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Abstract

:

This paper proposes a new metaheuristic algorithm called Particle Swarm-based picking time minimization (Pkt_PSO), ideated for picking time minimization in manual warehouses. As the name suggests, Pkt_PSO is inspired by Particle Swarm Optimization (PSO), and it is specifically designed to minimize the picking time in order case picking contexts. To assess the quality and the robustness of Pkt_PSO, it is compared to five alternative algorithms used as benchmarks. The comparisons are made in nine different scenarios obtained by changing the layout of the warehouse and the length of the picking list. The results of the analysis show that Pkt_PSO has a slower convergence rate and suffers less of early stagnation in local minima; this ensures a more extensive and accurate exploration of the solution space. In fact, the solutions provided by Pkt_PSO are always better (or at least comparable) to the ones found by the benchmarks, both in terms of quality (closeness to the overall best) and reliability (frequency with which the best solution is found). Clearly, as more solutions are explored, the computational time of Pkt_PSO is longer, but it remains compatible with the operational needs of most practical applications.
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1. Introduction


Warehousing is of paramount importance in supply chains and logistics, as a well-designed warehousing policy leads to benefits within the company and across the entire supply chain [1,2]. Most of the time, high operating performance is achieved using highly efficient Automated Storage and Retrieval Systems (AS/RS) [3,4]. However, in case of small-item storage and/or spare-parts handling, manual warehouses are still more efficient and represent the standard solution [5,6]. In this case, order picking (the problem of collecting a set of items in a warehouse) is an essential issue of order fulfilment, with an immediate impact on customer satisfaction, business reputation and profitability. Picking is generally a major bottleneck in logistics and one of the most expensive and labour-intensive logistic activities, which is why improving this activity is considered a top priority for many companies [7].



When the main operations concern pallet decomposition, short-period storage, pallet recomposition, and shrink wrapping of new pallets, a picker-to-goods strategy is generally adopted [8,9]. Accordingly, the picker moves in the warehouse to collect the required number of cases of each Stock Keeping Unit (SKU) included in the picking list. As the travelling time represents the largest part of the time required to complete an order, many picking strategies have been proposed to reduce the distance covered by the picker. Among them, batch picking, zone picking, wave picking, voice picking and vision picking are certainly the most studied [10,11]. However, all the above-mentioned strategies need specific operating conditions and/or costly equipment. Batch and wave picking assume that items can be sorted after retrieval [12], zone picking has proven to be efficient only if a very high number of SKUs are stored in the warehouse, while vision and voice picking require a computerized control system and expensive augmented reality glasses or Bluetooth headphones [13].



Due to these reasons, the basic picker to goods strategy, is still the best choice in many industrial contexts [14] and it is the most widespread policy in the context of small and spare-parts handling [15]. According to this policy, the picker is in charge of completing an entire order and, to do so, he/she can move freely in each area of the warehouse to collect the cases (of the SKUs indicated in the picking list) needed to form a pallet. Its implementation is simple and cheap, as it does not require any expensive equipment or additional operations such as batch composition or sorting. Operationally, the only decision concerns the routing that the picker must follow, that is, the order in which storage locations must be visited to complete the picking list. This sequence, in fact, determines the distance covered by the picker and the total travelling time. Optimizing the routing assigned to the picker is, thus, of paramount importance to improve productivity and to cut costs. Not surprisingly, literature in this field is rather extensive, and many interesting and efficient metaheuristics have already been introduced to minimize the total travelling time.



To the authors’ knowledge, the last and most efficient framework is the one proposed by De Santis et al. [9], which is also characterized by extraordinary speed of convergence. Although this feature is desirable, it also suggests that most of the provided solutions could be points of local minimum. Therefore, we believe that there is still room for improvement, and to test this hypothesis we propose a novel metaheuristic called Pkt_PSO. As the name suggests (where Pkt stands for picking time), Pkt_PSO is an evolutionary metaheuristic inspired by the well-known Particle Swarm Optimization (PSO). However, to exploit the peculiar structure of the considered problem, many features of the standard PSO have been readapted and modified. Making major modifications to the PSO is indeed a common practice, and it is generally recommended to exploit the potentialities of this approach (see for example [16,17]) This readaptation is, therefore, the main contribution of the paper. The paper is also novel because, to the best of our knowledge, PSO has never been applied to the order-picking domain, although some recent works have shown its effectiveness and flexibility in solving very difficult-to-tackle tasks, such as Bayesian network training [18,19] and different instances of the Traveling Salesman Problem (TSP) [20,21]. The latter is a classic operating research problem very similar to the one herein considered. Assessing the operational benefits that can be achieved using a PSO-based framework is the second main contribution of the paper.



The rest of the paper is organized as follows. Section 2 presents a brief introduction on the state-of-the-art approaches for travelling time minimization in manual warehouses. In the same section, literature gaps are highlighted and the research questions addressed in this paper are clearly defined. For the sake of clarity, Section 3 pinpoints the main features of the standard PSO and Section 4 formalizes the problem and its possible formulation as a TSP. The proposed algorithm (Pkt_PSO) is introduced in Section 5, where all the new procedures and operators developed to exploit the peculiar structure of the considered problem are clearly explained. In view of an experimental section used to validate Pkt_PSO, its operating parameters are fine tuned in Section 6. Next, in Section 7 its performance is tested in nine different scenarios (obtained changing the layout of the warehouse and the length of the picking list) and compared to that of five benchmarks. One of the benchmarks [9] is a top-of-the-class metaheuristic specifically designed for the picking problem in manual warehouses, two [22,23] are outstanding PSO-based approaches for the TSP, while the last two are the well-known Full Depth 2-Opt and the nearest neighbour constructive procedure. Finally, conclusions and directions for future works are drawn in Section 8.



For the sake of clarity, all the abbreviations used in the paper are listed at the end of the paper in the “Abbreviation Section”.




2. Picker-to-Goods Strategy, a Brief Introduction and Literature Review


2.1. The Basic Picker-to-Goods Strategy


The functioning of the basic picker-to-goods strategy is very simple. Each picker receives one picking list at a time and he or she must collect all the SKUs specified therein. Specifically, the picking list includes all the SKUs needed to form an entire pallet (as required by the end customer) and indicates, for each one of them, the number of cases to be picked and their exact locations in the warehouse. The picker, generally onboard of an electric order picker, is free to move in all the aisles of the warehouse and collects cases stored at the ground level. Top racks, in fact, are used to store full pallets that will be lowered to the ground (with forklifts) whenever necessary.



The implementation of this strategy is straightforward: given a set of storage locations, the only decision concerns the order in which they must be visited. This sequence, in fact, determines the routing followed by the picker, which is the only element that can be optimized to increase productivity. Whereas the travelling time highly depends on the routing, all the other times (e.g., pick up time of a case, loading and unloading of the order picker, etc.) are constant and, therefore, irrelevant. It is, therefore, an NP-hard combinatorial problem belonging to the family of the Travelling Salesman Problem (TSP) [24,25]. Even in case of order picking with additional constraints, such as one-way aisles [26], limited handling capacity of the pickers [27], partial overlapping of picking and refilling operations, narrow aisles that can be crossed by a single picker at most [28] or allocation of the same items in multiple locations [29], the task can be reduced to a routing optimization problem with the objective of makespan minimization.




2.2. Solution Approaches Proposed in the Literature to Improve Productivity


Solutions proposed in the literature are manyfold and very differentiated but, as for many other operational research problems, the solution approaches can be classified into two broad categories, namely, exact and heuristic methods. Due to the NP-hard nature of the problem, exact methods exist only for specific or simple warehouse configurations. Just to give an idea, the exact model proposed by Ratliff et al. [30], probably the first one published on the subject, is tailored to a one-block warehouse with 50 aisles and a picking list of 10 locations. Although the problem had such as small size, some minutes of CPU time were needed to find the global optimal solution on a mainframe computer of that time. Another good example of exact models can be found in [31], where two models (based on mixed-integer programming and dynamic programming, respectively), are used to solve the order-picking problem for a two or three cross-aisles warehouse.



Anyhow, even using modern processors, for most real applications the computational time needed to execute an exhaustive approach is too high to be of any practical help. Hence, over the years, exact methods have gradually been ignored, to be replaced by heuristics and metaheuristics capable of providing very good and feasible solutions (or pseudo-optimal solutions) in a reasonably acceptable computational time. A clear discussion about the superiority of heuristic methods over exact ones can be found in [32], where it is shown that heuristics are more flexible and versatile and that can be easily readapted to different layouts and/or to incorporate additional objectives and constraints. In virtue of this, to give an idea of the different trends in heuristics and metaheuristics for the picking problem in manual warehouse, a selected set of interesting algorithms is presented next. For a more comprehensive review, the interested readers are referred to the work by Masae et al. [33].



Some authors studied the effect of different layouts on routing optimization, as in [34], where three heuristics for optimal routing in warehouses with more than two cross aisles are compared, and in [35], where a fishbone layout is considered. In addition to different layouts, in [36], economic and ergonomics issues are also considered as further objectives. More recently, heuristics have been integrated with discrete event simulations, as in [37], that introduce an algorithm for dynamic order-picking problems, in which the picker might receive instructions for new picking requests while other ones are still in progress. A concurrent simulation-based design of experiments is used in [38] to optimize picking activities and to assess the effect of a combination of operating parameters (layout, throughput, size, order pickers, etc.) on overall performance.



Most of these studies assume a random storage assignment policy, but some authors have also considered dedicated assignment policies. Among them, Caron et al. [39] evaluated two simple routing heuristics in a manual single cross-aisle warehouse, with an allocation strategy based on the Cube per Order Index. Petersen [40] carried out a detailed analysis of variance to examine possible interdependencies among routing policies, warehouse layout and depot locations under different operating conditions. The same author also addressed the issue of optimizing the routing strategy in a class-based storage system [41]. In [42], the correlation between the number of aisles, picking list size, and path length in a class-based storage environment is studied, and in [43], the optimal size of ABC zone is determined for different layouts.



In conclusion, the present work fits into this line of research, as it explores the application of metaheuristics to solve the order-picking problem. The reader who is interested in a complete review of the literature with gap analysis and future research directions can refer to over 70 papers published in Scopus; the last two [44,45] published during 2023 are recommended.




2.3. Gap Analysis and Research Questions


As discussed, the use of metaheuristics allows for the extension of non-exact applications that are operationally more attractive. Indeed, pushing the application to more realistic contexts, the TSP that models an order-picking problem becomes intractable in exact terms. As mentioned above, the existing literature on the subject is rather extensive and many interesting and efficient metaheuristics have already been introduced. To the authors’ knowledge, the last and most efficient framework is the one proposed by De Santis et al. [9], which exploits:




	
the famous Floyd–Warshall algorithm to solve the all-pair shortest path problem [46,47],



	
the Ant Colony Optimization (ACO) to provide an effective solution in a very short time.








Obtained solutions have proved to be superior, or at least equal, to those provided by previous algorithms. However, its extraordinary speed of convergence suggests that most of the times the obtained solution could be a point of local minimum. Therefore, we believe that there is still room for improvement, and to test this hypothesis, we investigate the use of a new metaheuristics inspired by the classic PSO. The rational of this choice can be traced to the fact that, rather recently, some works have demonstrated their good applicability to the TSP (see among others [20,21]). Hence, our main goal is to investigate possible advantages and/or disadvantages of the PSO when applied to this specific instance of the TSP and, most importantly, to modify its underlying structure to exploit the specific structure of the problem at hand.



We make clear from the outset that high-performance improvements are unlikely to be achieved, mainly because of the very constrained structure of the TSP underlying a warehouse organized in blocks and divided by aisles, such as the one considered in this study. Because of this binding layout structure and considering that many SKUs could be found in the same aisle, it is reasonable to expect the existence of many solutions very close in terms of makespan (i.e., point of local minimum). Testing this hypothesis, and thus understanding how sensible it is to further explore optimization techniques, is the second objective of this work.





3. Some Background on Particle Swarm Optimization


PSO is a famous metaheuristic optimization technique inspired by flocks of birds. Its ideation dates to 1995 when Eberhart and Kennedy proposed PSO as an optimization technique for continuous functions [48]. Since then, as stated in the notable works by Banks et al. [49,50] and in the comprehensive literature review by Jain et al. [51], PSO has been widely applied in many fields of operational research both for continuous and discrete problems and in closed-loop supply chain network optimisation [52]. PSO is an evolutionary and population-based metaheuristic that exploits a population of N candidate solutions, which are evolved at each step of the algorithm. For the sake of clarity, the basic notation used to describe PSO is shown in Table 1.



