB implementation for the developed ANFIS-IGWO model.

%% Dataset uploading: For dataset uploading via an Excel sheet named ‘PROJECT.’ The
training dataset should be kept in the TR sheet, and the testing dataset should be kept in
the TS sheet. The output value should be placed in the right-most column. All the values
are given in normalised form.

train=xlsread(′PROJECT′, ′TR′);
test=xlsread(′PROJECT′, ′TS′);
xtrain = train(:,1:end-1); ytrain = train(:,end);
xtest = test(:,1:end-1); ytest = test(:,end);

%% Loading of the ANFIS-IGWO model for OMC estimation
%% Loading of anfis_igwo_mdd is necessary for MDD estimation

load anfis_igwo_omc
load anfis_igwo_mdd

%% Prediction of training and testing outputs (normalised values)

Pr_train_norm=evalfis(xtrain,fis);
Pr_test_norm=evalfis(xtest,fis);

%% Generation of de-normalisation values of OMC

Pr_train_act=(Pr_train_norm*24) + 7;
Pr_test_act=(Pr_test_norm*24) + 7;

%% Generation of de-normalisation values of MDD

Pr_train_act=(Pr_train_norm*7.7499) + 13.7340;
Pr_test_act=(Pr_test_norm*7.7499) + 13.7340;

References
1. Wang, H.-L.; Yin, Z.-Y. High performance prediction of soil compaction parameters using multi expression programming. Eng.

Geol. 2020, 276, 105758. [CrossRef]
2. Tatsuoka, F.; Correia, A.G. Importance of controlling the degree of saturation in soil compaction linked to soil structure design.

Transp. Geotech. 2018, 17, 3–23. [CrossRef]
3. Proctor, R. Fundamental principles of soil compaction. Eng. News Record. 1933, 111.
4. Xu, C.; Chen, Z.; Li, J.; Xiao, Y. Compaction of subgrade by high-energy impact rollers on an airport runway. J. Perform. Constr.

Facil. 2014, 28, 4014021. [CrossRef]
5. Chen, R.-P.; Qi, S.; Wang, H.-L.; Cui, Y.-J. Microstructure and hydraulic properties of coarse-grained subgrade soil used in

high-speed railway at various compaction degrees. J. Mater. Civ. Eng. 2019, 31, 4019301. [CrossRef]
6. Xu, Z.; Li, X.; Li, J.; Xue, Y.; Jiang, S.; Liu, L.; Luo, Q.; Wu, K.; Zhang, N.; Feng, Y. Characteristics of source rocks and genetic origins

of natural gas in deep formations, Gudian Depression, Songliao Basin, NE China. ACS Earth Space Chem. 2022, 6, 1750–1771.
[CrossRef]

7. Wu, Z.; Xu, J.; Li, Y.; Wang, S. Disturbed state concept–based model for the uniaxial strain-softening behavior of fiber-reinforced
soil. Int. J. Geomech. 2022, 22, 4022092. [CrossRef]

https://doi.org/10.1016/j.enggeo.2020.105758
https://doi.org/10.1016/j.trgeo.2018.06.004
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000469
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002972
https://doi.org/10.1021/acsearthspacechem.2c00065
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002415


Mathematics 2023, 11, 3064 22 of 23

8. Ren, C.; Yu, J.; Liu, S.; Yao, W.; Zhu, Y.; Liu, X. A plastic strain-induced damage model of porous rock suitable for different stress
paths. Rock Mech. Rock Eng. 2022, 55, 1887–1906. [CrossRef]

9. Najjar, Y.M.; Basheer, I.A.; Naouss, W.A. On the identification of compaction characteristics by neuronets. Comput. Geotech. 1996,
18, 167–187. [CrossRef]

10. Nagaraj, H.B.; Reesha, B.; Sravan, M.V.; Suresh, M.R. Correlation of compaction characteristics of natural soils with modified
plastic limit. Transp. Geotech. 2015, 2, 65–77. [CrossRef]

11. Peng, J.; Xu, C.; Dai, B.; Sun, L.; Feng, J.; Huang, Q. Numerical investigation of brittleness effect on strength and microcracking
behavior of crystalline rock. Int. J. Geomech. 2022, 22, 4022178. [CrossRef]

12. Fu, Q.; Gu, M.; Yuan, J.; Lin, Y. Experimental study on vibration velocity of piled raft supported embankment and foundation for
ballastless high speed railway. Buildings 2022, 12, 1982. [CrossRef]

