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Abstract: Slope instability can lead to catastrophic consequences. However, predicting slope stability
effectively is still challenging because of the complex mechanisms and multiple influencing factors.
In recent years, machine learning (ML) has received great attention in slope stability prediction due
to its strong nonlinear prediction ability. In this study, an optimum-path forest algorithm based on
k-nearest neighbor (OPFk-NN) was used to predict the stability of slopes. First, 404 historical slopes
with failure risk were collected. Subsequently, the dataset was used to train and test the algorithm
based on randomly divided training and test sets, respectively. The hyperparameter values were
tuned by combining ten-fold cross-validation and grid search methods. Finally, the performance
of the proposed approach was evaluated based on accuracy, F1-score, area under the curve (AUC),
and computational burden. In addition, the prediction results were compared with the other six
ML algorithms. The results showed that the OPFk-NN algorithm had a better performance, and the
values of accuracy, F1-score, AUC, and computational burden were 0.901, 0.902, 0.901, and 0.957 s,
respectively. Moreover, the failed slope cases can be accurately identified, which is highly critical in
slope stability prediction. The slope angle had the most important influence on prediction results.
Furthermore, the engineering application results showed that the overall predictive performance of
the OPFk-NN model was consistent with the factor of safety value of engineering slopes. This study
can provide valuable guidance for slope stability analysis and risk management.

Keywords: slope stability prediction; machine learning (ML); optimum-path forest (OPF); k-nearest
neighbor (k-NN); hyperparameter tuning

MSC: 86-10

1. Introduction

Slope instability is a global geological problem, which is one of the three major geolog-
ical problems in nature besides earthquakes and volcanoes. Many geotechnical projects,
such as open-pit mining, mountain roads, tailings dams, and landfills, are seriously threat-
ened by slope instability. A serious slope instability disaster can cause casualties, building
damages, and huge economic losses. For example, on 20 December 2015, a catastrophic
landslide occurred at the Hong’ao landfill in Shenzhen, China, resulting in 77 deaths,
33 buildings buried, and direct economic losses of more than 880 million RMB [1]. On the
evening of 11 March 2017, a landslide at the Koshe landfill in Ethiopia’s capital, Yah, caused
113 deaths and more than 80 people missing [2]. Due to heavy rainfall on 18 October 2020,
a landslide occurred in Vietnam’s Quang Tri province, claiming the lives of 22 soldiers [3].
Because of its serious consequences, predicting the risk of slope instability is crucial and
plays a significant role in disaster prevention.

The prediction methods of slope stability can be classified into four categories. The
first one is instrumental monitoring technology. Currently, many on-site monitoring tech-
niques of slope deformation have been applied to monitor the early warning signs of
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slope instability. For example, Zhang et al. [4] used distributed fiber optic strain sensors
to monitor the shear displacement in the Three Gorges Reservoir region in China, and
two potential circular sliding surfaces were successfully identified. Dixon et al. [5], Sh-
iotani [6], and Codeglia et al. [7] adopted the acoustic emissions (AE) technology to monitor
the signals generated by the fracture of soil and rock materials in the slope. By analyzing
the relationship between AE characteristics and slope deformation, AE-based criteria were
used to evaluate the long-term stability of slopes. In addition, some other techniques,
such as remote sensing [8], terrestrial laser scanning [9], synthetic aperture radar [10],
and time domain reflectometry [11], were applied to slope stability monitoring. These
technologies have relatively high prediction accuracy because the precursor information of
slope instability can be obtained directly, but the installation process is complicated, and
the cost is high.

The second one is the theoretical analysis method. It is proposed from the view of
mechanical mechanisms. Many theoretical and analytical approaches have been used
to analyze slope stability, such as the limit equilibrium method (LEM) [12], the strength
reduction method (SRM) [13], and the limit analysis method [14]. The factor of safety (FOS),
calculated by the ratio of resisting force to driving force, is used to evaluate the stability
of the slope. When the value of FOS is larger than 1, the slope is stable; otherwise, it is
unstable [15]. Faramarzi et al. [16] employed LEM to calculate the FOS and analyzed the
rock slope stability of the Chamshir dam pit. Liu [17] adopted the SRM to obtain the FOS
of the established slope model. Mbarka et al. [18] combined the Monte Carlo approach,
LEM, and SRM for the reliability analysis of homogeneous slopes with circular-type failure.
Although the theoretical and analytical methods are simple, they are unsuitable for slopes
with complex conditions due to the simplified formulas and assumptions.

The third one is the numerical simulation technique. With the rapid development
of numerical simulation methods, finite element method (FEM) [19], boundary element
method [20], discrete element method [21], numerical manifold method [22], and other
methods have been widely used in slope stability analysis. Sun et al. [23] simulate the
progressive failure process of jointed rock slopes based on the combined finite-discrete
element method. Ma et al. [24] analyzed the slope stability under a complex stress state
with saturated and unsaturated seepage using the fast Lagrangian analysis of continua.
Wei et al. [25] investigated the kinetic features of slope instability based on particle flow
code. Haghnejad et al. [26] analyzed the effect of blast-induced vibration on slope stability
using dynamic pressure in three dimensions distinct element codes. Song et al. [27] adopted
an improved smoothed-particle hydrodynamics method to calculate the slope safety factor.
Zhang et al. [28] adopted a realistic failure process analysis to evaluate the stability and
investigated the failure mode of the high rock slope during excavations. In addition, some
researchers have integrated numerical simulation and mathematical methods to analyze
the slope stability. For example, Dyson and Tolooiyan [29] adopted FEM and Monte Carlo
to determine the FOS and damage probability of slopes. Although the numerical simulation
methods are convenient to operate, the accuracy strongly depends on constitutive models
and mechanical parameters [30].

The fourth one is the machine learning (ML) algorithm. With the accumulation of
slope cases, some researchers attempted to develop slope stability prediction models using
ML algorithms. There are two types of predicted outputs: FOS and stability status. Lu and
Rosenbaum [31] adopted an artificial neural network to estimate the FOS and SS on 46 slope
cases collected by Sah et al. [32]. Based on the same database, Samui [33] and Yang et al. [34]
used a support vector machine (SVM) and genetic programming to determine FOS, re-
spectively. Amirkiyaei and Ghasemi [35] constructed two tree-based models to assess
circular-type failure slopes based on 87 cases. Zhou et al. [36] collected 221 slope cases
and employed the gradient-boosting machine to predict the SS. Wang et al. [37] hybridized
a genetic algorithm with a multi-layer perceptron to predict FOS using 630 cases. In ad-
dition, several researchers performed a comparative analysis of multiple ML algorithms.
Hoang and Tien Bui [38] carried out a comparative study of SS prediction using a ra-
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dial basis function neural network, an extreme learning machine, and least squares SVM.
Mahmoodzadeh et al. [39] adopted Gaussian process regression, support vector regres-
sion, decision trees (DT), long-short-term memory, deep neural networks, and k-nearest
neighbors (k-NN) to determine FOS. All the above ML algorithms performed well on
slope stability prediction. However, a large number of slope stability cases are required to
improve its credibility.

Compared with other approaches, ML algorithms can obtain reliable prediction results
by establishing the nonlinear relationship between input and output. It is a promising
method for predicting slope stability. But to date, there is no one ML algorithm that can be
applied to all slope engineering conditions under the consensus of the geotechnical industry.
Accordingly, it is meaningful to investigate more robust ML algorithms to achieve better
prediction results. Recently, the optimum-path forest (OPF) algorithm has been successfully
applied in many fields, such as face recognition [40], Parkinson’s disease identification [41],
laryngeal cancer pathology detection [42], land use classification [43], and network intrusion
detection [44]. However, the OPF algorithm is susceptible to outliers. In response to
this deficiency, Papa et al. [45] proposed the OPF algorithm based on k-NN (OPFk-NN),
and the discriminative performance of the OPF model was improved. In combination
with the k-NN algorithm, the OPFk-NN algorithm can provide better performance for
classification tasks by leveraging the topological properties of the data [46]. Compared to
other classification algorithms, the OPFk-NN algorithm has several advantages, including
(1) it is free of hyperparameters, (2) it does not assume separability of the feature space,
(3) it has a unique feature selection and classification mechanism that can effectively handle
the high-dimensional and nonlinear data with outliers, (4) and its training step is usually
much faster than traditional ML approaches.

Considering that the OPFk-NN has great predictive performance and has not yet been
employed to predict the stability of slopes, this study aims to investigate the feasibility of
OPFk-NN for predicting slope stability. In addition, a comparison against OPF, radial basis
function support vector machine (RBF-SVM), random forest (RF), DT, k-NN, and logistic
regression (LR) classifiers is performed.

2. Methodology
2.1. k-NN Based OPF Classifier

The OPF is a graph-based classifier [47,48]. Its classification principle is to denote the
training samples as nodes and connect them by path. Then, the optimal path tree (OPT)
is constructed by executing the shortest path algorithm on the graph. Finally, the test
sample is mapped onto the OPT, and its class is determined. Figure 1 shows the schematic
diagram of the OPF-based classifiers. The nodes with different colors in the set S represent
different classes, and the nodes outside the set S are the samples to be classified. A series
of adjacent nodes are defined as path π. Among all paths, the one with the maximum
path-cost function f (πt) is called OPT, and all OPTs constitute OPF. There are three different
classes in Figure 1; the blue sample s is the root node of the OPT where sample t is located,
so sample t is classified as blue.