The whole population is referred to as a swarm, while each solution (  i = 1 , … , N  ) of the swarm is referred to as a particle. At each step (or iteration)  t , each particle moves in the solution space to generate a new and potentially improved solution. Specifically, its movement is formally defined by Equation (1):


   p i    t + 1   =  p i   t  +    v i   t   



(1)




where    v i   t    and    p i   t    are, respectively, the velocity and the position of particle  i  at iteration  t . Both    v i   t    and    p i   t    are vectors with several components equal to the dimensions of the solution space: the position    p i   t    corresponds to the current solution coded by particle  i , and the velocity    v i   t    defines how far it will move at the next step.



At each iteration, the speed of each particle is updated as in Equation (2).


   v i    t + 1   =  v i   t  +  C 1   u  1 , i  t     p i   t  − p b e s  t i   t    +  C 2   u  2 , i  t     p i   t  − g b e s t  t     



(2)




where:




	
  g b e s t  t   , the best solution found up to iteration  t  by the whole swarm.



	
  p b e s  t i   t   , the best solution found up to iteration  t  by particle  i .



	
   u  1 , i  t    and    u  2 , i  t    are two random numbers uniformly distributed in the range [0, 1]. At each iteration  t  they are generated for each particle  i .



	
   C 1    and    C 2    are fixed parameters.








According to Equation (2), each particle tries to keep moving following the direction coded by    v i   t    that, for this reason, is also referred to as the particle’s intention. However, the trajectory of the particle is subjected to small deviations that are related to its experience and to the knowledge (or culture) of the whole storm. Experience and culture are measured as the distance from the current position    p i   t    and to the position of   g b e s t  t    and   p b e s  t i   t   , respectively. The entity of both deviations is random but limited by the two constants C. In this way, the algorithm balances the exploration of new solutions and the exploitation of the best solutions found so far. When    C 1  =  C 2  = 0  , all particles fly keeping their current speed and direction until they finally hit the boundaries of the search space. If    C 1  > 0    and     C 2  = 0  , particles behave as if they were independent individuals, whereas if    C 1  = 0    and     C 2  = 0  , they are all attracted by the same point. A c choice common choice is to set    C 1  =  C 2  = 2  . In this way, all particles are attracted towards the midpoint between   g b e s t  t    and   p b e s  t i   t    and the strength of this attraction is not negligible (as it would be with    C 1  =  C 2  ≪ 1 )  .



To summarize, the standard PSO works as follows:




	
At every iteration   t ,   each particle  i  moves from    p i   t    to    p i    t + 1     according to Equation (1).



	
If the new solution    p i    t + 1     is better than   p b e s  t i   t   , the current best solution found by  i  is updated accordingly.



	
When all the swarm has moved,   g b e s t  t    is updated and the velocity of each particle  i  is updated using Equation (2).



	
The process is repeated until a stopping criterion is met.








For the sake of clarity, the pseudocode is shown in Figure 1, where it is assumed that the PSO ends when the number of iterations without improvement exceeds a predefined threshold value. The pseudocode is written using a Python 3.9© style, and so, indentation is not only for readability but it also defines different blocks of code.



At present, the original PSO has been modified and extended in many ways. A significant contribution is that of [53], where a new parameter called inertia is introduced, and the updating procedure is modified as in Equation (3).


   v i    t + 1   =  ω i t  ·  v i   t  +  C 1  r    p i   t  − p b e s  t i   t    +  C 2  r    p i   t  − g b e s t  t     



(3)




where the inertia    ω i t    is a random number uniformly distributed on the interval [0, 1] generated for each particle  i  at each iteration  t . Hence, the scope of  ω  is to mitigate the effect of particles’ intention, and in many applications, its value is progressively reduced as the number of iterations increases [53]. The resulting effect is to force the exploration of a wider area of the solution space during the first runs of the algorithm and to exploit the local optima (sort of neighbour search) when the procedure is almost at the end.



As an alternative, [54] proposed updating the velocity, as in Equation (4).


   v i    t + 1   = χ    v i   t  +  C 1  r    p i   t  − p b e s  t i   t    +  C 2  r    p i   t  − g b e s t  t       



(4)




where  χ  is a constant value (in the range [0, 1]) called constriction factor that should ensure better reliability and greater stability of the results. As for the inertia, to assure convergence, some authors have also proposed a time dependent constriction factor, as in [55] where, as the particle becomes closer to the global minimum, a lower value of the constriction factor is used which helps in stabilizing the algorithm with fast convergence. We anticipate that neither the inertia nor the constriction factor will be used in the metaheuristic here proposed.



All the above-mentioned approaches work well when the objective function is continuous, and it is possible to introduce a velocity vector    v i    on the solution domain. When, as in most industrial settings, problems are binary and/or discrete, their industrial relevance becomes rather scarce. For this reason, many scholars have proposed discretized versions of the PSO. For instance, [56] proposed using a sigmoid function to convert continuous variables into binary ones, whereas [57] suggested working with continuous variables and rounding off the obtained solution to the nearest integer.



Relatively to the discrete domain, PSO has recently been proposed as an effective way to tackle NP-hard routing problems such as the TSP. Among the first contributions, we can cite the relevant works by [58,59]. However, the real burst of interest originated from [20,21], who showed the superiority of PSO in tackling these NP-hard problems. The point to note is that, when operating over a discrete domain, to outperform other metaheuristics, PSO must be subject to major changes that can make it distinctive from the standard and continuous version. Hence, the main question is how the concept of speed can be redefined so that the distance between two discrete solutions can be measured. In this regard, two remarkable contributions were proposed by [22,60]. Specifically, letting    S 1    and    S 2    be two sequences representing the order with which  n  nodes must be visited, both authors expressed speed as a function of the number of swaps needed to convert    S 1    to    S 2   . Although the results are rather good, the performances cannot be compared with those obtainable with PSO implementations where the concept of speed is completely overturned, as in the works by [23,61]. For a more in-depth description of the latter approach, please see Appendix A, which describes the algorithm by [22,23] and other approaches used as benchmarks.




4. Problem Definition and Mathematical Formulation


4.1. Problem Assumptions


In general terms, the order-picking problem can be defined as “the problem of collecting a set of SKUs in a manual warehouse in a minimum amount of time” [31]. In the present paper, we contextualize the problem using the following assumptions, which hold in most industrial settings.



	
The set of SKUs to be collected is indicated in a picking list, which also reports the quantity, expressed in the number of cases, to be picked up.



	
Each SKU is stored at the ground level and in a dedicated location in the warehouse. Hence, the picking list univocally defines the locations that must be visited to fulfil an order.



	
The aisles of the warehouses are bidirectional and are large enough to avoid any traffic problems.



	
There is a single Input Output (I/O) point, from which each tour starts and ends.



	
The picker receives a picking list at a time and must collect all the cases indicated in it with a single tour (i.e., the handling capacity of the picker is assumed to be limitless).



	
When the picker moves from one location to the next one, he or she proceeds at a constant speed, moving approximately at the centre of an aisle.



	
When the picker reaches a picking location, he or she moves from the centre of the aisle to the proximity of the shelves where SKUs are stored. The time needed for this traversal movement is constant.



	
The time needed to pick up a case is constant, and it does not depend on the shape, dimension, or weight of the case.







4.2. Problem Formulation and Graph Representation


It is easy to see that the total travelled time is the only relevant quantity of the problem; all the other times are constant (see assumptions 6 and 7) and can be excluded from the optimization procedure. Also, since the travelling time depends on the sequence with which the picker collects the SKUs, the goal is to find the optimal sequence (or optimal picking tour). It is, therefore, a permutational problem that can be reduced to a standard TSP.



To this aim:




	
The layout must be schematized as a bidirectional graph, with nodes representing the I/O point, the storage locations, and the access points to the aisles. Considering that each aisle serves two counterposed shelves, the total number of nodes is   N =   0.5 L + 2 A + 1    , where  L  is the number of storage locations and  A  is the number of aisles. Furthermore, due to the constrained layout of the warehouse, (based on horizontal and vertical aisles), each node is linked with two or at most with three other nodes. The only exception is the I/O point that is linked with only one node. For the sake of clarity, an example of graph representation is shown in Figure 2, which is relative to a warehouse with 24 locations (from A to X) and three horizontal aisles. The total number of nodes is therefore (24/2 + 2 × 3 + 1) = 19. Also, note that node zero represents the I/O point and that nodes inside the aisles serve two locations each (for instance node two serves both location S and location T).



	
The shortest path connecting each pair of nodes (including the I/O point) must be computed and saved in a triangular distance matrix  D . This can easily be carried out in a polynomial time, using the well-known Floyd–Warshall algorithm [47,48].



	
Given a picking list with  M  SKUs, a bidirectional and fully connected network with     M + 1     nodes and   M ·   M + 1     edges must be created. The nodes correspond to the I/O point and to the  M  locations that must be visited, where the edges codify the distances among them. These distances are read in the distance matrix  D , i.e., the length of the edge connecting node  i  to node  j  equals   D   i , j     =    d  i j    . For instance, if the picking list was {S, R, V}, the network of Figure 3 should be built, where it is supposed that the distance between two adjacent nodes equals 2 and that between node zero and node one equals 1.



	
The optimal sequence is finally found in solving a TSP (as in Equation (5)) formulated for the network generated by the picking list.



	
OF:









   min  z  =   ∑   i = 1   M + 1     ∑   j = 1   M + 1    x  i j    d  i j     



(5a)





	
ST:








    ∑   i = 1   M + 1    x  i j   = 1             ∀ j ∈   1 ,   2 ,   … ,     M + 1      



(5b)






    ∑   j = 1   M + 1    x  i j   = 1             ∀ i ∈   1 ,   2 ,   … ,     M + 1      



(5c)






    ∑   i , j ∈ S    x  i j   ≤  S  − 1         ∀ S  



(5d)






    x  i j   ∈   0 , 1       ∀ i ∈   1 ,   2 ,   … ,     M + 1       ,   ∀ j ∈   1 ,   2 ,   … ,     M + 1       



(5e)




where




	
   x  i j     is a binary decision variable that equals one if the picker moves from location i to location j, and it is zero otherwise.



	
   d  i j     is the distance between location i to location j.



	
 M  is the number of SKUs in the picking list.



	
    M + 1     is the number of nodes in the network ( M  locations for  M  SKUs and one I/O point).



	
 S  is a generic set of nodes, and |S| denotes its cardinality. Since the cardinality |S| ranges from 2 to  M  there are    2 M    possible set S.








The objective (Equation (5a)) consists of finding the minimum travelling distance, and the constraints make sure that each location of the picking list is visited only once (i.e., constraints (5b,c)) and that subtours are avoided (i.e., constraint (5d)). For an additional insight of this integer linear programming model, the interested reader is referred to the extensive literature review on the TSP (see for example [24]).



Continuing with the example, solving the optimization problem, the optimal tour {I/O → P → V → S → I/O} is obtained, for a total distance of 18. We also note that the actual path followed by the picker can be reconstructed, starting from the optimal tour, using the Floyd–Warhsall algorithm in reverse. In this way, the following path is finally obtained: {0, 1, 12, 11, 10, 11, 12, 1, 2, 1, 0}.





5. Pkt_PSO, the Proposed Metaheuristic


Since the TPS is a well-known NP-hard problem, a novel metaheuristic is herein proposed to solve the order-picking problem. The metaheuristic takes inspiration from the PSO and so, from here on, it will be referd to as the Pkt_PSO.



5.1. Notation


As discussed in Section 4, the problem input is a picking list  P . We denote the picking list as   P =   A , B , C , D , E , F    , where the uppercase letters are the  M  locations to be visited. Locations are not sorted or can be sorted in lexicographical order just for convenience.



Similarly, a feasible solution is a sorted array of     M + 2     elements, which defines a picking tour. Since a tour always starts and ends at the I/O point, the first and last elements can be removed, and the tour can be fully represented with an array of only  M  elements. We refer to this array as the picking tour and we denote it as   p =    h 1  ,  h 2  , … ,  h M     , where each element   p  j  =    h j    identifies the  j -th location that must be visited by the picker. Consider, for instance, a picking list with six codes   P =   A , B ,   C , D , E , F   ,   and a picking tour   p =   B , A , C , F , D , E    . In this case, the first stop is at location  B , the second one is at location   A ,   and so on until location  E  is reached and the picker completes the tour (i.e.,   p  1  =    h 1  = B ,   p  2  =    h 2  = A ,   … , p  6  =    h 6  = E )  .