13. Cheng, F.; Li, J.; Zhou, L.; Lin, G. Fragility analysis of nuclear power plant structure under real and spectrum-compatible seismic
waves considering soil-structure interaction effect. Eng. Struct. 2023, 280, 115684. [CrossRef]

14. Bardhan, A.; Asteris, P.G. Application of hybrid ANN paradigms built with nature inspired meta-heuristics for modelling soil
compaction parameters. Transp. Geotech. 2023, 41, 100995. [CrossRef]

15. Günaydın, O. Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environ. Geol.
2009, 57, 203–215. [CrossRef]

16. Kurnaz, T.F.; Kaya, Y. The performance comparison of the soft computing methods on the prediction of soil compaction parameters.
Arab. J. Geosci. 2020, 13, 159. [CrossRef]

17. Tiwari, L.B.; Burman, A.; Samui, P. Modelling soil compaction parameters using a hybrid soft computing technique of LSSVM
and symbiotic organisms search. Innov. Infrastruct. Solut. 2023, 8, 2. [CrossRef]

18. Sinha, S.K.; Wang, M.C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Geol. Eng.
2008, 26, 47–64. [CrossRef]

19. Ardakani, A.; Kordnaeij, A. Soil compaction parameters prediction using GMDH-type neural network and genetic algorithm.
Eur. J. Environ. Civ. Eng. 2019, 23, 449–462. [CrossRef]

20. Yu, J.; Zhu, Y.; Yao, W.; Liu, X.; Ren, C.; Cai, Y.; Tang, X. Stress relaxation behaviour of marble under cyclic weak disturbance and
confining pressures. Measurement 2021, 182, 109777. [CrossRef]

21. Wang, W.; Li, D.-Q.; Tang, X.-S.; Du, W. Seismic fragility and demand hazard analyses for earth slopes incorporating soil property
variability. Soil Dyn. Earthq. Eng. 2023, 173, 108088. [CrossRef]

22. Ran, C.; Bai, X.; Tan, Q.; Luo, G.; Cao, Y.; Wu, L.; Chen, F.; Li, C.; Luo, X.; Liu, M. Threat of soil formation rate to health of karst
ecosystem. Sci. Total Environ. 2023, 887, 163911. [CrossRef] [PubMed]

23. Liu, Y.; Li, J.; Lin, G. Seismic performance of advanced three-dimensional base-isolated nuclear structures in complex-layered
sites. Eng. Struct. 2023, 289, 116247. [CrossRef]

24. Bui, D.T.; Nhu, V.-H.; Hoang, N.-D. Prediction of soil compression coefficient for urban housing project using novel integration
machine learning approach of swarm intelligence and multi-layer perceptron neural network. Adv. Eng. Inform. 2018, 38, 593–604.

25. Truong, V.-H.; Pham, H.-A.; Van, T.H.; Tangaramvong, S. Evaluation of machine learning models for load-carrying capacity
assessment of semi-rigid steel structures. Eng. Struct. 2022, 273, 115001. [CrossRef]

26. Truong, V.-H.; Papazafeiropoulos, G.; Vu, Q.-V.; Pham, V.-T.; Kong, Z. Predicting the patch load resistance of stiffened plate
girders using machine learning algorithms. Ocean Eng. 2021, 240, 109886. [CrossRef]

27. Benbouras, M.A.; Lefilef, L. Progressive machine learning approaches for predicting the soil compaction parameters. Transp.
Infrastruct. Geotechnol. 2023, 10, 211–238. [CrossRef]

28. Golafshani, E.M.; Behnood, A.; Arashpour, M. Predicting the compressive strength of normal and High-Performance Concretes
using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr. Build. Mater. 2020, 232, 117266. [CrossRef]

29. Le, L.T.; Nguyen, H.; Dou, J.; Zhou, J. A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the
heating load of buildings’ energy efficiency for smart city planning. Appl. Sci. 2019, 9, 2630. [CrossRef]

30. Piro, N.S.; Mohammed, A.; Hamad, S.M.; Kurda, R. Artificial neural networks (ANN), MARS, and adaptive network-based fuzzy
inference system (ANFIS) to predict the stress at the failure of concrete with waste steel slag coarse aggregate replacement. Neural
Comput. Appl. 2023, 35, 13293–13319. [CrossRef]

31. Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research.
Eng. Appl. Artif. Intell. 2017, 60, 97–116. [CrossRef]

32. Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network
with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [CrossRef]

33. Ly, H.-B.; Pham, B.T.; Le, L.M.; Le, T.-T.; Le, V.M.; Asteris, P.G. Estimation of axial load-carrying capacity of concrete-filled steel
tubes using surrogate models. Neural Comput. Appl. 2021, 33, 3437–3458. [CrossRef]

34. Smys, S.; Balas, V.E.; Kamel, K.A.; Lafata, P. Inventive Computation and Information Technologies; Springer: Berlin/Heidelberg,
Germany, 2021.