The OPFk-NN is a variant of the OPF algorithm, and the main difference between them
is the adjacency of the samples in the training set. The latter is to construct a complete
graph, while the former is to construct a k-NN graph [45]. The OPFk-NN algorithm is
divided into training and classification phases.
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2.1.1. Training Phase

The first step is to construct a k-NN graph Gk based on the training set Z1. The sample
s is weighed by a probability density function ρ(s):

ρ(s) =
1√

2πσ2
∣∣G∗k (s)∣∣ ∑

∀t∈G∗k (s)
exp

(
−d2(s, t)

2σ2

)
, (1)

where σ =
d f
3 , df is the maximum arc weight in Gk, and d(s, t) is the distance between

sample s and sample t.
The second step is to calculate the path cost function f min, which is defined as:

fmin(〈t〉) =
{

ρ(t) if t ∈ S
ρ(t)− 1 otherwise

fmin(πs · 〈s, t〉) = min{ fmin(πs), ρ(t)}
, (2)

According to the method proposed by Papa et al. [50], the k value of k-NN is deter-
mined by maximizing the accuracy of the training set in the range [1, kmax]. The value of
kmax defaults to 5. After determining the value of k, the algorithm is applied to retrain the
classifier. The function f min is replaced by f ′min, which is defined as:

f ′min(〈t〉) =
{

ρ(t) if t ∈ S
ρ(t)− 1 otherwise

f ′min(πs · 〈s, t〉) =
{
−∞ if λ(t) 6= λ(s)
min{ f ′min(πs), ρ(t)} otherwise

. (3)

Figure 2 is the schematic diagram of the training phase, where Figure 2a indicates the
k-NN graph generated from the training set, Figure 2b represents the minimum spanning
tree calculated by the k-NN graph, Figure 2c denotes the two samples of different colors
labeled as prototype samples (marked by black dashed circles), and Figure 2d signifies the
OPFk-NN classifier composed by all the OPTs. The red squares and green circles represent
different classes, respectively.
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2.1.2. Classification Phase

After training the OPFk-NN classifier, the sample t in the test set Z2 is classified. The
k-NN is first calculated from Z1 to a testing sample t. Then, it is verified which sample
s ∈ Z1 satisfies the equation below:

V(t) = max{min[V(s), ρ(t)]}∀s ∈ Z1 (4)

Figure 3 indicates the classification process of OPFk-NN. The blue triangle is the sample
to be classified. Figure 3a shows that the blue triangle is connected to the k-nearest training
samples in the generated OPF, and Figure 3b illustrates that the triangle is conquered by
the samples of the red squares class and labeled as red.

2.2. Proposed Approach

Figure 4 depicts the flowchart of the proposed approach. First, due to the different
units of indicators and the diversity of data distribution, the raw data is pre-processed. The
dataset is standardized using a Gaussian distribution with zero mean and unit standard
deviation. Subsequently, 80% of samples are used for training, and the remaining 20%
are adopted for testing [51,52]. For the k-NN, RBF-SVM, RF, DT, and LR algorithms, the
grid search and ten-fold cross-validation (CV) methods are used to select the optimal
hyperparameters. Finally, the test set is predicted, and the optimal classifier is determined
according to the evaluation metrics.
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The OPFk-NN and OPF are implemented based on the Python library “opfython” [53],
and the k-NN, RBF-SVM, RF, DT, and LR are conducted on the Python library “scikit-
learn” [54]. All experiments are conducted using a Windows1064 bits computer with 8Gb
of RAM running an Intel® Core™ i7-9700F CPU @ 3.00 GHz × 2.

If the predictive performance of our proposed approach is acceptable, it can be used
for engineering applications in several ways. For example, it can be integrated into slope
monitoring systems to provide real-time alerts for potential instability. The model can
also be used to evaluate slope stability during the design phase of construction projects to
ensure the safety and stability of the slope. Additionally, the model can be applied to slope
stability analysis and risk management, which can be used by geotechnical engineers in
various projects related to slope instability.
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2.3. Performance Evaluation Metrics

In this study, several metrics are used to evaluate the performance of classifiers and
figure out the optimal classifier for slope stability prediction [30,55].

A confusion matrix, which can also be called a likelihood table or error matrix, is used
to visually represent whether the performance is ideal or not. Table 1 shows the confusion
matrix for the slope-stability prediction, where true positive (TP) means the number of
stable cases predicted correctly, false positive (FP) means the number of stable cases pre-
dicted incorrectly, true negative (TN) means the number of failed cases predicted correctly,
and false negative (FN) means the number of failed cases predicted incorrectly. According
to Table 1, true negative rate (TN/(TN + FP)) and false positive rate (FP/(FP + TN)) can
be defined.

Table 1. Confusion matrix for slope stability prediction.

Actual Condition
Predicted Condition

Stable Failed

Stable True positive False negative
Failed False positive True negative

Accuracy indicates the ratio of the cases correctly predicted to the total cases, which
can be calculated by: accuracy = (TP + TN)/(TP + TN + FP + FN).

F1-score indicates the harmonic mean of precision and recall, which can be calcu-
lated by: F1-score = 2precision · recall/(precision + recall), where precision = TP/(TP + FP),
recall = TP/(TP + FN).

The area under the curve (AUC) is defined as the area under the receiver operating
characteristic (ROC) curve, which is commonly used to evaluate the performance of classi-
fiers. Bradley [56] proposed classification criteria of AUC as follows: not discriminating
(0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1).

Computational burden is used to evaluate the computational efficiency of algorithms.
The mean and standard deviation of computation time are used as the evaluation metrics
in this study.

2.4. Hyperparameter Tuning

In general, the performance of most ML algorithms is highly dependent on the hy-
perparameters. There are several hyperparameter tuning methods, such as manual search,
grid search, random search, Bayesian optimization, gradient-based optimization, and evo-
lutionary optimization [57]. In this study, the grid search algorithm is combined with the
k-fold CV method to select the optimal hyperparameters.

The grid search algorithm is to grid the hyperparameters in a fixed range in equal
steps, compare all hyperparameter combinations exhaustively, and then select the optimal
hyperparameters. To avoid the risk of overfitting or selection bias in the model, the k-fold
CV method is used in the hyperparameter tuning process, illustrated in Figure 5. The
original training set is randomly split into k folds, of which k − 1 folds are used as the
training sub-set, and the remaining fold is used as the validation set in turn. Then, the
average accuracy of k rounds is calculated to evaluate the performance and determine the
optimal hyperparameters [58]. In this study, k was selected as 10 after considering the
calculation time and variance [59].
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3. Data Collection
3.1. Dataset Description

The failure surfaces of the slopes are prone to occur near the potential slip surface.
Because of the excavation at the foot of the slope or water seepage at the top of the slope,
the shear stress on the potential slip surface exceeds the shear strength, causing the local
slope instability, as shown in Figure 6. A large number of engineering cases and theoretical
analyses indicate that there are three main aspects that affect slope stability: the physical–
mechanical properties of the potential slip surface, the basic geometrical parameters, and
the external triggering factors. [12,18,60–62]. Considering the independent correlation
between indicators and the easy availability of indicator values, six indicators were selected
in this study, including the unit weight (γ), the cohesion (c), the internal friction angle (ϕ),
the slope angle (β), the slope height (H), and the pore pressure ratio (ru). The detailed
descriptions of these indicators are displayed in Table 2.
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Figure 6. The 3D schematic diagram of slope failure.
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Table 2. Descriptions of input indicators.

Indicator Description Measurement Method

γ (kN/m3) It indicates the weight of soil/rock per unit volume.
It can be measured by performing the standard mass
volume method, mercury displacement method, or
gravimeter method in the laboratory.

c (kPa)
It indicates the attraction between molecules on the
surface of adjacent material particles within the
soil/rock.

It can be determined by performing direct shear tests
and triaxial compression tests in the laboratory.

ϕ (◦) It indicates a measure of the ability of a unit of soil/rock
to withstand shear stress.

It can be determined by performing direct shear tests
and triaxial compression tests in the laboratory.

β (◦) It indicates the angle between the slope plane and the
slope bottom. It can be measured in the field by an inclinometer.

H (m) It indicates the vertical distance from the slope bottom
to the slope top.

It can be measured in the field using a surveying
instrument such as a total station.

ru
It is defined as the ratio of the pore pressure and normal
stress at a certain point within a slope.

It can be measured by installing pore water piezometers
on-site or by performing immersion tests or infiltration
tests in the laboratory.

In this study, a database of 404 slopes with failure risk from various countries was
collected (available in “Appendix A”) [32,36,57,63–72]. There are two statuses of slope
stability: stable (207 cases) and failed (197 cases). Among them, most of the failed slopes
were circular-type failures. The distribution of slope SS on the overall dataset is given in
Figure 7, and the statistical values of data samples are illustrated in Table 3.
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Table 3. Statistical values of slope stability dataset.