The objective function evaluated in a specific tour is therefore computed as in Equation (6):


  f  p  =  d    I O ,      h 1      +   ∑   j = 1  M   d     h j  ,    h  j + 1       +  d     h M  ,     I O      



(6)




where    d    x , y       is the minimal distance between location x and location y and IO is the input–output point.



For the sake of clarity, before delving into the details of the Pkt_PSO, the notation of the problem is fully introduced in Table 2 and Table 3. This notation integrates that of Table 1, valid for a generic PSO.




5.2. Basic Framework of the Algorithm


The iterative procedure of the Pkt_PSO follows a standard framework, like the one described in Section 3. Specifically, at every iteration   t ∈   1 ,   2 ,   … ,   T    :




	
Each particle  i  moves from its previous position    p i    t − 1     to the new position    p i   t   . This part is the core of the optimization procedure, which is explained in full detail in Section 5.4 and Section 5.5.



	
Next, with probability  γ , a neighbour search is made on    p i   t    using a 2-Opt-based approach, as explained in Section 5.6.



	
If the solution has improved, the personal best is updated of particle  i  is updated, i.e.,   p b e s  t i   t    ←  p i   t  ,    if    f (  p i   t  ) < f   p b e s  t i    t − 1      .



	
When all particles have moved to a new position, the minimum personal best is computed and compared to the global best. In case of improvement, the global best is updated accordingly, i.e.,   g b e s t  t  ←   min  i  p b e s  t i   t  ,    if      min  i  f   p b e s  t i   t    < f   g b e s t   t − 1      .








Lastly, after  T  iterations (or when a termination criterion is met), the algorithm ends and the best solution   g b e s t  T    found so far is returned as the output. Since optimality cannot be guarantee, this solution is referred to as pseudo-optimal solution.




5.3. New Solution Generation


Anytime particle  i  moves, a new solution    p i   t    is generated in an element-by-element way, by sequentially adding to an initially empty tour    p i 0   t    one location at a time. Also, the locations used to form    p i   t    are sequentially extracted from four reference solutions, that are:   p b e s  t i   t  ,   g b e s t  t  ,   g r e e d y   and   r n d _ i n t e n t i o  n i   t   . As revealed by the notation,   g r e e d y   is a solution that depends neither on iteration  t  nor on particle  i . As better described in Section 5.5, this solution is shared by all the particles of the swarm, and it is generated with a greedy algorithm at the very beginning of Pkt_PSO. From this point onward, it is no longer changed. Conversely,   r n d _ i n t e n t i o  n i   t    is a random solution that is regenerated at every iteration   t   for each particle  i .



Concerning how locations are extracted from the four reference solutions, the following procedure is used. Suppose that a total of  j  locations have already been inserted in the partial tour    p i j   t   , i.e., the last inserted location is    h j    and    p i j   t    =  h 1  , … ,  h j   . Now, we need to define, among the remaining     M − j     locations of the picking list, which one should be inserted at position     j + 1    . To this aim, a set of possible options   H ⊆ P   is created by taking all locations that come immediately after    h j    in the four reference solutions. More precisely, let    k  g b   ,  k  p b   ,      k  g r     and    k  r n     be the position occupied by location    h j    in   g b e s t  t   ,   p b e s  t i   t   ,   g r e e d y   and   r n d _ i n t e n t i o  n i   , respectively. So, we have that   H =    h  g b   ,  h  p b   ,  h  g r   ,  h  r n      , where:




	
   h  g b   = g b e s  t i     k  g b   + 1    ,



	
   h  p b   = p b e s  t i     k  p b   + 1    ,



	
   h  g r   =   g r e e d y    k  g r   + 1    ,



	
   h  r n   = r n d _ i n t e n t i o  n i     k  r n   + 1    .








Note that, if the partial tour    p i 0   t    is empty, the k-indexes cannot be defined and so they are conventionally set to zero, i.e.,    k  g b   =    k  p b   =      k  g r   =      k  r n     = 0.



To better clarify this concept, the extraction procedure is exemplified in Figure 4, for a partial tour made of two locations    p i 2   t  =    h 1  = E ,  h 2  = A    . Since location  A  is the last one inserted, to generate the set of the candidate locations  H , we need to consider all the locations that come after  A  in the reference solutions. For instance, in   g b e s  t i   t  ,   location  A  is at position four (i.e.,    k  g b   = 4  ) and so    h  gb   = g b e s  t i     k  g b   + 1   = g b e s  t i   5  = C  . Considering the other reference solutions, we finally have that:   H =    h  gb   = C ,  h  pb   = D ,  h  gr   = B ,  h  rn   = F    . Therefore, the next and third location of    p i 3   t    (indicated with three question marks in Figure 1) will be chosen among     C , D , B , F    .



Once the four candidate solutions of  H  have been identified, one of them must be selected and appended to the partial tour. As the objective is to minimize the overall travelling distance, a natural choice is to link the selection probability to the distance    d  (  h j  ,  h k  )     between the last location    h j    of the partial tour    p i j   t    and each location    h k    of  H . In other words, the greater is    d  (  h j  ,  h k  )    , the lower is the probability of selecting    h k    and vice versa. Also, to give a different importance to the reference solutions, the distance    d  (  h j  ,  h k  )     should be rescaled, taking the Hadamard (or elementwise) product with the weighting vector    w i   t  =  w 1  ,  w 2  ,  w 3  ,  w 4   .



This is shown in Equation (7), where  D  is the rescaled distance vector:


  D  t  =    d  (  h j  ,  h  g b   )   ,  d  (  h j  ,  h  p b   )   ,  d  (  h j  ,  h  g r   )   ,  d  (  h j  ,  h  r n   )     ∘    w 1  ,  w 2  ,  w 3  ,  w 4     



(7)







In general terms, neither    d  (  h j  ,  h  g b   )     nor    d  (  h j  ,  h  p b   )     should be modified, whereas    d  (  h j  ,  h  g r   )     and    d  (  h j  ,  h  r n   )     should be increased. The first two distances correspond to   g b e s  t i   t    and   p b e s  t i   t   , which are the most important reference solutions, whereas the latter two correspond to   g r e e d y   and   r n d _ i n t e n t i o  n i   t    that are the less important ones. Therefore, a natural choice is to use the following weight vector    w i   t  =   1 ,   1 ,     1 / g   , 1 /   g − 1      , for each particle  i  and for each iteration  t , where   g ∈   0 ,   1     is a greedy factor, that measures how much the greedy solution outweighs the random one. A neutral level is obtained for   g = 0.5   and rescales the distances by doubling the original ones. We anticipate that, under some peculiar conditions, the weight vector    w i   t    could be modified for a limited number of particles, to trigger an antistagnation mechanism, as described in Section 5.5.



To implement this logic, first the four candidate solutions    h k    are sorted in ascending order of their rescaled distance, to form the sorted array    H →  .   Next, an element of   H →   is randomly extracted using the quasi-geometric distribution defined as in Equation (8) [62].


  f  x  =     1 − α    x   



(8)




where  α  is a shape parameter in the interval [0, 1), and  x  is the position occupied by a candidate solution in the sorted array   H →  . Therefore, the selection probability is maximum for the element at position one and minimal for the element at position four.



It is also important to stress that the use of a quasi-geometric distribution has a twofold purpose, as clearly explained by Juan et al. [63]. First, the adoption of a theoretical distribution provides implementation advantages concerning the use of an empirical distribution. Second, the quasi-geometric distribution has a single parameter, which greatly simplifies the fine-tuning step.



We conclude by noting that two issues could occur during the selection process. Indeed:




	
If a candidate location    h k    is already included in the partial tour    p i j   t  ,      h k    is unusable and cannot be included in  H .



	
If the location    h j    (the last one of the partial tours    p i j   t   ) matches the last location of a reference solution, its candidate location    h k    cannot be defined, since position [ M  + 1] does not exist.








When this happens, the cardinality of  H  is less than four; anyhow, provided there is at least one element in  H , the selection procedure remains unaltered. Should  H  be empty, the next location    h    j + 1       is randomly extracted among all locations that have not yet been included in    p i j   t   .




5.4. Exploiting the Structure of the Problem: Aisle-Based Construction and Greedy Algorithm


To exploit the underlying structure of the picking problem, an additional solution-generation scheme is considered. As described in Section 4.2, the picking problem is characterized by a very constrained layout that makes the path connecting two locations virtually unique [64]. In other words, whenever the picker goes from location  x  to  y , he or she necessarily passes in front of other locations. This is typical when  x  and  y  are at opposite sides of the same aisle, so that moving from  x  to  y , all the intermediate locations are necessarily encountered. For instance, referring to Figure 2, if the picker moves from location V to location D, he or she also passes in front of locations {O, J, C, U, P, I}.



Let    S    x ,   y     ⊆ P   be the set of all the locations found on the minimal path connecting  x  and   y .   To take advantage of this fact, when a new candidate location    h k    is selected, all locations   l ∈  S     h j  ,  h k        will also be included in the partial tour, with probability  β . Therefore, the following two partial tours may be generated:




	
   p i j   t  =    h 1  , … ,  h j  ,  h    j + 1     =  h k     , with probability     1 − β    .



	
   p i  j + s    t  =    h 1  , … ,  h j  ,  h    j + 1     =  l 1  , … ,  h    j + s     =  l m  ,  h    j + s + 1     =  h k     , with probability  β 








where  s  is the cardinality of    S     h j  ,  h k       . Please note that the first one is the standard tour, and the second is the one generated using the aisle-based construction algorithm.



Due to the very constrained graph of routes, we also suggest generating the greedy solution (shared by all the particles of the swarm) using the well-known nearest neighbour algorithm. According to this algorithm, the picker starts the tour from the I/O point and repeatedly visits the nearest location until all locations in  P  have been visited. Indeed, due to the constraints induced by the layout on the feasible paths, this solution is known to be good, and it is thus advantageous to include it within the four reference solutions used to build a new tour. Also note that this solution never changes and remains the same from iteration  t  = 1 to iteration  t  =  T . This choice may seem rather odd, but it can be justified as follows. At the single-item level, the nearest neighbour move is certainly optimal; it is therefore useful to ensure that this move is always available when a new tour is generated in an element-by-element way. This is exactly why the greedy solution must be included in the reference solutions.



For clarity, Figure 5 provides a Python 3.9©-based pseudocode, showing the generation of a new solution    p i   t   .




5.5. Local Search via 2-Opt


Any time a new solution    p i   t    is generated, with probability  γ , a local search is also performed. The local search is based on the 2-Opt, a simple local search algorithm originally introduced by Croes in 1958 [65], which is characterized by a special swapping mechanism.



Specifically, the proposed local search can be executed in a complete and full-depth mode, which differ in the number of 2-Opt exchange steps that they perform. If the complete 2-Opt is used, a new sequence is generated by inverting the order in which the locations between    h j    and    h k    in    p i   t    are visited. This procedure is called complete because the inversion is made for each possible couple of nodes     j , k    . To make a simple numerical example, let us consider a four-item sequence    p i   t  =   A , B , C , D    . In this case, a complete 2-Opt search generates the following six tours:      B , A , C , D    1 , 2    ,      C ,   B , A , D    1 , 3    ,      D ,   C ,   B , A    1 , 4    ,      D ,   C ,   B , A    1 , 4    ,      A ,   C ,   B , D    2 , 3     and      A ,   C ,   B , D    2 , 3    , where the subscripts refer to node  j  and  k , respectively. Instead, when the full-depth 2-Opt is used, the complete 2-Opt is recursively repeated on each improved solution that is found. The two approaches are performed with probability    γ c    and    γ f   , respectively, with      γ c  +  γ f    = γ  . Also, to balance accuracy and computational time, we suggest using    γ f  = 0.5  γ 2    so that    γ c  =   γ − 0.5  γ 2    ≅    γ .



For clarity, Figure 6 shows the Python 3.9 © pseudocode of the local search via 2-Opt.




5.6. Antistagnation Mechanism


Let    i *    be a particle for which the full-depth 2-Opt, executed at iteration  t , has failed (i.e.,   p b e s  t   i *     t    has not changed). To avoid stagnation, particle    i *    activates a procedure that is meant to escape possible local minima. The proposed procedure acts on the weight vector    w   i *     t   , as explained next.