35. Samantaray, S.; Sumaan, P.; Surin, P.; Mohanta, N.R.; Sahoo, A. Prophecy of groundwater level using hybrid ANFIS-BBO approach.
In Proceedings of International Conference on Data Science and Applications: ICDSA 2021; Springer: Berlin/Heidelberg, Germany,
2022; Volume 1, pp. 273–283.

https://doi.org/10.1007/s00603-022-02775-1
https://doi.org/10.1016/0266-352X(95)00030-E
https://doi.org/10.1016/j.trgeo.2014.09.002
https://doi.org/10.1061/(ASCE)GM.1943-5622.0002529
https://doi.org/10.3390/buildings12111982
https://doi.org/10.1016/j.engstruct.2023.115684
https://doi.org/10.1016/j.trgeo.2023.100995
https://doi.org/10.1007/s00254-008-1300-6
https://doi.org/10.1007/s12517-020-5171-9
https://doi.org/10.1007/s41062-022-00966-x
https://doi.org/10.1007/s10706-007-9146-3
https://doi.org/10.1080/19648189.2017.1304269
https://doi.org/10.1016/j.measurement.2021.109777
https://doi.org/10.1016/j.soildyn.2023.108088
https://doi.org/10.1016/j.scitotenv.2023.163911
https://www.ncbi.nlm.nih.gov/pubmed/37149175
https://doi.org/10.1016/j.engstruct.2023.116247
https://doi.org/10.1016/j.engstruct.2022.115001
https://doi.org/10.1016/j.oceaneng.2021.109886
https://doi.org/10.1007/s40515-021-00212-4
https://doi.org/10.1016/j.conbuildmat.2019.117266
https://doi.org/10.3390/app9132630
https://doi.org/10.1007/s00521-023-08439-7
https://doi.org/10.1016/j.engappai.2017.01.013
https://doi.org/10.1016/j.jclepro.2018.08.065
https://doi.org/10.1007/s00521-020-05214-w


Mathematics 2023, 11, 3064 23 of 23

36. Joshi, H.; Arora, S. Enhanced grey wolf optimization algorithm for global optimization. Fundam. Informaticae 2017, 153, 235–264.
[CrossRef]

37. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S. Augmented grey wolf optimizer for grid-connected PMSG-based wind energy
conversion systems. Appl. Soft Comput. 2018, 69, 504–515. [CrossRef]

38. Gupta, S.; Deep, K.; Mirjalili, S. An efficient equilibrium optimizer with mutation strategy for numerical optimization. Appl. Soft
Comput. 2020, 96, 106542. [CrossRef]

39. Ding, Q.; Xu, X. Improved GWO Algorithm for UAV Path Planning on Crop Pest Monitoring. Issue Special Issue on Multimedia
Streaming and Processing in Internet of Things with Edge Intelligence. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 30–39.
[CrossRef]

40. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65,
386. [CrossRef]

41. Chen, H.; Asteris, P.G.; Armaghani, D.J.; Gordan, B.; Pham, B.T. Assessing dynamic conditions of the retaining wall: Developing
two hybrid intelligent models. Appl. Sci. 2019, 9, 1042. [CrossRef]

42. Armaghani, D.J.; Ming, Y.Y.; Mohammed, A.S.; Momeni, E.; Maizir, H. Effect of Different Kernels of the Support Vector Machine
to Forecast the Bearing Capacity of Deep Foundation. J. Soft Comput. Civ. Eng. 2023, 7, 111–128.

43. Ahmed, H.U.; Mohammed, A.S.; Faraj, R.H.; Abdalla, A.A.; Qaidi, S.M.A.; Sor, N.H.; Mohammed, A.A. Innovative modeling
techniques including MEP, ANN and FQ to forecast the compressive strength of geopolymer concrete modified with nanoparticles.
Neural Comput. Appl. 2023, 35, 12453–12479. [CrossRef]

44. Asteris, P.G.; Tsaris, A.K.; Cavaleri, L.; Repapis, C.C.; Papalou, A.; Di Trapani, F.; Karypidis, D.F. Prediction of the fundamental period of
infilled RC frame structures using artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 20. [CrossRef] [PubMed]

45. He, B.; Armaghani, D.J.; Lai, S.H. Assessment of tunnel blasting-induced overbreak: A novel metaheuristic-based random forest
approach. Tunn. Undergr. Space Technol. 2023, 133, 104979. [CrossRef]