Value Type γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru

Minimum 10.06 0 0 4.24 3.45 0
Median 21.38 29.7 28.27 34.03 51 0.2

Maximum 31.3 300 57.36 59.35 565 0.75
Mean 21.69 39.38 27.74 34.19 84.26 0.18

Standard 3.84 40.54 9.63 10.86 94.97 0.17

3.2. Dataset Analysis

The violin plots of six indicators are shown in Figure 8. They were a combination
of box plots and density plots and indicated the overall distribution of the dataset. For
each violin plot, the white dot in the center was the median of the samples, the top and
bottom of the thick black line represented the third and first quartile of the samples, and
the top and bottom of the thin black line indicated the upper and lower adjacent value.
From Figure 8, it can be seen that the distribution of γ, ϕ, β was relatively balanced, and
the medians were basically in the middle of the violin plots. While for c, H, ru, there were
some individual outliers.



Mathematics 2023, 11, 3071 10 of 31

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 32 
 

 

were basically in the middle of the violin plots. While for c, H, ru, there were some indi-
vidual outliers. 

 
Figure 8. Violin plots of the dataset. 

The heatmap of the Pearson correlation coefficient between each indicator is shown 
in Figure 9. According to Figure 9, all correlation coefficients were less than 0.5, and the 
highest correlation was only 0.41, which indicated that the correlation between indicators 
was poor. Therefore, all indicators were relatively independent and important for predict-
ing slope stability. 

 
Figure 9. Correlation matrix of six indicators. 

To visualize the distribution of the dataset, the correlation pair plots of the two slope 
SS were displayed in Figure 10. The distribution plots of these six indicators were shown 
on the diagonal line, and the correlation scatter plots between indicators were shown on 

Figure 8. Violin plots of the dataset.

The heatmap of the Pearson correlation coefficient between each indicator is shown
in Figure 9. According to Figure 9, all correlation coefficients were less than 0.5, and the
highest correlation was only 0.41, which indicated that the correlation between indicators
was poor. Therefore, all indicators were relatively independent and important for predicting
slope stability.
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To visualize the distribution of the dataset, the correlation pair plots of the two slope
SS were displayed in Figure 10. The distribution plots of these six indicators were shown
on the diagonal line, and the correlation scatter plots between indicators were shown on
the non-diagonal line. It can be seen that the differences in the distribution of indicators for
both slope statuses were slight, and there was no apparent correlation among the indicators.
Therefore, it was difficult to classify the slope SS only using one indicator, and the effect of
all indicators should be incorporated for better accuracy.
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4. Results and Analysis
4.1. Results of Hyperparameters Tuning

The average accuracy of ten-fold CV corresponding to different hyperparameters for
k-NN, LR, DT, RF, and RBF-SVM algorithms is shown in Figure 11. According to Figure 11,
the overall performance can be observed. With the increase of hyperparameter values, the
average accuracy of LR decreased, but the other models had several peaks. Compared with
other models, the results of RF were more stable. Based on the best average accuracy of
ten-fold CV, the optimal hyperparameter values were determined. The scope, interval, and
final optimization results of hyperparameter values are indicated in Table 4.
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Table 4. Results of hyperparameters tuning.

ML Algorithms Hyperparameters Scope of Values Interval of Values Optimal Values

k-NN n_neighbors (1, 31) 1 7
LR Inverse of regularization strength C1 (0.1, 10) 0.1 0.1

DT
max_depth (1, 10) 1 7

min_samples_leaf (1, 10) 1 3

RF
n_estimators (1, 101) 10 31
max_depth (1, 20) 1 11

RBF-SVM
gamma (0.01, 0.6) 0.01 0.55

Penalty coefficient C2 (3, 4) 0.1 3.3

4.2. Models Comparison and Evaluation

After the hyperparameters were tuned, these seven ML algorithms were used to
predict slope stability based on the test set. The confusion matrix, accuracy, and F1-score
were calculated to compare the performance of each algorithm, which were illustrated in
Table 5. It can be observed that OPFk-NN performed best with the highest accuracy of 0.901,
followed by OPF, RF, k-NN, RBF-SVM, and DT with an accuracy of 0.876, 0.827, 0.815, 0.802,
and 0.765, respectively. LR performed worst with an accuracy of 0.679. Furthermore, the
rank was the same when using the F1-score. Therefore, based on the overall prediction
performance, the rank was OPFk-NN > OPF > RF > k-NN > RBF-SVM > DT > LR.

The ROC curves and AUC values of these seven classifiers are presented in Figure 12.
It can be seen that the ROC curve of the OPFk-NN classifier was closer to the left and upper
axes than others, indicating better performance. The AUC values of OPFk-NN, RBF-SVM,
RF, OPF, k-NN, DT, and LR were 0.895, 0.885, 0.876, 0.870, 0.783, and 0.720, respectively.
According to the AUC classification criterion mentioned in Section 2.3, only OPFk-NN
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performed excellently, RBF-SVM, RF, OPF, and k-NN performed well, while DT and LR
performed fair.

Table 5. Confusion matrix, accuracy, and F1-score of the classifiers.

Classifiers Actual Condition
Predicted Condition

Accuracy F1-Score
Stable Failed

OPFk-NN
Stable 37 4

0.901 0.902Failed 4 36

OPF
Stable 38 3

0.876 0.884Failed 7 33

RF
Stable 37 7

0.827 0.841Failed 7 30

k-NN
Stable 36 8

0.815 0.828Failed 7 30

RBF-SVM
Stable 35 9

0.802 0.814Failed 7 30

DT
Stable 33 11

0.765 0.776Failed 8 29

LR
Stable 28 16

0.679 0.683Failed 10 27
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The average computation time for each classifier during the training and testing
phases over 20 runs was calculated, as listed in Table 6. The results were presented in the
following format: x ± y, where x and y indicated the average time and standard deviation,
respectively—noted that the values in bold indicated the minimum time consumed. It can
be observed that the k-NN took the least time in the training phase, followed by LR, OPF,
OPFk-NN, RBF-SVM, and RF. In the testing phase, the time consumed by each classifier was
not significantly different, and the difference between the maximum and minimum values
was less than 0.2 s. For the total time, the rank was k-NN > LR > OPF > OPFk-NN > DT >
RBF-SVM > RF. The total computation time of the OPFk-NN classifier was less than 1 s.
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Table 6. Average computation time of classifiers over 20 runs.

Time OPFk-NN OPF RF RBF-SVM DT LR k-NN

Train 0.915 ± 0.027 0.322 ± 0.034 117.751 ± 1.163 82.326 ± 1.149 2.162 ± 0.067 0.402 ± 0.035 0.187 ± 0.011
Test 0.042 ± 0.002 0.097 ± 0.004 0.055 ± 0.003 0.171 ± 0.005 0.008 ± 0.001 0.008 ± 0.001 0.011 ± 0.002
Total 0.957 ± 0.026 0.419 ± 0.033 117.806 ± 1.164 82.497 ± 1.149 2.170 ± 0.067 0.410 ± 0.036 0.198 ± 0.011

4.3. Relative Importance of Indicators

The relative importance of indicators was significant for the design of support struc-
tures in slope engineering. In this study, the relative importance of each indicator was
calculated by combining the OPFk-NN model with the permutation feature importance tech-
nique [73]. The permutation feature importance is a model inspection technique available
in the Python library “scikit-learn” [54]. Values of indicators were shuffled in turn within
the test set, the slope stability prediction results were generated by the OPFk-NN model, and
the accuracy changes were recorded. Then, the prediction accuracy changes of indicators
were ranked, and the relative importance was derived. As shown in Figure 13, the slope
angle was the most important indicator with an importance value of 30.5%, followed by
internal friction angle (22%), cohesion (19.7%), unit weight (12.3%), slope height (7.93%),
and pore pressure ratio (7.63%).
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5. Discussions

The prediction of failed cases is particularly important, which may lead to the develop-
ment of slope instability if predicted incorrectly [74]. Therefore, the false positive rate and
true negative rate were presented together in Figure 14. It can be seen that the false positive
rate and true negative rate of RBF-SVM, k-NN, and RF were the same, and the OPFk-NN had
the largest true negative rate and the lowest false positive rate. From this view, the OPFk-NN
classifier performed better. The reason is that the OPFk-NN algorithm can effectively process
high-dimensional and nonlinear slope data with outliers, improve the data quality of the
model in the training phase, and predict the failed slope cases more accurately.
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When the trade-off between AUC and the computational burden was considered,
the OPFk-NN classifier was the most prominent because it demonstrated the optimal per-
formance (AUC = 0.901) in less computation time (total time < 1 s) among the seven
classifiers. It is worth noting that the OPFk-NN classifier was pretty much faster than
RBF-SVM (86.2 times faster) and RF (123.1 times faster), although the difference in their per-
formance was not significant. Therefore, the OPFk-NN classifier achieved the best trade-off
between performance and efficiency.

According to the importance scores, all indicators were non-negligible for slope sta-
bility prediction. The physical–mechanical properties had the greatest influence on the
slope stability (ϕ = 22%, c = 19.7%, γ = 12.3%), followed by the geometrical parameters
(β = 30.5%, H = 7.93%). Some measures can be adopted to improve the slope stability
from two directions. One is to optimize the slope geometry parameters, especially the
slope angle. Another is to improve the physical–mechanical properties by using grouting-
reinforcement techniques.