	-

	
Only for step     t + 1     and limited to particle    i *   , the weight vector is changed to:    w   i *      t + 1   =   1 ,   ∞ ,     1 / g   , 1 /   g − 1      .




	-

	
Additionally, if   p b e s  t   i *     t  = g b e s t  t   , the weight vector becomes:    w   i *      t + 1   =   ∞ ,   ∞ ,     1 / g   , 1 /   g − 1      .




	-

	
At the end of the generating process:




	▪

	
The current personal best is replaced by the solution just created, regardless of its objective function, i.e.,   p b e s  t   i *      t + 1   =    p   i *     t   .




	▪

	
The weigh vector is restored to its initial values, i.e.,    w   i *      t + 2   =   1 ,   1 ,     1 / g   , 1 /   g − 1      .















In this way, all locations   h ∈ p b e s  t   i *      t + 1     become the least likely to be selected and the particle tends to move away (or escape) from its current best. Metaphorically, limited to iteration     t + 1   ,   particle    i *    temporarily forgets its personal best (and eventually the global best) and explores the solution space without making use of this past information.




5.7. Time Complexity of Pkt_PSO


For the sake of clarity, the whole algorithm is summarized in the flow diagram of Figure 7. From the diagram, it should be clear that in each epoch  t , each particle i generates at least a new solution using the element-by-element generation scheme, possibly enhanced by the aisle-based generation approach. Next, if a neighbour search is performed, an additional number of solutions is generated. This extra number can be easily determined if the complete 2-Opt is used. In this case   C   M , n     solutions will be considered, where   C   M , n     is the binomial coefficient. Conversely, determining an exact number of different sequences generated by the full-depth 2-Opt before convergence is challenging, as this number will vary depending on the problem size and characteristics. Anyhow, since the complexity of the full-depth 2-Opt is generally considered to be   O    M 2     , we can confidently assume that the number of explored solutions is <<    M 3   , especially because, in relative terms, the number of iterations required by the 2-Opt to converge tends to decrease as the problem size increases. or a further discussion on this point see [66].



Because of this, considering the number of particles of the storm  N  and the probability to perform a neighbour search  γ , the total number of generated solutions during  T  epochs can be estimated as in Equation (9).


  N _ S o l u t i o n s = T ·   N ·   1 +   γ − 0.5  γ 2    ·      M     2      + 0.5  γ 2  · φ  M       



(9)




where   φ  M  ≪  M 3    is the number of solutions generated by the full-depth 2-OPT. For instance, using problem instances as the ones discussed next in Section 7, we experimentally found that   φ   20   ≅ 1400  ,   φ   30   ≅ 3750     and   φ   30   ≅ 8400  .




5.8. Concluding Remarks on the Proposed Algorithm


In a standard PSO, particles constantly move according to a velocity profile that codifies the knowledge of the good solutions visited in the past. Indeed, any time a particle moves, a new solution    p i    t + 1     is generated based on its current position    p i   t    and current velocity    v i   t   . The latter, in turn, depends both on a particle’s personal best and on the swarm’s global best. Metaphorically, each particle represents a bird that explores an area looking for food and changes its trajectory based on its intuition (cognitive behaviour) and/or to imitate the paths followed by the other birds of the storm (social behaviour).



Akin to the standard PSO, we also construct new solutions exploiting   p b e s  t i   t    and   g b e s t  t   ; however, aside from this similarity, a careful reader could spot some evident divergences. Specifically:




	-

	
Due to the discrete nature of the problem, an analytic formula (as in Equation (1)) is not implemented to recombine the reference solutions; an element-by-element approach is used instead.




	-

	
Two additional solutions, namely   g r e e d y   and   r n d _ i n t e n t i o  n i   t   , take part in the generation process.




	-

	
Conversely, the current solution does not explicitly appear in this process.




	-

	
The concept of speed does not seem to be explicitly implemented in the framework.









However, especially concerning the last two points, at a conceptual level, these differences are only apparent. Our algorithm can be reinterpreted in the following way. Each particle always moves to start from its personal best, which coincides with its current position. When the particle moves to a new point, it stops there if the solution has improved; if not, it returns to the starting point. Furthermore, the direction and modulus of the movement depend on four reference solutions and the weight vector    w i   t   . In this sense, the reference solutions can be seen as four cardinal points toward which the particles are attracted. Moreover, the weight vector can be seen as a velocity profile that determines how much a particle deviates from its precedent trajectory, heading toward one of the above-mentioned cardinal points.



Also note that the velocity vector is dynamic, and it is also specific for each particle of the swarm. Most of the time, the velocity vector is shared by all particles, but if a full-depth search is made on particle  i  at epoch  t , and the full-depth search fails, for that particle, the velocity vector immediately changes, helping the particle to escape the local minimum, where it presumably was trapped.



To conclude, we note that in the case of discrete problems, the existing literature has two main strands of thought. A minority of authors propose readapting PSO with few marginal changes, while most of the scholars disrupt the original version, giving it a new shape. Given the description of the procedure, we claim that our approach stays in the middle. We reinterpreted the concept of speed, taking inspiration from the recent work by [23], trying at the same time to preserve most of the underlying features of the original PSO, such as the intention of the particles.





6. Parameter Tuning


The algorithm has four operating parameters: (i) the shape factor  α  of the quasi-geometric distribution, (ii) the probability  β  of activating the aisle-based construction procedure, (iii) the probability  γ  to carry out a local search via 2-Opt, and (iv) the greediness factor  g , which defines how much the exploration is influenced by the greedy solution. The number of particles of the swarm is another operating parameter that should be fine tuned. However, we verified that the results do not appreciably change if the number of particles remains within the range of 30–40, which is usually used in similar works proposed in technical literature. Therefore, to assure a fair comparison with the other algorithms used as a benchmark, the number of particles was arbitrarily set to 30. Even the probability of triggering a full-depth search should be optimized. However, this event is so rare that performing a detailed optimization would be useless. Hence, also this parameter was arbitrarily fixed to    γ 2   , as mentioned in Section 5.



For proper fine-tuning, as in a two-level factorial experiment design, we defined reasonable low and high values for each parameter. Specifically:




	-

	
For the probability  α , the values 0.7 and 0.2 were chosen, as in Juan et al. [63]. When   α = 0.7  , the selection of a potential location    h k    is strongly influenced by its rescaled distance. For  α  approaching one, the selection tends to be deterministic and the candidate solution with the lowest distance is almost always returned. Conversely, when   α = 0.2  , the selection is almost random (with pure randomness that would be achieved with   α ≈ 0  ).




	-

	
For the probability  γ , the values 0.2 and 0.05 were chosen. Both values are rather low because the execution of a 2-Opt local search should be an extreme condition with a very low occurrence rate. For values higher than 0.2, the time complexity (see Equation (8)) would grow tremendously, making its practical implementation impossible in a real industrial context.




	-

	
For the greediness factor  g , we are “pioneers”, as this is a completely new parameter. Lacking scientific references (or experimental evidence), two extreme values 0.8 and 0.1 were tested. When   g = 0.8   the greedy exploration prevails on the random behaviour, and vice versa.




	-

	
Also, probability  β  is a new parameter and so, in line with the previous point, we tested two opposite situations using an extreme value of 0.8 and a low value of 0.1.









All the resulting    2 4    combinations were tested using five different picking lists with an average length of 30 locations (i.e.,   M   =   30  ). A common layout characterized by three blocks divided by two cross aisles and 10 racks per block was also considered. A more accurate description of this layout is presented in Section 7.2, where the numerical assessment of the algorithm is discussed. For each combination and each picking list, the algorithm was executed five times for a total of 400 repetitions. Table 4 reports the results, expressed as the sample mean and standard deviation of the total travelling time of each parameter’s combination and picking list.



The values shown in Table 5 demonstrate that Pkt_PSO is very consistent and reliable. Indeed, for each parameter’s combination, the standard deviation is always very low, and the mean value does not change significantly as the parameters change. Results also show that the only parameter that has a significant impact on the results is the greediness factor, which should be kept at its low level (i.e.,   g = 0.1  ).



For clarity, we also highlighted in red the experiments where Pkt_PSO failed, at least one time, to find the global optimum shown in the last row of the Table 5. The global optimum was computed with the famous Concorde TSP solver (using the Python version available in the PyTSP library) which, according to Mulder and Wunsch [67], is one of the fastest TSP solvers. For instance, the tuple (533, 0), relative to the first parameters’ combination and first picking list), means that the algorithm always converged to a value of 533 higher than the global optimum. Similarly, the tuple (508, 3), relative to the third parameters’ combination and third picking list, means that the algorithm has not always converged to the global optimum. The mean is higher than the global optimum and the standard deviation is not. Similarly, we highlighted in green the combination of parameters that never failed in finding the global optimum. This is the combination we opted for, also because, having a low value of the local search probability   γ = 0.05   it is also the combination requiring the lower computational time. From Equation (8) and using   φ   30   ≅ 3750  , the expected number of generated solutions for each epoch are approximately 950.




7. Case Study


7.1. The Benchmarks


To test Pkt_PSO, a set of competitive benchmarks was chosen. Since our algorithms are inspired by the PSO and since PSO often outperforms other metaheuristics when applied to the TSP (see for example [20]), the very recent and highly performant PSO by Zhou et al. [22] (PSO_1) and by Zhong et al. [23] (PSO_2) were considered. We also included in the benchmarks the ACO by De Santis et al. [9]. This is one of the most recent solutions specifically designed for the picking problem in manual warehouses, and it has been shown to perform better than other high-performance algorithms. Lastly, as simple benchmarks, we also considered the basic solution provided by the nearest neighbour constructive algorithm and by the full-depth 2-Opt, the same algorithms used by Pkt_PSO to generate the greedy solution and to perform the neighbour search. For a more in-depth description of the selected benchmarks, please see Appendix A.




7.2. Layouts and Picking Lists


Three different layouts that differ in terms of the disposition and number of blocks and rack were considered. For the sake of clarity, Figure 8 shows what we mean by blocks and racks.



The first layout (L1) is a very long warehouse with no cross aisles, made of a single block with 30 racks divided by 32 aisles. The second one (L2) has the same storage capacity as the first, but the racks are arranged differently. Specifically, it is made of three blocks divided by two cross aisles, and, in each block, there are 10 racks divided by 12 aisles. The third one (L3) is a high-capacity warehouse made of three blocks divided by two cross aisles and 30 racks per block, each one divided by 32 aisles. For all considered configurations:




	-

	
Each aisle has 11 storage locations on both sides; the only exceptions are the first and the last aisle that, being flanked by the wall, have only 11 storage locations on a single side




	-

	
The I/O position is in the bottom-right corner




	-

	
The storage locations have a standard size of 2 × 2 m, while the aisles and cross aisles are, respectively, 2 and 4 m wide.









For each layout, we tested several problems of increasing complexity. To the best of our knowledge, and according to [60], given a routing problem, the number of locations to visit is a good proxy of its complexity. For this reason, on each layout, we tested 10 picking lists of length 20, 10 of length 30, and 10 of length 40. We also verified that with a few locations   M ≤ 19   all the algorithms always converged to the global optimum computed with the Concorde TSP solver. On the other one hand, a number   M > 40   would be very unusual in a manual warehouse and, due to capacity constraints, certainly unrealistic with a single tour. Lastly, we note that for each generated picking list, we randomly selected the storage locations, to simulate a purely random allocation policy.




7.3. Results


All the algorithms were coded in Python 3.9© using the standard CPython interpreter (to increase speed) and run on a standard PC powered by Intel i7 with an 8-core processor 3.2 GHz and 16 Gb RAM. We also open-sourced the source code and the Jupyter-Notebook© used to run the tests at the following link: <GitHub-dmezzogori/op-pso>. To determine the reliability of the compared approaches, for each layout configuration and picking list, each algorithm was launched five times, for a total of     3 × 10 × 3   × 5 = 450   tests performed for each algorithm. Clearly, since the nearest neighbour is a constructive and therefore deterministic algorithm, it was tested only one time for each layout configuration and picking list for a total of     3 × 10 × 3   × 1 = 90   tests. For each algorithm and for each run, the total travelled distance of the generated picking tour (i.e., the objective function) and the computational time were recorded. We clarify that we did not calculate the global optimum of each scenario, as this would have taken too long (especially for the 40-locations configuration) and also because: (i) the capability to converge to the real global optimum was previously tested with values of   M ≤ 19   (and even with   M = 30   for Pkt_PSO) and (ii) all the benchmarks had already been compared with exhaustive procedures and/or with optimization solvers in their original papers, to which we refer for more details. In view of this, comparisons will be made relatively to the overall best solution found by the five algorithms; from here on this solution will be referred to as the pseudo-optimal solution.