46. Indraratna, B.; Armaghani, D.J.; Correia, A.G.; Hunt, H.; Ngo, T. Prediction of resilient modulus of ballast under cyclic loading
using machine learning techniques. Transp. Geotech. 2023, 38, 100895. [CrossRef]

47. Shan, F.; He, X.; Armaghani, D.J.; Zhang, P.; Sheng, D. Success and challenges in predicting TBM penetration rate using recurrent
neural networks. Tunn. Undergr. Space Technol. 2022, 130, 104728. [CrossRef]

48. Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Armaghani, D.J. Intelligent rockburst prediction model with sample category balance using
feedforward neural network and Bayesian optimization. Undergr. Space 2022, 7, 833–846. [CrossRef]

49. Paryani, S.; Neshat, A.; Javadi, S.; Pradhan, B. Comparative performance of new hybrid ANFIS models in landslide susceptibility
mapping. Nat. Hazards. 2020, 103, 1961–1988. [CrossRef]

50. Mustafa, R.; Samui, P.; Kumari, S. Reliability Analysis of Gravity Retaining Wall Using Hybrid ANFIS. Infrastructures 2022, 7, 121.
[CrossRef]

51. Jang, J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 1993, 23, 665–685. [CrossRef]
52. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
53. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An improved grey wolf optimizer for solving engineering problems. Expert Syst.

Appl. 2021, 166, 113917. [CrossRef]
54. Tumar, I.; Hassouneh, Y.; Turabieh, H.; Thaher, T. Enhanced binary moth flame optimization as a feature selection algorithm to

predict software fault prediction. IEEE Access 2020, 8, 8041–8055. [CrossRef]
55. Tiachacht, S.; Khatir, S.; Le Thanh, C.; Rao, R.V.; Mirjalili, S.; Wahab, M.A. Inverse problem for dynamic structural health

monitoring based on slime mould algorithm. Eng. Comput. 2021, 38, 2205–2228. [CrossRef]
56. AlRassas, A.M.; Al-Qaness, M.A.A.; Ewees, A.A.; Ren, S.; Sun, R.; Pan, L.; Elaziz, M.A. Advance artificial time series forecasting model

for oil production using neuro fuzzy-based slime mould algorithm. J. Pet. Explor. Prod. Technol. 2022, 12, 383–395. [CrossRef]
57. Al-Qaness, M.A.A.; Ewees, A.A.; Fan, H.; Abualigah, L.; Elaziz, M.A. Marine predators algorithm for forecasting confirmed cases

of COVID-19 in Italy, USA. Iran and Korea. Int. J. Environ. Res. Public Health 2020, 17, 3520. [CrossRef]
58. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
59. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Futur.

Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]
60. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.

Expert Syst. Appl. 2020, 152, 113377. [CrossRef]
61. ASTM Committee D-18 on Soil and Rock. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification

System); ASTM International: West Conshohocken, PA, USA, 2017.
62. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3233/FI-2017-1539
https://doi.org/10.1016/j.asoc.2018.05.006
https://doi.org/10.1016/j.asoc.2020.106542
https://doi.org/10.9781/ijimai.2022.07.002
https://doi.org/10.1037/h0042519
https://doi.org/10.3390/app9061042
https://doi.org/10.1007/s00521-023-08378-3
https://doi.org/10.1155/2016/5104907
https://www.ncbi.nlm.nih.gov/pubmed/27066069
https://doi.org/10.1016/j.tust.2022.104979
https://doi.org/10.1016/j.trgeo.2022.100895
https://doi.org/10.1016/j.tust.2022.104728
https://doi.org/10.1016/j.undsp.2021.12.009
https://doi.org/10.1007/s11069-020-04067-9
https://doi.org/10.3390/infrastructures7090121
https://doi.org/10.1109/21.256541
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1109/ACCESS.2020.2964321
https://doi.org/10.1007/s00366-021-01378-8
https://doi.org/10.1007/s13202-021-01405-w
https://doi.org/10.3390/ijerph17103520
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1029/2000JD900719

	Introduction 
	Research Significance 
	Methodology 
	Adaptive Neuro-Fuzzy Inference System 
	Grey Wolf Optimiser 
	Improved Grey Wolf Optimiser 
	Brief Overview of MFO, SMA, and MPA 
	Hybrid Modelling of ANFIS and MHAs 

	Data Description and Modelling 
	Results and Discussion 
	Model Performance 
	Discussion of Results 

	Limitations and Future Research 
	Summary and Conclusions 
	Appendix A
	References