Although the OPFk-NN approach obtained excellent results in the slope stability pre-
diction, there are also some limitations:

(1) More indicators should be considered. Although the six indicators in this study
affect the slope stability significantly, other factors such as excavation, the properties
of clay minerals, vegetation coverage, earthquake, and rainfall also have an effect on
the slope stability. It is significant to analyze the influences of these indicators on the
prediction results;

(2) The dataset is relatively small. The performance of ML algorithms greatly depends
on the quantity and quality of data. Although the OPFk-NN algorithm performs well on
this dataset, a better dataset might further improve the predictive performance. Therefore,
it is necessary to build a larger slope database;

(3) Slopes are typically composed of multiple layers of various geotechnical materials
whose properties and spatial distribution can significantly affect slope stability. As the
number of slope failure cases increases, a comprehensive and diverse slope dataset should
be expanded in future work. Such efforts are crucial for advancing the field of geotechnical
engineering and ensuring the safety of human lives and infrastructure;

(4) The safety factor of slope stability can reflect the percentage of slope instability, and
the slope stability analysis can be better considered a regression problem. Therefore, it is
necessary to compile relevant data and develop relevant ML models for slope FOS value
estimation in future work.
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6. Engineering Application

In order to further verify the reliability of the proposed OPFk-NN model, it was neces-
sary to apply it to evaluate the stability of engineering slopes. For this, eight typical slopes
were collected from the Jing-xin expressway in Hebei Province, China, where landslides
frequently occurred [75].

The FOS values of these eight slopes and the estimation results of the OPFk-NN model
were recorded in Table 7. It can be seen that the overall prediction performance of the
OPFk-NN model was consistent with the FOS values of the slopes.

Table 7. Predictive results of OPFk-NN model on engineering slopes.

Slopes γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru FOS Status

1 22.4 20.0 27.0 30.0 54.0 0.12 1.208 Stable
2 21.4 31.5 42.0 34.0 18.0 0.23 2.448 Stable
3 19.0 50.0 32.0 42.0 26.0 0.17 1.786 Stable
4 19.6 17.8 29.2 41.2 50.0 0.31 0.979 Failed
5 20.2 16.7 22.3 42.4 26.6 0.47 0.869 Failed
6 20.4 25.0 20.4 35.0 65.9 0.42 0.833 Failed
7 20.0 20.0 36.0 45.0 50.0 0.14 1.102 Stable
8 23.0 18.3 25.2 39.6 61.2 0.30 0.824 Failed

7. Conclusions

Slope stability prediction is a crucial task in geotechnical engineering. This study
investigated the performance of the OPFk-NN algorithm for the stability prediction of slopes.
A total of 404 historical slope cases with failure risk from various countries were collected
after considering the slope damage mechanism and geological conditions simultaneously.
The OPFk-NN, OPF, RBF-SVM, RF, k-NN, DT, and LR were used to evaluate and compare
the predictive performance. To avoid the risk of overfitting or selection bias, ten-fold CV
and grid search methods were selected to tune the hyperparameters. Overall, the prediction
results of the OPFk-NN algorithm were better and more reliable, and its prediction accuracy
and F1-score were 0.901 and 0.902, respectively. According to the ROC curves and AUC
values, the performance rank of the seven classifiers was OPFk-NN > RBF-SVM > RF > OPF
> k-NN > DT > LR. In addition, the OPFk-NN achieved the highest TNR and the lowest
FPR, which indicated that it could predict failed slope cases better. After considering
the total calculation time, the OPFk-NN classifier achieved the optimal trade-off between
performance and efficiency. Based on the importance scores of indicators, the slope angle
was the most influential indicator on prediction results. Furthermore, the engineering
application results showed that the overall predictive performance of the OPFk-NN model
was consistent with the FOS value of engineering slopes.

In the future, more parameters such as excavation, the properties of clay minerals, ge-
ological formation, vegetation coverage, earthquake, and rainfall can be considered so that
the feasibility of the OPFk-NN classifier can be further validated using more comprehensive
and diverse slope datasets. In addition, the proposed methodology can be recommended
for the application of other mining and geotechnical engineering projects, such as rockburst
risk prediction and pillar stability prediction.
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Nomenclature
Abbreviation Full Name
AE Acoustic emissions
LEM Limit equilibrium method
SRM Strength reduction method
FOS Factor of safety
FEM Finite element method
ML Machine learning
RBF-SVM Radial basis function support vector machine
DT Decision trees
OPF Optimum-path forest
k-NN k-nearest neighbors
RF Random forest
LR Logistic regression
OPT Optimal path tree
CV Cross-validation
TP True positive
FP False positive
TN True negative
FN False negative
TNR True negative rate
FPR False positive rate
AUC Area under the curve
ROC Receiver operating characteristic

Appendix A. Database of Slope Cases

No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

1
Congress street, open cut slope,

Chicago, USA
18.68 26.34 15 35 8.23 0 Failed Circular

2 Brightlingsea slide, UK 16.5 11.49 0 30 3.66 0 Failed Circular
3 Unknown 18.84 14.36 25 20 30.5 0 Stable -
4 Unknown 18.84 57.46 20 20 30.5 0 Stable -
5 Case 1: open pit iron ore mine, India 28.44 29.42 35 35 100 0 Stable -
6 Case 2: open pit iron ore mine, India 28.44 39.23 38 35 100 0 Stable -
7 Open pit chromite mine, Orissa, India 20.6 16.28 26.5 30 40 0 Failed Circular
8 Sarukuygi landslide, Japan 14.8 0 17 20 50 0 Failed Circular
9 Open pit iron ore mine, Goa, India 14 11.97 26 30 88 0 Failed Circular
10 Mercoirol open pit coal mine, France 25 120 45 53 120 0 Stable -

11
Marquesade open pit iron ore mine,

Spain
26 150.05 45 50 200 0 Stable -

12 Unknown 18.5 25 0 30 6 0 Failed Circular
13 Unknown 18.5 12 0 30 6 0 Failed Circular

14
Case 1: Highvale coal mine,

Alberta, Canada
22.4 10 35 30 10 0 Stable -

15
Case 2: Highvale coal mine,

Alberta, Canada
21.4 10 30.34 30 20 0 Stable -

16
Case 1: open pit coal mine, Newcastle

coalfield, Australia
22 20 36 45 50 0 Failed Circular

17
Case 2: open pit coal mine, Newcastle

coalfield, Australia
22 0 36 45 50 0 Failed Circular

18 Unknown 12 0 30 35 4 0 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

19 Unknown 12 0 30 45 8 0 Failed Circular
20 Pima open pit mine, Arizona, USA 23.47 0 32 37 214 0 Failed Circular
21 Case 1: Wyoming, USA 16 70 20 40 115 0 Failed Circular
22 Seven Sisters Landslide, UK 20.41 24.9 13 22 10.67 0.35 Stable -
23 Case 1: The Northolt slide, UK 19.63 11.97 20 22 12.19 0.405 Failed Circular
24 Selset Landslide, Yorkshire, UK 21.82 8.62 32 28 12.8 0.49 Failed Circular
25 Saskatchewan dam, Canada 20.41 33.52 11 16 45.72 0.2 Failed Circular
26 Case 2: The Northolt slide, UK 18.84 15.32 30 25 10.67 0.38 Stable -
27 Sudbury slide, UK 18.84 0 20 20 7.62 0.45 Failed Circular
28 Folkstone Warren slide, Kent, UK 21.43 0 20 20 61 0.5 Failed Circular
29 River bank side, Alberta, Canada 19.06 11.71 28 35 21 0.11 Failed Circular
30 Unknown 18.84 14.36 25 20 30.5 0.45 Failed Circular
31 Unknown 21.51 6.94 30 31 76.81 0.38 Failed Circular

32
Case 2: open pit iron ore mine,

Goa, India
14 11.97 26 30 88 0.45 Failed Circular

33 Athens slope, Greece 18 24 30.15 45 20 0.12 Failed Circular
34 Open pit coal mine Allori coalfield, Italy 23 0 20 20 100 0.3 Failed Circular

35
Case 1: open pit coal mine,

Alberta, Canada
22.4 100 45 45 15 0.25 Stable -

36
Case 2: open pit coal mine,

Alberta, Canada
22.4 10 35 45 10 0.4 Failed Circular

37
Case 3: open pit coal mine, Newcastle

coalfield, Australia
20 20 36 45 50 0.25 Failed Circular

38
Case 4: open pit coal mine, Newcastle

coalfield, Australia
20 20 36 45 50 0.5 Failed Circular

39
Case 5: open pit coal mine, Newcastle

coalfield, Australia
20 0 36 45 50 0.25 Failed Circular

40
Case 6: open pit coal mine, Newcastle

coalfield, Australia
20 0 36 45 50 0.5 Failed Circular

41
Case 1: Harbour slope,
Newcastle, Australia

22 0 40 33 8 0.35 Stable -

42
Case 2: Harbour slope,
Newcastle, Australia

24 0 40 33 8 0.3 Stable -

43
Case 3: Harbour slope,
Newcastle, Australia

20 0 24.5 20 8 0.35 Stable -

44
Case 4: Harbour slope,
Newcastle, Australia

18 5 30 20 8 0.3 Stable -

45 Unknown 27 40 35 47.1 292 0 Failed Circular
46 Unknown 25 46 35 50 284 0 Stable -
47 Unknown 31.3 68 37 46 366 0 Failed Circular
48 Unknown 25 46 36 44.5 299 0 Stable -
49 Unknown 27.3 10 39 40 480 0 Stable -
50 Unknown 25 46 35 46 393 0 Stable -
51 Unknown 25 48 40 49 330 0 Stable -
52 Unknown 31.3 68.6 37 47 305 0.25 Failed Circular
53 Unknown 25 55 36 45.5 299 0.25 Stable -
54 Unknown 31.3 68 37 47 213 0.25 Failed Circular