Obtained results are reported in Table 5 in terms of two performance indicators:




	-

	
Number of wins (N. Wins column), the number of times an algorithm found the pseudo-optimal solution (i.e., its solution was better or equal to that provided by the other algorithms).




	-

	
Average deviation (Avg. Dev. column) relative to the pseudo-optimal solution, computed as in Equation (10) for layout  l , picking list length  p  and algorithm  a    A v g _ D e  v    l , p , a       =       ∑   i = 1   10   ( r e s u l  t    l , p , a , i     −   p s e u d o _ o p t i m a  l    l , p     )   10    



where the index   i ∈   1 ,   10     indicates the  i -th instance of the 10 randomly generated picking lists of equal length  p .









For the sake of clarity, and due to space constraints, the starting data from which the performance indicators were computed (i.e., the length of the picking tours generated by each algorithm) have been omitted from the main body of the article. However, they are included in Appendix B.



For clarity, in Table 6 we highlighted in bold the best result for a given layout and picking list combination, that is, the best result of each row.



A complementary analysis is provided in Table 6 that shows the average computation times in seconds. Note that the nearest neighbour algorithm has not been included in the table, as its running time is negligible, given its simplicity and determinism.




7.4. Discussion


Results synthesized in Table 6 and Table 7 clearly show that Pkt_PSO is more accurate and precise than the benchmarks. Indeed, as Table 6 reveals, Pkt_PSO always converges to the pseudo-optimal at every run and so the average deviation (of the solution provided by Pkt_PSO with respect to the pseudo-optimal) is always null. This fact incontrovertibly proves that Pkt_PSO is more stable and consistent than the benchmarks and that the added procedures (i.e., aisle-based generation, 2-Opt, and deep search), tailored to the task at hand, tackle the problem structure effectively. Moreover, a consistent convergence to a superior solution and a null average deviation is observed for all the investigated combinations of layout and picking lists. This behaviour is extremely important, especially from an operational viewpoint, as interested practitioners should not bother to fine tune the hyperparameters of the algorithm for the specific layout at hand.



The only algorithm that shows similar results, although it does not match them, is the PSO_2. This PSO-based algorithm was able to consistently track the optimum in five out of nine configurations. In all the remaining configurations, the deviation from the best solution (found by Pkt_PSO) remained very contained, although not null. Besides being less precise, this algorithm is also less accurate, as it consistently converged to the same (supposedly best) solution at each attempt, only for the third investigated layout (L3). Instead, in all other cases, it found different solutions at every run, as certified by a non-null value of the average deviation. As for the remaining methods, none of them can track the optimum, and the average deviation is always very high.



Concerning the computational times shown in Table 7, we can say that the best operational trade-off is achieved by the PSO_2. This algorithm, in fact, has a low computational time comparable to that of the ACO, which is the fastest, but it provides much better results in terms of total travelled distance. Pkt_PSO, instead, while showing the best results, needs considerably longer computational times, probably due to the application of the 2-Opt procedure with deep search. These computational times are operationally acceptable and could be easily improved by optimizing the code and/or using a low-level programming language (such as C). Nonetheless, we checked the quality of the solution provided by our algorithm if it stopped after an amount of time equal to that required by the ACO to reach convergence. We performed this comparison for all scenarios described above, with five repetitions each. As shown in Figure 9, which displays the trend of the best solution found by the two algorithms (for problems of increasing complexity), the solutions are practically indistinguishable, with a maximum difference (or error) lower than 1%.



These results were also confirmed by the three-way ANOVA of Table 7, where “layout type” (LT), “picking list length” (PL), and “algorithm type” (ALG) are used as blocking factors. In the ANOVA, we also included the interaction between factor LT and PL; the other ones were excluded because they were non-significant in a preliminary analysis.



As the ANOVA shows, ALG is the only factor that is not significant (with a very high p-value), and so we can conclude that the performances of the two algorithms is indistinguishable. We also note that all the other factors are highly significant, and this is a further demonstration of the correctness of the choices we made to define the complexity of the problem.





8. Conclusions and Future Works


In this paper, we focused on the picking problem in manual warehouses, a very relevant problem with many managerial implications. Considering that a plethora of metaheuristics have been proposed to solve this problem, the paper aims to check if, and how much, the solution can be improved. Furthermore, since the problem is very constrained, it could be also characterized by many points of local minimum with a similar value. If so, at least operationally, a good local minimum could be enough, and it would be unnecessary to use a very sophisticated approach to find the absolute minimum.



To shed light on these research questions, we developed a novel metaheuristic (referred to as Pkt_PSO) and we compared it with a set of state-of-the-art benchmarks. Outcomes of the experimental campaign showed that Pkt_PSO provides the best results, in terms of both accuracy and precision. However, as we initially supposed, the obtained improvements are marginal, and to reach the optimum (or the pseudo-optimum), it is necessary to use an approach that favours exploration over convergence and that requires more computational time. If the execution of Pkt_PSO is interrupted as soon as the benchmarks reach convergence, the obtained results are almost indistinguishable. This finding shows that for this peculiar type of problem, research has practically come to an end, and the use of a general-purpose metaheuristic can be considered enough for many industrial applications. Nonetheless, the use of more accurate approaches could be useful when additional features and/or constraints are considered, such as dedicated storage, multilevel shelves, one-way aisles, and transport capacity of the picker. The application of Pkt_PSO to these alternative scenarios will be a topic of future works.



An interesting and promising field of application for future research could be the development of a methodology, based on the PSO, to solve the three-dimensional case picking problem (3D-CPP) in an order-picking strategy. 3D-CPP combines two important issues in logistics: the problem of pallet loading and the routing of pickers in manual warehouses. The proposed method could find an extension in the combined optimization of pickers and 3D bin-packing problem.
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Abbreviations


All the abbreviations used in the paper are listed below.



	ACO
	Ant Colony Optimization,



	AS/RS
	Automated Storage and Retrieval System,



	BSS
	Basic Swap Procedure,



	CPU
	Central Processing Unit,



	I/O
	Input Output Point,



	NaN
	Not a Number,



	NeNe
	Nearest Neighbour,



	NP
	Non-deterministic Polynomial-time hardness



	OF
	Objective Function



	Pkt_PSO
	The proposed metaheuristic, i.e., an evolutionary approach inspired by PSO and designed for picking time optimization.



	PSO
	Particle Swarm Optimization,



	PyTSP
	A Python library containing external solvers for the traveling salesman problem,



	SA
	Simulated Annealing,



	SKU
	Stock Keeping Unit,



	ST
	Subjected To (constraints),



	TSP
	Traveling Salesman Problem,



	3D-CPP
	Three-dimensional case picking problem.










Appendix A. Description of the Heuristics and Metaheuristics Used as Benchmarks


Appendix A.1. PSO_1 by Zhou et al. [22]


PSO_1 is a PSO specifically designed for the TSP. Its peculiarity lies in the way in which the difference or “distance” between two solutions (or tours) is calculated. Let   s w a p   x , y     be the operator that swaps the elements in positions  x  and  y  of an array; and let    p i   t    be an array containing the storage locations in their order of visitation. Accordingly, the distance between    p i   t    and a reference solution, say    p *   t   , is defined as the minimum number of swaps needed to turn    p i   t    into    p *   t   . In this sense, the velocity    v i   t    of particle  i  can be represented by the Basic Swap Sequence (BSS), that is the minimum sequence of   s w a p   i , j     needed to turn    p i   t    into    p *   t   . To clarify these concepts a simple example follows, where a zero-based indexing is assumed:




	-

	
Solutions:    p i   t    = (4, 5, 1, 3, 2, 6, 7, 8),    p *   t    = (1, 2, 3, 4, 5, 6, 7, 8).




	-

	
BSS((   p i   t    →    p *   t   ): [swap(0, 2), swap(1, 4), swap(2, 3)]




	-

	
The BSS produces: (1, 5, 4, 3, 2, 6, 7, 8) → (1, 2, 4, 3, 5, 6, 7, 8) → (1, 2, 3, 4, 5, 6, 7, 8).









Overall, the algorithm proceeds as a standard PSO. In fact, at each iteration   t ,   for each particle  i , a new position is obtained by applying the velocity vector    v i   t   , or BBS, to the current position    p i   t   . Next, the velocity is updated as follows:


   v i    t + 1   = ⎡ w ·  v i   t  ⎤ ⊙ ⎡ α · u ·    p i   t  − p b e s  t i   t    ⎤ ⊙ ⎡ β · u ·    p i   t  − g b e s t  t    ⎤  



(A1)




where  w ,  α  and  β  are coefficients,  u  is a uniformly distributed random number and  ⊙  is the similarity operator.



Relative to Equation (A1), it is important to note that:




	-

	
The differences between the current and the best solution (either personal, or global) must be interpreted as distances. Therefore, the result of the difference is a minimal swap sequence.




	-

	
The product of a scalar for a swap sequence is interpreted as the element-wise product of the scalar with each element of the sequence, e.g.,   2 ·     1 ,   2   ,   3 ,   4     =     2 ,   4   ,   6 ,   8     .  




	-

	
The similarity operator  ⊙  is the average of the elements of a two-swap sequence paired together, e.g.,       1 ,   2   ,   3 ,   4     ⊙     1 ,   5   ,   2 ,   4     =       1 + 1   / 2 ,   2 + 5   / 2   ,     3 + 2   / 2 ,   4 + 4   / 2     =     1 ,   3.5   ,   2.5 ,   4      .




	-

	
The ceil function is used to eliminate the floating-point values.










Appendix A.2. PSO_2 by Zhong et al. [23]


PSO_2 makes use of a novel notation, and the classic concept of velocity is deeply modified. Each solution    p i   t    is coded using an edge-based notation, that is a sequence of 2-tuples (A, B) where A and B are storage locations. Each 2-tuple represents an edge included in the solution, and so (A, B) means that storage location B is visited immediately after storage location A. For instance, the sequence     A , C , D , B , F , G , E , A     is coded as       A , C   ,   B , F   ,   C , D   ,   D , B   ,   E , A   ,   F , G   ,     G , E      , where the 2-tuples are sorted in lexicographical order of their first element. Velocity is coded using the same approach but, in this case, a weight  w  is associated to each edge, e.g.,         A ,   C   ,   0.5   ,       B ,   F   ,   1.0   ,   … ,       X ,   Y   ,   w      . Also, the edges included in the velocity vector do not necessarily form a tour; they are just candidate edges that could be inserted in a new solution.



Concerning distances, the distance between two solutions    p i   t  −  p j   t    is given by the sequence of edges of    p i   t    without the edges that are also in    p j   t   . This distance is transformed in a velocity by associating to each edge a weight of 1. In other words, the difference of two solutions is interpreted as a speed sequence with all weights equal to one. Similarly, to sum speeds, their edges are compared one by one: if the edges are equal, the respective weights are added together; otherwise, the edge with the highest weight is taken. For instance, taking    v i   t  =       A ,   C   ,   0.5   ,       B ,   F   ,   1   ,   …     and    v j   t  =       A ,   C   ,   0.8   ,       M ,   P   ,   1.2   ,   …    , their sum equals to    v i   t  +  v j   t  =       A ,   C   ,   1.3   ,       M ,   P   ,   1.2   ,   …    .



Lastly, at each iteration   t ,   the velocity of particle  i  is updated as in Equation (A2):


   v i    t + 1   = W ·  v  g r    t  + u ·    p i   t  − r n d _ p b e s t  t     



(A2)




where    v  g r    t    is a velocity generated using a greedy algorithm,   r n d _ p b e s t  t    is the personal best of a randomly selected particle of the swarm,  W  is a weight factor and  u  is a random number.



It is important to note that:




	-

	
When the velocity is multiplied by a scalar, say   x  , each edge-weight  w  is multiplied by  x .




	-

	
The difference      p i   t  − r n  d  p b e s t  t        generates a speed sequence that can be added to   W ·  v  g r    t  .  