55
Three Gorges hydropower

project, China
26.49 150 33 45 73 0.15 Stable -

56
Three Gorges hydropower

project, China
26.7 150 33 50 130 0.25 Stable -

57
Three Gorges hydropower

project, China
26.89 150 33 52 120 0.25 Stable -

58
Three Gorges hydropower

project, China
26.57 300 38.7 45.3 80 0.15 Failed Unknown
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

59
Three Gorges hydropower

project, China
26.78 300 38.7 54 155 0.25 Failed Unknown

60
Three Gorges hydropower

project, China
26.81 200 35 58 138 0.25 Stable Unknown

61
Three Gorges hydropower

project, China
26.43 50 26.6 40 92.2 0.15 Stable Unknown

62
Three Gorges hydropower

project, China
26.69 50 26.6 50 170 0.25 Stable Unknown

63
Three Gorges hydropower

project, China
26.81 60 28.8 59 108 0.25 Stable Unknown

64 Dingjiahe phosphorus mine, China 27.8 27.8 27 41 236 0.1 Stable -
65 Guilin-Liuzhou highway, China 27.1 22 18.6 25.6 100 0.19 Failed Unknown
66 Xiaolangdi reservoir, China 22.3 0 40 26.5 78 0.25 Stable -
67 Jingzhumiao reservoir, China 18.6 0 32 26.5 46 0.25 Stable -
68 Jingzhumiao reservoir, China 18.6 0 32 21.8 46 0.25 Stable -
69 Yuecheng reservoir, China 18.8 9.8 21 19.29 39 0.25 Failed Unknown
70 Yuecheng reservoir, China 21.2 0 35 18.43 73 0.25 Stable -
71 Gushan reservoir, China 17.2 10 24.25 17.07 38 0.4 Stable -
72 Laobu reservoir, China 19 11.9 20.4 21.04 54 0.75 Stable -
73 Wenyuhe reservoir, China 18 5 26.5 15.52 53 0.4 Failed Unknown
74 Wenyuhe reservoir, China 18 5 22 15.52 53 0.4 Failed Unknown
75 Hongwuyi reservoir, China 17.4 20 24 18.43 51 0.4 Failed Unknown
76 Hongwuyi reservoir, China 17.8 21.2 13.92 18.43 51 0.4 Stable -
77 Lingli reservoir, China 18.8 8 26 21.8 40 0.4 Failed Unknown
78 Lingli reservoir, China 18 21 21.33 21.8 40 0.4 Failed Unknown
79 Zhejiang sea wall, China 17.6 10 16 21.8 9 0.4 Stable -
80 Zhejiang sea wall, China 17.6 10 8 21.8 9 0.4 Stable -
81 Hunan anxiang reservoir, China 17.4 14.95 21.2 45 15 0.4 Failed Unknown
82 A reservoir dam in Jiangxi, China 18.82 25 14.6 20.32 50 0.4 Failed Unknown
83 Qing River area landslide, China 22 29 15 18 400 0 Failed Circular
84 Qing River area landslide, China 23 24 19.8 23 380 0 Failed Circular
85 Qing River area landslide, China 22 40 30 30 196 0 Stable -
86 Qing River area landslide, China 22.54 29.4 20 24 210 0 Stable -
87 Qing River area landslide, China 22 21 23 30 257 0 Failed Circular
88 Qing River area landslide, China 23.5 10 27 26 190 0 Failed Circular
89 Qing River area landslide, China 22.5 18 20 20 290 0 Stable -
90 Qing River area landslide, China 22.5 20 16 25 220 0 Stable -
91 Qing River area landslide, China 21 20 24 21 565 0 Stable -
92 Guzhang gaofeng slope, China 27 27.3 29.1 35 150 0.26 Failed Circular
93 Guzhang gaofeng slope, China 27 27.3 29.1 37 184 0.22 Failed Circular
94 Guzhang gaofeng slope, China 27 27.3 29.1 34 126.5 0.3 Failed Circular

95
Chengmenshan open pit copper

mine, China
25 46 35 50 285 0.25 Stable -

96 Baijiagou earth slope, China 20.45 16 15 30 36 0.25 Stable -

97
Jingping first stage hydropower

station, China
27 70 22.8 45 60 0.32 Stable -

98
Left bank accumulation body of

Xiaodongjiang hydropower
station, China

22 10 35 45 10 0.403 Failed Unknown

99
Longxi landslide of Longyangxia

hydropower Station, China
20 20 36 45 30 0.503 Failed Unknown

100
Chana landslide of Longyangxia

hydropower Station, China
20 0.1 36 45 50 0.25 Failed Unknown

101
Canal slope of Baoji gorge with Wei

River diversion project, China
20 0.1 36 45 50 0.503 Failed Unknown
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

102
Yellowstone landslide in the Three
Gorges of the Yangtze River, China

22 0 40 33 8 0.393 Stable -

103
Baiyian landslide in the Three Gorges

reservoir area, China
24 0 40 33 8 0.303 Stable -

104
Baihuanping landslide in the Three

Gorges reservoir area, China
20 0 24.5 20 8 0.35 Stable -

105
Gaojiazui landslide in the Three Gorges

reservoir area, China
18 0 30 33 8 0.303 Stable -

106
Songshan ancient landslide at

Lechangxia hydropower station, China
27 43 35 43 420 0.25 Failed Unknown

107
Back channel landslide in the Three

Gorges reservoir area, China
27 50 40 42 407 0.25 Stable -

108
Jipazi landslide in the Three Gorges

reservoir area, China
27 35 35 42 359 0.25 Stable -

109
Jiuxianping Landslide in the Three

Gorges reservoir area, China
27 37.5 35 37.8 320 0.25 Stable -

110 Heishe landslide, China 27 32 33 42.6 301 0.25 Failed Unknown

111
Liujiawuchang landslide in the Three

Gorges reservoir area, China
27 32 33 42.2 289 0.25 Stable -

112
Majiaba landslide in the Three Gorges

Reservoir Area, China
27.3 14 31 41 110 0.25 Stable -

113
Sandengzi landslide in the Three

Gorges Reservoir Area, China
27.3 31.5 29.703 41 135 0.25 Stable -

114
Yaqianwan landslide in the Three

Gorges Reservoir Area, China
27.3 16.8 28 50 90.5 0.25 Stable -

115
No. 3 landslide of Sanbanxi
hydropower station, China

27.3 36 1 50 92 0.25 Stable -

116 Shijiapo landslide, China 27.3 10 39 41 511 0.25 Stable -
117 Tanggudong landslide, China 27.3 10 39 40 470 0.25 Stable -
118 Tianbao landslide, China 25 46 35 47 443 0.25 Stable -

119
Shipingtai landslide of Xiaoxi

hydropower station, China
25 46 35 44 435 0.25 Stable -

120 Dongyemiao landslide, China 25 46 35 46 432 0.25 Stable -
121 Hongtupo landslide, China 26 150 45 30 230 0.25 Failed Unknown

122
Lianziya landslide in the Three Gorges

reservoir area, China
18.5 25 0 30 6.003 0.25 Failed Unknown

123
No. 6 landslide of Jishixia hydropower

station, China
18.5 12 0 30 6.003 0.25 Failed Unknown

124 Unknown 21.4 10 30.343 30 20 0.25 Stable -

125
No. 1 landslide of Jishixia hydropower

station, China
22 20 36 45 50 0 Failed Unknown

126 Daxi landslide, China 22 0 36 45 50 0 Failed Unknown

127
Right Bank landslide of Zihong

reservoir, China
12 0 30 35 4 0 Stable -

128 Zhongyangcun landslide, China 12 0 30 45 8 0 Failed Unknown

129
Yangdagou landslide of Xunyang

hydropower station, China
31.3 68 37 49 200.5 0.25 Failed Unknown

130 Unknown 20 20 36 45 50 0.29 Failed Unknown
131 Maidipo Landslide, China 19.6 21.8 29.5 37.8 40.3 0.25 Stable -
132 Maidipo Landslide, China 23.1 25.2 29.2 36.5 61.9 0.4 Stable -
133 Shaling Landslide, China 23.8 31 38.7 47.5 23.5 0.31 Stable -
134 Niugunhan Landslide, China 22.3 20.1 31 40.2 88 0.19 Stable -
135 Xieliupo Landslide, China 23.5 25 20 49.1 115 0.41 Stable -
136 Zhaojiatang Landslide, China 23 20 20.3 46.2 40.3 0.25 Stable -
137 Touzhaigou Landslide, China 21.5 15 29 41.5 123.6 0.36 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

138
Shenzhen reservoir diversion tunnel

landslide, China
23.4 15 38.5 30.3 45.2 0.28 Failed Unknown

139
Taipingyi hydropower station diversion

tunnel landslide, China
19.6 17.8 29.2 46.8 201.2 0.37 Stable -

140 Bawangshan Landslide, China 22.1 24.2 39.7 45.8 49.5 0.21 Stable -
141 Unknown 18.9 17.5 31 33.5 90.5 0.26 Stable Circular
142 Unknown 20.2 16.7 22.3 42.4 26.6 0.25 Stable Circular
143 Unknown 21.5 14 19.3 35 65.9 0.32 Stable Circular

144
KSH Slope in Tailie elementary

school, China
20 8 20 10 10 0 Failed Unknown

145
KSH Slope on the right of Circle E of

Tailie Overpass, China
27.3 37.3 31 30 30 0 Stable -

146
KSH Landslide on the left of
K71 + 625~K71 + 700, China

20.6 26.31 22 25 35 0 Failed Unknown

147 KSH Slope of Pingxite Bridge, China 21.6 6.5 19 40 50 0 Failed Unknown

148
KSH Slope on the right of

K76 + 085~K76 + 200, China
22.4 28.9 24 28 35 0 Failed Unknown

149
KSH Slope on the left of

K77 + 920~K78 + 100, China
23.2 31.2 23 30 33 0 Failed Unknown

150
KSH Slope on the left of

K79 + 165~K79 + 300, China
26.8 37.5 32 30 26 0 Stable -

151
KSH Slope on the right of

K79 + 920~K80 + 035, China
27.4 38.1 31 25 42 0 Stable -

152
KSH Landslide on the right of

ZAK0 + 315~ZAK0 + 407, China
21.8 32.7 27 50 50 0 Failed Unknown

153
KSH Slope on the left of

K83 + 260~K83 + 360, China
21.8 27.6 25 35 60 0 Failed Unknown

154
KSH Slope on the right of

K88 + 300~K88 + 420, China
26.5 35.4 32 30 21 0 Stable -

155
KSH Slope on the right of

K88 + 700~K88 + 876, China
26.5 36.1 31 35 39 0 Stable -

156
KSH Slope on the right of

K89 + 730~K89 + 841, China
27 35.8 32 30 69 0 Stable -

157
KSH Slope on the right of

K90 + 225~K90 + 345, China
27 38.4 33 25 22 0 Stable -

158
KSH Slope on the right of

K90 + 225~K90 + 345, China
21.4 28.8 20 50 52 0 Failed Unknown

159
KSH Slope on the left of

K99 + 120~K99 + 260, China
26 42.4 37 38 55 0 Stable -

160
KSH Slope on the left of

K100 + 280~K100 + 410, China
26 39.4 36 25 30 0 Stable -

161
KSH Slope on the left of

K100 + 615~K100 + 915, China
25.6 38.8 36 25 26 0 Stable -

162
KSH Landslide on the left of

K103 + 330~K103 + 450, China
20 30.3 25 45 53 0 Failed Unknown

163
KSH Landslide on the left of

K103 + 330~K103 + 450, China
25.8 34.7 33 30 50 0 Stable -

164
KSH Landslide on the left of

K104 + 892~K105 + 052, China
21.8 28.8 26 35 99 0 Failed Unknown

165
KSH Landslide on the left of

K105 + 260~K105 + 330, China
21.8 31.2 25 30 60 0 Failed Unknown

166
KSH Slope on the left of

K106 + 268~K106 + 577, China
24 41.5 36 30 51 0 Stable -

167
KSH Slope on the left of

K106 + 992~K107 + 085, China
24 40.8 35 35 50 0 Stable -



Mathematics 2023, 11, 3071 24 of 31

No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

168
KSH Landslide on the left of

K107 + 856~K107 + 968, China
20.6 27.8 27 35 70 0 Failed Unknown

169
KSH Landslide on the left of

K108 + 960~K109 + 010, China
20.6 32.4 26 35 55 0 Failed -

170
KSH Landslide on the left of

K108 + 960~K109 + 010, China
25.8 38.2 33 27 40 0 Stable Unknown

171
KSH Landslide on the left of

K108 + 960~K109 + 010, China
25.8 39.4 33 25 45 0 Stable Unknown

172
KSH Landslide on the left of

K110 + 421~K110 + 500, China
21.1 33.5 28 40 31 0 Failed -

173
KSH Landslide on the left of

K110 + 980~K110 + 240, China
21.1 34.2 26 30 75 0 Failed -

174
KSH Slope on the right of

K112 + 720~K112 + 815, China
26.6 42.4 37 25 52 0 Stable Unknown

175
KSH Slope on the left of

K113 + 500~K113 + 580, China
26.6 44.1 38 35 42 0 Stable Unknown

176
KSH Slope on the left of

K113 + 500~K113 + 580, China
26.6 40.7 35 35 60 0 Stable Unknown

177
KSH Slope on the left of

K114 + 224~K114 + 258, China
25.8 41.2 35 30 40 0 Stable Unknown

178
KSH Slope on the left of

K117 + 200~K117 + 412, China
25.8 43.3 37 30 33 0 Stable Unknown

179
KSH Front slope of tunnel in Songjieya

K122 + 310, China
21.7 32 27 45 60 0 Failed -

180
KSH Landslide on the right of
K122 + 350~K122 + 455, China

20.6 28.5 27 40 65 0 Failed -

181
KSH Landslide on the left of

K127 + 440~K127 + 590, China
21.5 29.8 26 40 70 0 Failed -

182
KSH Landslide on the left of

K127 + 440~K127 + 590, China
26.5 42.9 38 34 36 0 Stable Unknown

183
KSH Landslide on the left of

K137 + 650~K137 + 730, China
20.8 15.6 20 30 45 0 Failed -

184
KSH Landslide on the left of

K138 + 624~K138 + 797, China
20.8 14.8 21 30 40 0 Failed -

185
KSH Landslide on the right of
K75 + 760~K76 + 000, China

19.6 29.6 23 40 58 0 Failed -

186
KSH Slope on the right of

ZBK0 + 000~ZBK0 + 185, China
25.4 33 33 20 35 0 Failed -

187
KSH Landslide on the left of
K84 + 602~K85 + 185, China

22.4 29.3 26 50 50 0 Failed Unknown

188
KSH Slope on the right of

K91 + 614~K91 + 660, China
26.2 41.5 36 35 30 0 Stable -

189
KSH Slope on the right of

K91 + 720~K91 + 771, China
26.2 42.3 36 23 36 0 Stable -

190
KSH Slope on the left of

K100 + 950~K101 + 300, China
25.6 39.8 36 30 32 0 Stable -

191
KSH Slope on the left of

K102 + 691~K102 + 880, China
25.6 36.8 34 35 60 0 Stable -

192
KSH Slope on the right of

K118 + 360~K118 + 549, China
26.2 42.8 37 30 37 0 Stable -

193
KSH Slope on the right of

K119 + 823~K119 + 951, China
26.2 43.8 38 35 68 0 Stable -

194
KSH Landslide on the right of
K124 + 340~K124 + 562, China

20.6 32.4 26 30 42 0 Failed Unknown

195
KSH Slope on the right of

K131 + 280~K131 + 380, China
26.5 41.8 36 42 54 0 Stable -
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196
KSH Landslide on the left of