	-

	
The velocity    v  g r    t    is iteratively constructed edge by edge. Specifically, for each storage location X, a location Y is randomly extracted (with probability proportional to the distance between X and Y) and a new edge (X, Y), with weight  w  = 1 is created.









Next, a new solution    p i    t + 1     is generated from    p i   t    using one of the edges included in    v i    t + 1    . Specifically, each edge of    v i    t + 1     is considered for possible insertion in    p i   t    and the insertion that generated the best tour is finally selected. Also, any time one of the edges of    v i    t + 1     is selected, three different inserting strategies (namely swap, insert and inverse) are tested, and the best one is retained. Lastly,    p i   t    is replaced by    p i    t + 1     using a Metropolis acceptance criterion akin to the one commonly implemented in Simulated Annealing. In this way, new solutions may be accepted even in the case of a small deterioration of the objective function.




Appendix A.3. ACO by De Santis et al. [9]


This metaheuristic is a classic Ant Colony Optimization, an algorithm that mimics the behaviour of ants looking for food. When an ant leaves the nest, it must decide which is the best way to find some food. To this aim, the ant looks at the quantity of pheromone left by other members of the colony who had previously walked a path. A higher level of pheromone means a better path and vice versa. In fact, a good path will be selected by many ants will receive much pheromone. In contrast, a poor one will be visited by few ants and the pheromone will tend to evaporate. Inspired by this behaviour, at each iteration of the ACO, a new path is built from scratch, adding one location at a time. Let    j 1    be the last location included in the new path; the next one, say    j 1   , is randomly selected with probability   π    j 1  →  j 2      that is proportional to the amount of pheromone laid on the edge connecting    j 1    to    j 2   , as shown by Equation (A3):


  π    j 1  →  j 2    =    τ   j 1  ,  j 2        ∑  k   τ   j 1  , k      



(A3)




where    τ   j 1  ,  j 2      is the pheromone on edge      j 1  ,  j 2     . Therefore, the probability to visit    j 2    after    j 1    equals the amount of pheromone on edge      j 1  ,  j 2      divided by the sum of the amount of pheromone on all the edges leaving from    j 1   .



Once the new path has been completed, it is compared to the best solution found so far. In case of improvement, the best solution is updated and the amount of pheromone on each edge of the network is modified as in Equation (A4).


    τ   j 1  ,  j 2    =      τ   j 1  ,  j 2       α  ·      1   d   j 1  ,  j 2         β        i f      j 1  ,  j 2    ∈ b e s t   p a t h     τ   j 1  ,  j 2    = ρ ·  τ   j 1  ,  j 2                  i f      j 1  ,  j 2    ∉ b e s t   p a t h   



(A4)




where  α ,  β  and  ρ  are parameters of the algorithm and    d   j 1  ,  j 2      is the distance between two locations.





Appendix B. Experimental Results


The following tables show the results obtained in each evaluated scenario. Specifically, for each combination of layout and picking list, the following data are reported: (i) mean and standard deviation of the total travelled distance, (ii) the number of solutions explored, and (iii) the computational time.
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Table A1. Layout L1 and picking lists with 20 locations.
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List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
644

	
604

	
0

	
1139

	
23

	
604

	
0

	
618

	
6

	
646

	
13




	
2

	
672

	
608

	
0

	
1087

	
55

	
608

	
0

	
630

	
4

	
650

	
7




	
3

	
624

	
572

	
0

	
1074

	
64

	
575

	
2

	
572

	
0

	
582

	
9




	
4

	
708

	
624

	
0

	
1197

	
50

	
624

	
0

	
643

	
7

	
690

	
6




	
5

	
780

	
600

	
0

	
1169

	
55

	
600

	
0

	
607

	
3

	
629

	
2




	
6

	
636

	
584

	
0

	
1143

	
60

	
584

	
0

	
589

	
4

	
634

	
19




	
7

	
732

	
656

	
0

	
1202

	
45

	
656

	
0

	
660

	
0

	
683

	
24




	
8

	
664

	
604

	
0

	
1143

	
68

	
604

	
0

	
604

	
0

	
631

	
10




	
9

	
760

	
656

	
0

	
1212

	
75

	
656

	
0

	
656

	
0

	
670

	
17




	
10

	
824

	
784

	
0

	
1297

	
47

	
784

	
0

	
793

	
4

	
628

	
2




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
23,945

	
11,523

	
7728

	
6712

	
16,538

	
2577

	
567

	
496

	
4617

	
320




	
2

	
1

	
201,331

	
88,161

	
4596

	
5191

	
22,321

	
2349

	
345

	
465

	
5198

	
587




	
3

	
1

	
59,533

	
33,890

	
5464

	
7367

	
12,281

	
1661

	
500

	
248

	
5643

	
242




	
4

	
1

	
17,008

	
7124

	
7296

	
7174

	
15,884

	
3659

	
722

	
302

	
5096

	
699




	
5

	
1

	
28,070

	
15,015

	
11,116

	
8195

	
14,009

	
2436

	
485

	
308

	
4549

	
624




	
6

	
1

	
102,395

	
139,718

	
11,224

	
8203

	
17,747

	
5141

	
645

	
546

	
4685

	
394




	
7

	
1

	
57,607

	
22,124

	
9104

	
4186

	
20,626

	
2326

	
286

	
352

	
4720

	
893




	
8

	
1

	
36,382

	
12,408

	
5896

	
6770

	
17,543

	
3864

	
113

	
46

	
4309

	
371




	
9

	
1

	
20,437

	
7274

	
10,156

	
6909

	
11,302

	
2630

	
362

	
405

	
4036

	
941




	
10

	
1

	
16,747

	
10,126

	
15,180

	
11,334

	
16,759

	
2855

	
446

	
277

	
4891

	
624




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
37

	
2

	
20

	
4

	
27

	
4

	
1

	
0

	
0

	
0




	
2

	
0

	
36

	
2

	
17

	
3

	
9

	
1

	
0

	
0

	
0

	
0




	
3

	
0

	
27

	
3

	
20

	
4

	
29

	
3

	
1

	
0

	
0

	
0




	
4

	
0

	
33

	
3

	
18

	
6

	
15

	
2

	
1

	
0

	
0

	
0




	
5

	
0

	
33

	
3

	
23

	
7

	
28

	
3

	
0

	
0

	
0

	
0




	
6

	
0

	
30

	
4

	
23

	
3

	
23

	
2

	
1

	
0

	
0

	
0




	
7

	
0

	
36

	
2

	
18

	
3

	
16

	
3

	
0

	
0

	
0

	
0




	
8

	
0

	
31

	
3

	
19

	
5

	
22

	
2

	
0

	
0

	
0

	
0




	
9

	
0

	
33

	
2

	
22

	
5

	
31

	
2

	
0

	
0

	
0

	
0




	
10

	
0

	
31

	
3

	
25

	
7

	
25

	
3

	
0

	
0

	
0

	
0
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Table A2. Layout L1 and picking lists with 30 locations.
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List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
776

	
716

	
0

	
1738

	
94

	
716

	
0

	
754

	
7

	
794

	
16




	
2

	
824

	
748

	
0

	
1766

	
63

	
748

	
0

	
761

	
2

	
762

	
5




	
3

	
848

	
764

	
0

	
1822

	
109

	
764

	
0

	
787

	
7

	
795

	
18




	
4

	
744

	
672

	
0

	
1824

	
100

	
672

	
0

	
690

	
5

	
744

	
13




	
5

	
828

	
696

	
0

	
1778

	
79

	
696

	
0

	
706

	
5

	
843

	
36




	
6

	
796

	
722

	
5

	
2011

	
35

	
720

	
0

	
743

	
7

	
818

	
14




	
7

	
792

	
708

	
0

	
1773

	
93

	
708

	
0

	
724

	
12

	
735

	
23




	
8

	
820

	
740

	
0

	
1928

	
118

	
740

	
0

	
759

	
2

	
772

	
17




	
9

	
680

	
644

	
0

	
1645

	
109

	
647

	
4

	
668

	
0

	
694

	
17




	
10

	
804

	
616

	
0

	
1691

	
30

	
616

	
0

	
623

	
8

	
664

	
0




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
679,224

	
563,344

	
14,556

	
8730

	
41,545

	
7362

	
459

	
433

	
20,219

	
880




	
2

	
1

	
325,733

	
273,041

	
15,388

	
12,760

	
40,482

	
2593

	
169

	
120

	
19,488

	
2798




	
3

	
1

	
494,748

	
323,066

	
6384

	
7468

	
38,944

	
8312

	
611

	
330

	
18,838

	
1303




	
4

	
1

	
436,762

	
331,037

	
11,792

	
13,176

	
38,669

	
3910

	
479

	
279

	
22,898

	
1059




	
5

	
1

	
544,264

	
357,273

	
16,060

	
14,527

	
36,769

	
5318

	
566

	
560

	
19,163

	
1475




	
6

	
1

	
800,584

	
647,063

	
11,368

	
9776

	
93,652

	
119,083

	
571

	
680

	
20,381

	
1328




	
7

	
1

	
537,062

	
377,383

	
24,052

	
13,396

	
36,747

	
6869

	
578

	
789

	
20,706

	
1572




	
8

	
1

	
1,489,469

	
1,943,847

	
9096

	
2781

	
46,986

	
13,081

	
416

	
320

	
23,467

	
2714




	
9

	
1

	
1,453,857

	
1,491,128

	
15,172

	
11,404

	
39,862

	
11,840

	
33

	
14

	
20,300

	
3360




	
10

	
1

	
60,388

	
25,161

	
5176

	
9852

	
30,578

	
1902

	
319

	
525

	
17,620

	
2412




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
145

	
12

	
43

	
13

	
44

	
8

	
1

	
0

	
0

	
0




	
2

	
0

	
152

	
9

	
41

	
12

	
56

	
5

	
1

	
0

	
0

	
0




	
3

	
0

	
129

	
8

	
33

	
10

	
35

	
3

	
1

	
0

	
0

	
0




	
4

	
0

	
141

	
15

	
37

	
14

	
41

	
5

	
1

	
0

	
0

	
0




	
5

	
0

	
134

	
9

	
44

	
20

	
38

	
6

	
1

	
0

	
0

	
0




	
6

	
0

	
148

	
17

	
36

	
10

	
54

	
11

	
1

	
1

	
0

	
0




	
7

	
0

	
145

	
17

	
53

	
19

	
37

	
9

	
1

	
1

	
0

	
0




	
8

	
0

	
144

	
26

	
35

	
6

	
47

	
6

	
1

	
0

	
0

	
0




	
9

	
0

	
143

	
22

	
42

	
14

	
42

	
8

	
1

	
0

	
0

	
0




	
10

	
0

	
113

	
9

	
26

	
8

	
52

	
5

	
1

	
0

	
0

	
0
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Table A3. Layout L1 and picking lists with 40 locations.
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List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
952

	
880

	
0

	
2700

	
90

	
881

	
2

	
888

	
3

	
923

	
8




	
2

	
864

	
824

	
0

	
2378

	
104

	
826

	
4

	
846

	
4

	
895

	
19




	
3

	
776

	
720

	
0

	
2439

	
74

	
720

	
0

	
720

	
0

	
758

	
20




	
4

	
888

	
796

	
0

	
2570

	
93

	
796

	
0

	
838

	
9

	
823

	
16




	
5

	
864

	
804

	
0

	
2659

	
139

	
804

	
0

	
838

	
5

	
922

	
36




	
6

	
896

	
832

	
0

	
2468

	
70

	
834

	
2

	
864

	
4

	
871

	
11




	
7

	
836

	
736

	
0

	
2331

	
71

	
736

	
0

	
756

	
8

	
810

	
24




	
8

	
924

	
784

	
0

	
2490

	
121

	
785

	
2

	
830

	
5

	
844

	
39




	
9

	
912

	
780

	
0

	
2410

	
89

	
780

	
0

	
817

	
7

	
884

	
24




	
10

	
916

	
764

	
0

	
2588

	
35

	
764

	
0

	
795

	
14

	
868

	
7




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
5,983,813

	
7,970,098

	
6932

	
5004

	
72,769

	
18,190

	
675

	
526

	
59,280

	
2160




	
2

	
1

	
5,497,910

	
4,844,449

	
9576

	
9256

	
77,403

	
7769

	
1057

	
491

	
55,427

	
1606




	
3

	
1

	
328,813

	
189,128

	
9432

	
10,166

	
61,593

	
10,545

	
869

	
758

	
59,132

	
4550




	
4

	
1

	
2,177,531

	
2,156,725

	
3688

	
3195

	
74,534

	
10,015

	
870

	
633

	
58,094

	
3690




	
5

	
1

	
1,867,387

	
726,807

	
4136

	
3763

	
90,334

	
8611

	
732

	
458

	
58,687

	
5677




	
6

	
1

	
5,059,675

	
3,423,042

	
16,528

	
9372

	
127,268

	
102,554

	
151

	
92

	
53,945

	
3289




	
7

	
1

	
2,023,022

	
2,128,967

	
16,172

	
8641

	
78,578

	
10,722

	
597

	
768

	
52,611

	
6177




	
8

	
1

	
2,164,523

	
1,124,101

	
24,212

	
20,450

	
113,708

	
23,875

	
528

	
365

	
57,205

	
5379




	
9

	
1

	
1,671,421

	
1,476,398

	
16,172

	
13,441

	
70,229

	
10,748

	
511

	
501

	
59,576

	
5435




	
10

	
1

	
1,595,432

	
939,008

	
5480

	
4879

	
73,193

	
18,738

	
898

	
775

	
49,202

	
3420




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
510

	
109

	
46

	
9

	
88

	
2

	
2

	
1

	
0

	
0




	
2

	
0

	
441

	
77

	
52

	
17

	
78

	
14

	
3

	
1

	
0

	
0




	
3

	
0

	
299

	
31

	
51

	
19

	
75

	
8

	
2

	
1

	
0

	
0




	
4

	
0

	
375

	
55

	
38

	
5

	
66

	
10

	
2

	
1

	
0

	
0




	
5

	
0

	
397

	
22

	
41

	
8

	
85

	
10

	
2

	
1

	
0

	
0




	
6

	
0

	
487

	
35

	
63

	
17

	
91

	
8

	
1

	
0

	
0

	
0




	
7

	
0

	
341

	
35

	
61

	
13

	
66

	
10

	
2

	
1

	
0

	
0




	
8

	
0

	
415

	
24

	
78

	
36

	
84

	
4

	
2

	
0

	
0

	
0




	
9

	
0

	
381

	
34

	
64

	
24

	
90

	
7

	
2

	
1

	
0

	
0




	
10

	
0

	
460

	
46

	
44

	
8

	
81

	
6

	
2

	
1

	
0

	
0
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Table A4. Layout L2 and picking lists with 20 locations.






Table A4. Layout L2 and picking lists with 20 locations.





	
List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
498

	
432

	
0

	
820

	
46

	
432

	
0

	
433

	
3

	
474

	
31




	
2

	
558

	
466

	
0

	
838

	
31

	
466

	
0

	
466

	
0

	
526

	
8




	
3

	
520

	
456

	
0

	
868

	
47

	
456

	
0

	
469

	
7

	
564

	
29




	
4

	
558

	
486

	
0

	
930

	
30

	
486

	
0

	
489

	
4

	
562

	
35




	
5

	
548

	
472

	
0

	
799

	
34

	
472

	
0

	
475

	
4

	
503

	
21




	
6

	
506

	
444

	
0

	
820

	
28

	
444

	
0

	
451

	
6

	
469

	
22




	
7

	
626

	
522

	
0

	
938

	
40

	
522

	
0

	
529

	
7

	
590

	
24




	
8

	
582

	
434

	
0

	
819

	
25

	
434

	
0

	
448

	
5

	
546

	
12




	
9

	
510

	
498

	
0

	
950

	
21

	
498

	
0

	
505

	
5

	
532

	
12




	
10

	
452

	
408

	
0

	
741

	
38

	
408

	
0

	
408

	
0

	
520

	
17




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
52,310

	
58,687

	
9704

	
6905

	
14,610

	
1785

	
143

	
142

	
4617

	
419




	
2

	
1

	
24,113

	
18,633

	
6796

	
7234

	
15,383

	
1655

	
190

	
135

	
3796

	
867




	
3

	
1

	
96,898

	
77,515

	
19,256

	
13,976

	
17,408

	
2198

	
753

	
116

	
4309

	
797




	
4

	
1

	
114,025

	
87,207

	
9528

	
7511

	
17,738

	
2912

	
470

	
734

	
4480

	
475




	
5

	
1

	
13,144

	
6089

	
14,212

	
15,269

	
16,886

	
3073

	
435

	
453

	
4754

	
475




	
6

	
1

	
38,375

	
43,511

	
4876

	
4912

	
19,273

	
5007

	
687

	
299

	
3762

	
342




	
7

	
1

	
23,206

	
11,193

	
9976

	
5606

	
16,968

	
3398

	
433

	
441

	
4754

	
585




	
8

	
1

	
26,716

	
18,291

	
10,628

	
8439

	
19,822

	
2067

	
516

	
244

	
4822

	
709




	
9

	
1

	
775,262

	
268,161

	
4688

	
6543

	
55,382

	
79,078

	
651

	
544

	
4549

	
647




	
10

	
1

	
17,163

	
20,641

	
5752

	
4997

	
13,858

	
1652

	
411

	
291

	
4891

	
732




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
26

	
3

	
20

	
3

	
19

	
3

	
0

	
0

	
0

	
0




	
2

	
0

	
25

	
2

	
21

	
4

	
26

	
4

	
0

	
0

	
0

	
0




	
3

	
0

	
32

	
4

	
28

	
8

	
26

	
3

	
1

	
0

	
0

	
0




	
4

	
0

	
30

	
3

	
21

	
4

	
23

	
5

	
1

	
0

	
0

	
0




	
5

	
0

	
26

	
2

	
25

	
9

	
29

	
4

	
0

	
0

	
0

	
0




	
6

	
0

	
28

	
0

	
18

	
4

	
19

	
7

	
1

	
0

	
0

	
0




	
7

	
0

	
26

	
1

	
22

	
4

	
25

	
2

	
0

	
0

	
0

	
0




	
8

	
0

	
27

	
1

	
22

	
7

	
28

	
3

	
1

	
0

	
0

	
0




	
9

	
0

	
40

	
5

	
16

	
2

	
25

	
3

	
1

	
0

	
0

	
0




	
10

	
0

	
24

	
2

	
19

	
4

	
27

	
2

	
0

	
0

	
0

	
0
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Table A5. Layout L2 and picking lists with 30 locations.






Table A5. Layout L2 and picking lists with 30 locations.





	
List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
650

	
590

	
3

	
1319

	
34

	
590

	
0

	
606

	
9

	
694

	
34




	
2

	
706

	
552

	
0

	
1267

	
31

	
552

	
0

	
555

	
6

	
630

	
22




	
3

	
746

	
594

	
0

	
1474

	
46

	
594

	
0

	
640

	
9

	
699

	
47




	
4

	
654

	
530

	
0

	
1400

	
35

	
530

	
0

	
531

	
1

	
624

	
31




	
5

	
608

	
558

	
0

	
1458

	
46

	
558

	
0

	
569

	
8

	
638

	
23




	
6

	
670

	
548

	
0

	
1270

	
29

	
548

	
0

	
582

	
12

	
594

	
53




	
7

	
788

	
576

	
0

	
1438

	
56

	
576

	
0

	
603

	
5

	
628

	
25




	
8

	
732

	
622

	
1

	
1357

	
38

	
622

	
0

	
652

	
5

	
676

	
31




	
9

	
642

	
568

	
0

	
1284

	
31

	
568

	
0

	
593

	
16

	
672

	
14




	
10

	
590

	
568

	
0

	
1411

	
73

	
568

	
0

	
574

	
2

	
617

	
37




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
626,456

	
292,699

	
13,220

	
15,661

	
57,943

	
17,432

	
362

	
263

	
19,488

	
3105




	
2

	
1

	
170,798

	
135,804

	
8072

	
8371

	
43,995

	
4995

	
737

	
603

	
20,544

	
2702




	
3

	
1

	
130,234

	
44,252

	
9020

	
5166

	
39,359

	
5478

	
919

	
626

	
19,894

	
1770




	
4

	
1

	
557,410

	
584,354

	
10,640

	
5704

	
41,506

	
9254

	
288

	
302

	
21,843

	
1583




	
5

	
1

	
294,690

	
163,301

	
18,532

	
18,042

	
44,706

	
9389

	
967

	
481

	
21,843

	
2231




	
6

	
1

	
405,151

	
249,705

	
10,388

	
12,004

	
39,117

	
5640

	
629

	
364

	
21,031

	
2590




	
7

	
1

	
2,174,014

	
2,251,594

	
7964

	
10,483

	
59,537

	
21,114

	
417

	
230

	
19,001

	
1051




	
8

	
1

	
1,694,219

	
1,688,462

	
14,104

	
9348

	
40,043

	
8557

	
1000

	
898

	
19,326

	
2198




	
9

	
1

	
862,602

	
633,729

	
9992

	
4774

	
41,338

	
7219

	
551

	
260

	
20,625

	
1891




	
10

	
1

	
984,257

	
843,098

	
6576

	
6327

	
83,557

	
48,769

	
612

	
889

	
19,732

	
2894




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
115

	
12

	
37

	
19

	
51

	
8

	
1

	
0

	
0

	
0




	
2

	
0

	
98

	
5

	
28

	
14

	
43

	
5

	
1

	
0

	
0

	
0




	
3

	
0

	
86

	
6

	
32

	
7

	
29

	
2

	
1

	
0

	
0

	
0




	
4

	
0

	
103

	
10

	
33

	
7

	
43

	
10

	
1

	
0

	
0

	
0




	
5

	
0

	
98

	
10

	
40

	
13

	
39

	
9

	
1

	
0

	
0

	
0




	
6

	
0

	
112

	
8

	
36

	
14

	
38

	
3

	
1

	
0

	
0

	
0




	
7

	
0

	
139

	
35

	
34

	
13

	
35

	
10

	
1

	
0

	
0

	
0




	
8

	
0

	
139

	
35

	
39

	
13

	
58

	
1

	
1

	
1

	
0

	
0




	
9

	
0

	
120

	
20

	
37

	
7

	
43

	
6

	
1

	
0

	
0

	
0




	
10

	
0

	
123

	
11

	
29

	
11

	
48

	
10

	
1

	
1

	
0

	
0
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Table A6. Layout L2 and picking lists with 40 locations.






Table A6. Layout L2 and picking lists with 40 locations.





	
List

	
Distance Covered by the Picker [m]




	
Greedy

	
Proposed

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Avg.

	
St. Dev.

	
Avg.

	
St. Dev.

	
Avg.

	
St. Dev.

	
Avg.

	
St. Dev.

	
Avg.

	
St. Dev.