K138 + 840~K138 + 930, China
20.8 15.4 21 30 53 0 Failed Unknown

197 Unknown 17.98 4.95 30.02 19.98 8 0.3 Stable -
198 Unknown 21.47 6.9 30.02 31.01 76.8 0.38 Failed Circular
199 Unknown 21.78 8.55 32 27.98 12.8 0.49 Failed Circular
200 Unknown 21.4 10 30.34 30 20 0 Stable -
201 Unknown 21.36 10.05 30.33 30 20 0 Stable -
202 Unknown 19.97 10.05 28.98 34.03 6 0.3 Stable -
203 Unknown 22.38 10.05 35.01 30 10 0 Stable -
204 Unknown 22.38 10.05 35.01 45 10 0.4 Failed Circular
205 Unknown 19.08 10.05 9.99 25.02 50 0.4 Failed Circular
206 Unknown 19.08 10.05 19.98 30 50 0.4 Failed Circular
207 Unknown 18.83 10.35 21.29 34.03 37 0.3 Failed Circular
208 Unknown 16.47 11.55 0 30 3.6 0 Failed Circular
209 Unknown 19.03 11.7 27.99 34.98 21 0.11 Failed Circular
210 Unknown 19.06 11.71 28 35 21 0.11 Failed Circular
211 Unknown 19.6 12 19.98 22 12.2 0.41 Failed Circular
212 Unknown 13.97 12 26.01 30 88 0 Failed Circular
213 Unknown 18.46 12 0 30 6 0 Failed Circular
214 Unknown 13.97 12 26.01 30 88 0.45 Failed Circular
215 Unknown 18.84 14.36 25 20.3 50 0.45 Failed Circular
216 Unknown 18.8 14.4 25.02 19.98 30.6 0 Stable -
217 Unknown 18.8 14.4 25.02 19.98 30.6 0.45 Failed Circular
218 Unknown 18.8 15.31 30.02 25.02 10.6 0.38 Stable -
219 Unknown 20.56 16.21 26.51 30 40 0 Failed Circular
220 Unknown 27.3 16.8 28 50 90.5 0.25 Stable -
221 Unknown 27 16.8 28 50 90.5 0.25 Stable -
222 Unknown 20.96 19.96 40.01 40.02 12 0 Stable -
223 Unknown 21.98 19.96 36 45 50 0 Failed Circular
224 Unknown 19.97 19.96 36 45 50 0.25 Failed Circular
225 Unknown 19.97 19.96 36 45 50 0.5 Failed Circular
226 Unknown 18.77 19.96 9.99 25.02 50 0.3 Failed Circular
227 Unknown 18.77 19.96 19.98 30 50 0.3 Failed Circular
228 Unknown 21.98 19.96 22.01 19.98 180 0.1 Failed Circular
229 Unknown 22 20 36 45 50 0 Failed Circular
230 Unknown 18 24 30.15 45 20 0.12 Failed Circular
231 Unknown 18.83 24.76 21.29 29.2 37 0.5 Failed Circular
232 Unknown 18.77 25.06 19.98 30 50 0.2 Failed Circular
233 Unknown 18.77 25.06 9.99 25.02 50 0.2 Failed Circular
234 Unknown 27.3 26 31 50 92 0.25 Stable -
235 Unknown 20.96 30.01 35.01 40.02 12 0.4 Stable -
236 Unknown 18.97 30.01 35.01 34.98 11 0.2 Stable -
237 Unknown 27 32 33 42.4 289 0.25 Stable -
238 Unknown 20.39 33.46 10.98 16.01 45.8 0.2 Failed Circular
239 Unknown 20.96 34.96 27.99 40.02 12 0.5 Stable -
240 Unknown 27 40 35 43 420 0.25 Failed Circular
241 Unknown 19.97 40.06 30.02 30 15 0.3 Stable -
242 Unknown 19.97 40.06 40.01 40.02 10 0.2 Stable -
243 Unknown 20.96 45.02 25.02 49.03 12 0.3 Stable -
244 Unknown 17.98 45.02 25.02 25.02 14 0.3 Stable -
245 Unknown 26.7 50 26.6 50 170 0.25 Stable -
246 Unknown 18.8 57.47 19.98 19.98 30.6 0 Stable -
247 Unknown 26.8 60 28.8 59 108 0.25 Stable -
248 Unknown 31.3 68 37 47 213 0.25 Failed Circular
249 Unknown 31.3 68 37 46 366 0.25 Stable -
250 Unknown 31.3 68.6 37 47 305 0.25 Failed Circular
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251 Unknown 15.99 70.07 19.98 40.02 115 0 Failed Circular
252 Unknown 22.38 99.93 45 45 15 0.25 Stable -
253 Unknown 19.8 10 8 30 10 0.25 Stable -
254 Unknown 19.63 11.97 20 22 21.19 0.4 Failed Circular
255 Simulated by finite element analysis 17.93 78.2 18.49 33.42 120.79 0 Failed Circular
256 Simulated by finite element analysis 18.02 40.92 21.18 21.86 34.65 0.1 Stable -
257 Simulated by finite element analysis 25.76 64.11 21.4 15.76 30.38 0.5 Stable -
258 Simulated by finite element analysis 25.55 14.8 3.44 41.06 33.31 0.4 Failed Circular
259 Simulated by finite element analysis 23.85 78.48 33.9 22.88 118.09 0.1 Stable -
260 Simulated by finite element analysis 18.34 92.2 40.51 40.89 139.48 0 Stable -
261 Simulated by finite element analysis 25.15 33.36 39.25 45.48 148.37 0.3 Failed Circular
262 Simulated by finite element analysis 19.24 65.34 34.2 21.8 64.56 0 Stable -
263 Simulated by finite element analysis 19.91 46.83 32.8 18.15 77.25 0.2 Stable -
264 Simulated by finite element analysis 24.36 0.41 27.04 28.44 99.28 0.3 Failed Circular
265 Simulated by finite element analysis 20.04 67.59 42.91 25.86 4.06 0 Stable -
266 Simulated by finite element analysis 20.31 71.43 31.46 28.18 110.81 0.2 Stable -
267 Simulated by finite element analysis 19.26 43.88 34.26 44.16 122.49 0 Failed Circular
268 Simulated by finite element analysis 17.99 7.2 19.23 55.56 82.75 0 Failed Circular
269 Simulated by finite element analysis 17.85 73.21 22.22 46.32 77.08 0 Failed Circular
270 Simulated by finite element analysis 19.14 94.52 14.6 33.78 105.01 0.5 Failed Circular
271 Simulated by finite element analysis 21.01 44.08 26.49 28.94 97.57 0 Failed Circular
272 Simulated by finite element analysis 19.33 99.3 33.1 34.82 55.54 0 Stable -
273 Simulated by finite element analysis 16.1 65.25 20.21 20.17 17.27 0.3 Stable -
274 Simulated by finite element analysis 19.9 73.05 45.46 32.99 9.53 0.4 Stable -
275 Simulated by finite element analysis 19.62 3.67 31.06 5.87 92.13 0.4 Stable -
276 Simulated by finite element analysis 20.71 28.37 14.49 26.49 63.78 0 Failed Circular
277 Simulated by finite element analysis 22.12 37.55 38.11 33.33 29.93 0.1 Stable -
278 Simulated by finite element analysis 21.54 32.07 18.89 27.06 58.89 0.3 Failed Circular
279 Simulated by finite element analysis 17.4 108.19 30.04 47.3 111.28 0.3 Failed Circular
280 Simulated by finite element analysis 17.39 20.26 26.6 56.38 34.45 0.3 Failed Circular
281 Simulated by finite element analysis 18.63 106.66 14.27 38.62 68.73 0.5 Failed Circular
282 Simulated by finite element analysis 17.68 94.92 25.4 45.11 65.97 0.4 Failed Circular
283 Simulated by finite element analysis 14.59 10.92 27.55 47.11 141.66 0.1 Failed Circular
284 Simulated by finite element analysis 18.72 87.53 23.28 33.15 61.82 0 Stable -
285 Simulated by finite element analysis 15.17 35.57 42.06 14.6 183.27 0 Stable -
286 Simulated by finite element analysis 15.79 31.63 28.09 48.97 12.09 0.5 Stable -
287 Simulated by finite element analysis 15.87 69.53 48.47 27.1 17.83 0 Stable -
288 Simulated by finite element analysis 16.56 74.15 18.33 37.2 31.92 0 Stable -
289 Simulated by finite element analysis 16.27 44.32 21.6 27.07 151.39 0.4 Failed Circular
290 Simulated by finite element analysis 17.09 52.7 26 42.55 17.87 0.4 Stable -
291 Simulated by finite element analysis 19.49 100.82 31.34 54.81 21.06 0.3 Stable -
292 Simulated by finite element analysis 23.46 56.15 31.06 43.67 53.54 0 Failed Circular
293 Simulated by finite element analysis 15.48 46.54 43.56 39.42 14.92 0.2 Stable -
294 Simulated by finite element analysis 24.36 64.7 39.14 46.87 141.85 0.3 Failed Circular
295 Simulated by finite element analysis 22.39 59.91 11.89 22.7 94.67 0.2 Failed Circular
296 Simulated by finite element analysis 22.42 161.55 20.7 39.03 15.89 0 Stable -
297 Simulated by finite element analysis 19.51 63.27 37.01 18.77 90.45 0.4 Stable -
298 Simulated by finite element analysis 21.16 124 21.92 30.41 116.84 0.5 Stable -
299 Simulated by finite element analysis 22.53 34.61 26.81 58 102.93 0 Failed Circular
300 Simulated by finite element analysis 22.77 27.51 25.23 14.95 67.59 0.2 Stable -
301 Simulated by finite element analysis 19.2 55.28 24.02 29.8 91.59 0.3 Failed Circular
302 Simulated by finite element analysis 23.17 17.75 23.6 53.51 24.8 0.3 Failed Circular
303 Simulated by finite element analysis 24.89 121.63 30.2 35.32 16.18 0.5 Stable -
304 Simulated by finite element analysis 24.03 72.37 28.77 37.74 59.21 0.1 Stable -
305 Simulated by finite element analysis 23.05 12.16 14 23.3 89.05 0 Failed Circular
306 Simulated by finite element analysis 18.22 77.64 46.58 43.19 24.52 0.4 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

307 Simulated by finite element analysis 20.47 16.87 35.48 27.58 17.86 0 Stable -
308 Simulated by finite element analysis 20.99 63.58 48.54 30.91 68.82 0 Stable -
309 Simulated by finite element analysis 18.74 49.05 17.54 14.34 118.98 0 Failed Circular
310 Simulated by finite element analysis 21.26 9.78 43.23 17.42 90.73 0 Stable -
311 Simulated by finite element analysis 21.07 29.89 14.46 21.98 22.31 0 Failed Circular
312 Simulated by finite element analysis 20.27 25.33 23.75 8.37 42.76 0 Stable -
313 Simulated by finite element analysis 19.9 25.05 25.46 44.15 37.03 0 Failed Circular
314 Simulated by finite element analysis 20.32 14.9 14.35 42.66 80.26 0 Failed Circular
315 Simulated by finite element analysis 20.57 34.55 44.41 38.36 122.28 0 Stable -
316 Simulated by finite element analysis 19.1 133.38 41.5 31.38 109.11 0 Stable -
317 Simulated by finite element analysis 18.88 9.77 21.01 51.49 33.34 0 Failed Circular
318 Simulated by finite element analysis 20.26 122.61 23.44 24.92 114.17 0 Stable -
319 Simulated by finite element analysis 16.3 91.72 27.7 41.82 87.53 0 Failed Circular
320 Simulated by finite element analysis 13.6 58.07 38.63 36.61 32.97 0 Stable -
321 Simulated by finite element analysis 19.65 28.79 17.38 35.79 68.78 0 Failed Circular
322 Simulated by finite element analysis 16.1 81.18 30.16 4.84 125.44 0 Stable -
323 Simulated by finite element analysis 26.52 68.74 20.76 24.86 123.99 0 Failed Circular
324 Simulated by finite element analysis 23.12 57.21 29.96 26.39 94.95 0 Stable -
325 Simulated by finite element analysis 25.06 14.97 14.86 47.79 142.71 0 Failed Circular
326 Simulated by finite element analysis 23.15 46.41 23.56 48.54 22.44 0 Failed Circular
327 Simulated by finite element analysis 19.27 129.46 27.54 34.61 87.63 0 Stable -
328 Simulated by finite element analysis 22.3 40.64 21.93 24.05 103.19 0 Failed Circular
329 Simulated by finite element analysis 22.37 43.37 19.15 45.03 119.95 0 Failed Circular
330 Simulated by finite element analysis 15.37 53.03 28.06 40.94 79 0.35 Failed Circular
331 Simulated by finite element analysis 23.35 29.97 16.38 39.73 33.92 0.405 Failed Circular
332 Simulated by finite element analysis 17.14 127.05 41.92 31.87 114.99 0.49 Stable -
333 Simulated by finite element analysis 16.1 71.69 20.81 52.77 70.06 0.2 Failed Circular
334 Simulated by finite element analysis 23.18 17.74 13.86 26.71 60.39 0.38 Failed Circular
335 Simulated by finite element analysis 18.34 36.34 30.19 29.44 143.1 0.45 Failed Circular
336 Simulated by finite element analysis 16.9 31.8 33.65 29.21 81.74 0.5 Stable -
337 Simulated by finite element analysis 24.83 119.28 13.24 26.86 113.91 0.11 Failed Circular
338 Simulated by finite element analysis 13.93 80.9 37.13 34.16 58.25 0.45 Stable -
339 Simulated by finite element analysis 17.61 59.31 19.1 43.28 31.25 0.38 Failed Circular
340 Simulated by finite element analysis 24.6 11.36 1.7 20.19 11.06 0.45 Failed Circular
341 Simulated by finite element analysis 30.31 22 23.94 36.99 104.02 0.12 Failed Circular
342 Simulated by finite element analysis 20.69 69.68 40.34 49.39 111.42 0.3 Failed Circular
343 Simulated by finite element analysis 23.82 300 21.77 20.57 23.9 0.25 Stable -
344 Simulated by finite element analysis 16.77 24.09 34 22.53 26.72 0.4 Stable -
345 Simulated by finite element analysis 28.11 0.69 21 18.22 99.46 0.25 Failed Circular
346 Simulated by finite element analysis 18.27 6.45 20.69 26.3 17.04 0.5 Failed Circular
347 Simulated by finite element analysis 10.06 62.41 39.99 39.04 58.31 0.25 Stable -
348 Simulated by finite element analysis 20.85 74.42 11.34 39.57 13.17 0.5 Stable -
349 Simulated by finite element analysis 20.98 52.5 23.55 33.67 49.7 0.35 Failed Circular
350 Simulated by finite element analysis 17.56 27.82 17.23 37.23 67.61 0.3 Failed Circular
351 Simulated by finite element analysis 21.4 67.99 38.11 32.72 132.33 0.35 Stable -
352 Simulated by finite element analysis 25.29 125.82 0 48.07 56 0.3 Stable -
353 Simulated by finite element analysis 15.47 79.39 47.88 32.46 81.14 0.15 Stable -
354 Simulated by finite element analysis 22.3 38.64 31.01 43.92 47 0.25 Failed Circular
355 Simulated by finite element analysis 16.82 0.05 23.92 29.45 36.22 0.25 Failed Circular
356 Simulated by finite element analysis 25.93 13.72 22.36 35.79 53.37 0.15 Stable -
357 Simulated by finite element analysis 22.56 63.51 31.13 38.36 49.54 0.25 Stable -
358 Simulated by finite element analysis 18.56 21.04 24.82 5.3 45.92 0.25 Stable -
359 Simulated by finite element analysis 21.47 41.59 18.76 45.73 48.47 0.15 Failed Circular
360 Simulated by finite element analysis 19.01 29.34 12.19 30.35 12.07 0.25 Stable -
361 Simulated by finite element analysis 22.84 68.46 10.91 35.94 63.73 0.25 Failed Circular
362 Simulated by finite element analysis 20.36 11.89 36.6 16.58 108.92 0 Stable -
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No. Location γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status
Instability

Type

363 Simulated by finite element analysis 25.28 83.67 18.4 36.46 106.8 0.1 Failed Circular
364 Simulated by finite element analysis 30.27 38.55 22.46 39 29.53 0.5 Failed Circular
365 Simulated by finite element analysis 21.71 16.57 19.68 29 60.8 0.4 Failed Circular
366 Simulated by finite element analysis 23.67 55.72 38.36 38.68 100.02 0.1 Stable -
367 Simulated by finite element analysis 21.84 53.21 35.12 15.3 108.67 0 Stable -
368 Simulated by finite element analysis 18.58 82.65 21.89 31.64 20.11 0.3 Stable -
369 Simulated by finite element analysis 22.23 30.81 21.8 31.44 3.45 0 Stable -
370 Simulated by finite element analysis 24.05 30.89 28.57 36.87 71.36 0.2 Failed Circular
371 Simulated by finite element analysis 23.57 162.62 12.59 56.79 155.28 0.3 Failed Circular
372 Simulated by finite element analysis 21.03 8.32 28.22 31.63 49.25 0 Failed Circular
373 Simulated by finite element analysis 19.88 30.86 21.47 50.14 38.23 0.2 Failed Circular
374 Simulated by finite element analysis 27.2 53.62 28.3 21.82 56.78 0 Stable -
375 Simulated by finite element analysis 23.88 43.5 26.48 43.07 13.52 0 Stable -
376 Simulated by finite element analysis 25.55 64.91 16.97 33.45 97.58 0 Failed Circular
377 Simulated by finite element analysis 18.04 38.49 43.96 32.44 27.54 0.5 Stable -
378 Simulated by finite element analysis 25.7 84.49 18.66 42.65 7.75 0 Stable -
379 Simulated by finite element analysis 15.07 3.58 35.12 36.52 22.1 0 Failed Circular
380 Simulated by finite element analysis 22.21 86.74 27.43 25.2 13.37 0.3 Stable -
381 Simulated by finite element analysis 20.56 46.9 13.47 10.75 3.88 0.4 Stable -
382 Simulated by finite element analysis 21.05 95.94 36.24 37.34 132.92 0.4 Stable -
383 Simulated by finite element analysis 18.93 9.28 31.46 43.31 33.06 0 Failed Circular
384 Simulated by finite element analysis 23.88 10.07 22.75 28.3 23.92 0.1 Failed Circular
385 Simulated by finite element analysis 22.44 10.48 31.88 26.22 101.93 0.3 Stable -
386 Simulated by finite element analysis 21.17 12.58 40.51 49.4 111.54 0.3 Failed Circular
387 Simulated by finite element analysis 28.07 160.77 26.2 24.64 162.76 0.3 Stable -
388 Simulated by finite element analysis 24.3 45.96 44.35 38.12 56.21 0.5 Stable -
389 Simulated by finite element analysis 21.13 76.34 37.55 19.9 5.05 0.4 Stable -
390 Simulated by finite element analysis 20.41 44.66 28.23 33.89 86.39 0.1 Failed Circular
391 Simulated by finite element analysis 13.12 94.38 8.11 20.66 34.42 0 Stable -
392 Simulated by finite element analysis 18.09 11.87 3.46 34.43 78.52 0 Failed Circular
393 Simulated by finite element analysis 18.67 115.4 27.1 14.56 91.16 0.5 Stable -
394 Simulated by finite element analysis 17.46 99.03 24.1 4.24 42.94 0 Stable -
395 Simulated by finite element analysis 20.05 91.29 32.17 39.26 70.97 0 Stable -
396 Simulated by finite element analysis 27.17 14.55 15.02 44.82 19.18 0.4 Failed Circular
397 Simulated by finite element analysis 22.35 0 57.36 37.5 15.1 0.4 Stable -
398 Simulated by finite element analysis 19.58 0 14.6 27.18 77.83 0.3 Failed Circular
399 Simulated by finite element analysis 16.44 0 29.22 40.24 21.74 0 Stable -
400 Simulated by finite element analysis 23.96 0 28.04 32.4 74.58 0.2 Failed Circular
401 Simulated by finite element analysis 19.6 0 22.79 59.35 155.73 0.3 Failed Circular
402 Simulated by finite element analysis 27.35 0 33.92 34.03 5.7 0.2 Failed Circular
403 Simulated by finite element analysis 21.03 0 17.72 5.79 57.31 0 Stable -
404 Simulated by finite element analysis 25.74 0 17.23 30.03 80.53 0.4 Failed Circular

Case 1–44 reported by [32]. Case 45–54 reported by [63]. Case 55–63 reported by [64]. Case 64 reported by [65].

Case 65–82 reported by [70]. Case 83–91 reported by [66]. Case 92–94 reported by [67]. Case 95–97 reported

by [36]. Case 98–140 reported by [68]. Case 141–143 reported by [36]. Case 144–196 reported by [72]. Case 197–254

reported by [69]. Case 255–404 reported by [57]. KSH denotes Kaili-Sansui highway.
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