	
1

	
848

	
640

	
0

	
1853

	
16

	
640

	
0

	
672

	
26

	
725

	
23




	
2

	
738

	
614

	
0

	
1833

	
78

	
614

	
0

	
637

	
3

	
741

	
26




	
3

	
802

	
646

	
4

	
1850

	
35

	
646

	
0

	
670

	
7

	
722

	
44




	
4

	
670

	
626

	
3

	
1750

	
34

	
626

	
0

	
650

	
4

	
738

	
35




	
5

	
784

	
645

	
3

	
1849

	
42

	
645

	
3

	
673

	
21

	
768

	
35




	
6

	
660

	
608

	
0

	
1886

	
18

	
608

	
0

	
635

	
1

	
690

	
18




	
7

	
782

	
650

	
0

	
1698

	
65

	
650

	
0

	
672

	
15

	
762

	
29




	
8

	
810

	
682

	
4

	
1781

	
60

	
682

	
0

	
720

	
12

	
814

	
29




	
9

	
680

	
592

	
0

	
1686

	
19

	
592

	
0

	
602

	
0

	
767

	
17




	
10

	
846

	
730

	
0

	
1856

	
43

	
732

	
3

	
791

	
29

	
845

	
20




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
2,633,156

	
1,939,483

	
13,108

	
14,624

	
82,471

	
14,208

	
722

	
820

	
51,722

	
6340




	
2

	
1

	
920,262

	
708,087

	
9032

	
8670

	
93,486

	
20,323

	
566

	
452

	
48,313

	
3569




	
3

	
1

	
4,597,871

	
4,668,581

	
5632

	
4868

	
110,048

	
29,942

	
556

	
403

	
47,869

	
6279




	
4

	
1

	
7,165,294

	
4,851,889

	
13,868

	
17,083

	
121,714

	
30,371

	
416

	
226

	
56,168

	
2641




	
5

	
1

	
7,555,943

	
5,344,932

	
17,652

	
11,119

	
122,606

	
32,045

	
1466

	
1017

	
49,202

	
3420




	
6

	
1

	
3,257,009

	
2,299,982

	
8496

	
8448

	
83,373

	
22,915

	
368

	
188

	
51,129

	
2723




	
7

	
1

	
3,231,814

	
3,723,196

	
12,796

	
8351

	
119,858

	
38,861

	
680

	
566

	
50,092

	
2320




	
8

	
1

	
6,252,100

	
4,754,099

	
7044

	
14,420

	
148,304

	
82,385

	
1528

	
868

	
54,389

	
4340




	
9

	
1

	
2,123,368

	
1,589,036

	
11,508

	
8632

	
85,400

	
23,327

	
473

	
458

	
50,240

	
5797




	
10

	
1

	
5,311,844

	
37,19,317

	
7476

	
11,650

	
174,341

	
160,655

	
613

	
598

	
49,202

	
1444




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
342

	
48

	
54

	
22

	
70

	
13

	
2

	
1

	
0

	
0




	
2

	
0

	
284

	
33

	
50

	
15

	
73

	
11

	
2

	
1

	
0

	
0




	
3

	
0

	
367

	
59

	
43

	
9

	
77

	
8

	
2

	
1

	
0

	
0




	
4

	
0

	
407

	
87

	
58

	
30

	
76

	
6

	
2

	
0

	
0

	
0




	
5

	
0

	
458

	
89

	
64

	
19

	
70

	
5

	
3

	
1

	
0

	
0




	
6

	
0

	
357

	
51

	
48

	
15

	
77

	
2

	
2

	
0

	
0

	
0




	
7

	
0

	
339

	
73

	
52

	
7

	
74

	
12

	
2

	
1

	
0

	
0




	
8

	
0

	
423

	
60

	
46

	
26

	
92

	
8

	
3

	
1

	
0

	
0




	
9

	
0

	
331

	
56

	
56

	
17

	
75

	
10

	
2

	
1

	
0

	
0




	
10

	
0

	
411

	
58

	
46

	
21

	
86

	
12

	
2

	
1

	
0

	
0
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Table A7. Layout L3 and picking lists with 20 locations.






Table A7. Layout L3 and picking lists with 20 locations.





	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
890

	
780

	
0

	
1512

	
21

	
780

	
0

	
794

	
8

	
831

	
2




	
2

	
974

	
862

	
0

	
1628

	
74

	
862

	
0

	
902

	
17

	
1024

	
53




	
3

	
904

	
798

	
0

	
1620

	
95

	
798

	
0

	
798

	
0

	
920

	
29




	
4

	
1048

	
866

	
0

	
1596

	
81

	
866

	
0

	
879

	
8

	
1055

	
27




	
5

	
880

	
726

	
0

	
1485

	
67

	
726

	
0

	
737

	
12

	
780

	
8




	
6

	
1012

	
766

	
0

	
1482

	
88

	
766

	
0

	
766

	
0

	
878

	
25




	
7

	
846

	
672

	
0

	
1292

	
21

	
672

	
0

	
688

	
6

	
716

	
49




	
8

	
1138

	
859

	
3

	
1569

	
70

	
859

	
3

	
892

	
9

	
938

	
21




	
9

	
992

	
846

	
0

	
1475

	
71

	
846

	
0

	
880

	
12

	
1050

	
41




	
10

	
858

	
744

	
0

	
1467

	
47

	
744

	
0

	
744

	
0

	
855

	
31




	
List

	
Solutions Explored before Finding the Best




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
85,647

	
71,148

	
12,416

	
11,738

	
17,900

	
1528

	
256

	
160

	
5233

	
902




	
2

	
1

	
306,429

	
340,821

	
7736

	
9082

	
62,058

	
85,374

	
841

	
1044

	
4856

	
1051




	
3

	
1

	
21,422

	
12,062

	
10,928

	
13,780

	
15,710

	
1979

	
332

	
199

	
5233

	
798




	
4

	
1

	
166,403

	
214,506

	
11,132

	
12,206

	
16,853

	
6761

	
853

	
485

	
5848

	
371




	
5

	
1

	
26,491

	
12,982

	
17,616

	
14,150

	
13,363

	
2209

	
266

	
125

	
4993

	
585




	
6

	
1

	
31,337

	
16,873

	
8308

	
7344

	
15,263

	
2626

	
828

	
441

	
5096

	
281




	
7

	
1

	
35,501

	
16,457

	
8028

	
6227

	
14,380

	
639

	
386

	
258

	
5301

	
897




	
8

	
1

	
180,454

	
219,406

	
8840

	
4422

	
19,466

	
3930

	
524

	
372

	
4891

	
877




	
9

	
1

	
150,524

	
82,364

	
19,260

	
9805

	
17,810

	
4694

	
592

	
394

	
5198

	
843




	
10

	
1

	
38,961

	
40,340

	
15,196

	
19,087

	
16,123

	
2224

	
360

	
49

	
5027

	
732




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
38

	
1

	
21

	
8

	
19

	
6

	
0

	
0

	
0

	
0




	
2

	
0

	
35

	
7

	
21

	
5

	
27

	
4

	
1

	
0

	
0

	
0




	
3

	
0

	
28

	
2

	
21

	
6

	
19

	
5

	
0

	
0

	
0

	
0




	
4

	
0

	
35

	
6

	
22

	
6

	
26

	
6

	
1

	
0

	
0

	
0




	
5

	
0

	
29

	
1

	
27

	
6

	
26

	
1

	
0

	
0

	
0

	
0




	
6

	
0

	
31

	
1

	
19

	
6

	
22

	
3

	
1

	
0

	
0

	
0




	
7

	
0

	
30

	
1

	
18

	
2

	
17

	
7

	
0

	
0

	
0

	
0




	
8

	
0

	
29

	
4

	
21

	
2

	
22

	
5

	
1

	
0

	
0

	
0




	
9

	
0

	
34

	
1

	
26

	
4

	
22

	
4

	
1

	
0

	
0

	
0




	
10

	
0

	
34

	
5

	
24

	
9

	
24

	
3

	
0

	
0

	
0

	
0
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Table A8. Layout L3 and picking lists with 30 locations.






Table A8. Layout L3 and picking lists with 30 locations.





	
List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1120

	
974

	
0

	
2280

	
73

	
974

	
0

	
1008

	
14

	
1090

	
22




	
2

	
1024

	
894

	
0

	
2273

	
122

	
894

	
0

	
919

	
2

	
976

	
15




	
3

	
1040

	
988

	
0

	
2245

	
91

	
988

	
0

	
996

	
16

	
1182

	
14




	
4

	
1224

	
1046

	
0

	
2320

	
74

	
1046

	
0

	
1064

	
5

	
1133

	
32




	
5

	
1012

	
896

	
0

	
2084

	
55

	
896

	
0

	
942

	
11

	
998

	
43




	
6

	
1162

	
1020

	
0

	
2400

	
114

	
1020

	
0

	
1034

	
11

	
1204

	
38




	
7

	
918

	
860

	
0

	
2034

	
136

	
860

	
0

	
862

	
3

	
1018

	
72




	
8

	
1194

	
1046

	
0

	
2262

	
58

	
1046

	
0

	
1073

	
13

	
1176

	
48




	
9

	
992

	
866

	
0

	
2097

	
64

	
866

	
0

	
871

	
11

	
944

	
45




	
10

	
1114

	
916

	
0

	
2139

	
54

	
916

	
0

	
931

	
17

	
1026

	
19




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
590,671

	
481,109

	
11,928

	
10,894

	
38,020

	
4271

	
652

	
491

	
22,898

	
2395




	
2

	
1

	
435,755

	
519,099

	
12,400

	
15,467

	
36,674

	
2339

	
867

	
423

	
21,031

	
1503




	
3

	
1

	
657,692

	
524,307

	
9796

	
12,464

	
42,730

	
14,515

	
1204

	
545

	
19,813

	
4624




	
4

	
1

	
2,289,460

	
2,121,883

	
22,968

	
13,973

	
45,619

	
18,402

	
462

	
521

	
20,219

	
2933




	
5

	
1

	
655,740

	
450,274

	
15,368

	
9165

	
33,497

	
6594

	
398

	
584

	
22,330

	
1968




	
6

	
1

	
446,289

	
312,469

	
4376

	
4060

	
34,590

	
6511

	
695

	
480

	
20,056

	
3179




	
7

	
1

	
339,281

	
313,093

	
4520

	
4391

	
39,590

	
5455

	
881

	
481

	
17,133

	
2684




	
8

	
1

	
847,059

	
835,719

	
8068

	
7488

	
60,481

	
32,652

	
500

	
361

	
22,980

	
2777




	
9

	
1

	
1,458,344

	
659,167

	
7252

	
3667

	
40,673

	
7071

	
1064

	
940

	
20,138

	
3256




	
10

	
1

	
206,184

	
120,885

	
6472

	
7413

	
31,816

	
5125

	
489

	
345

	
19,732

	
2748




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
140

	
10

	
38

	
16

	
49

	
5

	
1

	
0

	
0

	
0




	
2

	
0

	
124

	
18

	
34

	
17

	
46

	
8

	
1

	
0

	
0

	
0




	
3

	
0

	
119

	
5

	
32

	
8

	
48

	
7

	
2

	
0

	
0

	
0




	
4

	
0

	
183

	
28

	
51

	
17

	
42

	
9

	
1

	
0

	
0

	
0




	
5

	
0

	
129

	
18

	
42

	
9

	
39

	
3

	
1

	
0

	
0

	
0




	
6

	
0

	
116

	
9

	
28

	
4

	
43

	
3

	
1

	
0

	
0

	
0




	
7

	
0

	
125

	
9

	
26

	
6

	
55

	
4

	
1

	
0

	
0

	
0




	
8

	
0

	
155

	
16

	
35

	
10

	
47

	
3

	
1

	
0

	
0

	
0




	
9

	
0

	
141

	
4

	
34

	
5

	
39

	
9

	
2

	
1

	
0

	
0




	
10

	
0

	
130

	
4

	
33

	
10

	
39

	
9

	
1

	
0

	
0

	
0
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Table A9. Layout L3 and picking lists with 40 locations.






Table A9. Layout L3 and picking lists with 40 locations.





	
List

	
Distance Covered by the Picker [m]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1334

	
990

	
0

	
2971

	
97

	
990

	
0

	
1026

	
18

	
1091

	
63




	
2

	
1140

	
1030

	
0

	
3267

	
120

	
1030

	
0

	
1053

	
8

	
1298

	
62




	
3

	
1398

	
1093

	
1

	
3369

	
108

	
1092

	
0

	
1124

	
13

	
1299

	
32




	
4

	
1154

	
1112

	
0

	
3256

	
57

	
1112

	
0

	
1128

	
0

	
1240

	
13




	
5

	
1288

	
1098

	
0

	
3221

	
111

	
1098

	
0

	
1133

	
22

	
1340

	
34




	
6

	
1416

	
1212

	
0

	
3362

	
93

	
1212

	
0

	
1273

	
19

	
1396

	
34




	
7

	
1222

	
1008

	
0

	
2835

	
99

	
1008

	
0

	
1068

	
32

	
1177

	
21




	
8

	
1378

	
1090

	
0

	
3239

	
90

	
1090

	
0

	
1110

	
11

	
1224

	
18




	
9

	
1238

	
1122

	
0

	
3127

	
58

	
1122

	
0

	
1153

	
22

	
1308

	
39




	
10

	
1310

	
1122

	
0

	
3120

	
132

	
1122

	
0

	
1226

	
25

	
1371

	
24




	
List

	
Number of Generated Solutions before the Pseudo-Optimum Was Found




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
1

	
6,344,181

	
4,493,413

	
7204

	
9484

	
67,223

	
10,117

	
1097

	
695

	
59,132

	
7672




	
2

	
1

	
3,575,121

	
2,002,846

	
6732

	
5041

	
85,580

	
25,045

	
525

	
446

	
61,207

	
4244




	
3

	
1

	
4,764,772

	
3,897,361

	
5984

	
5582

	
93,930

	
21,680

	
338

	
244

	
57,650

	
5629




	
4

	
1

	
3,160,268

	
1,488,146

	
20,792

	
9577

	
91,401

	
12,016

	
608

	
192

	
59,132

	
5430




	
5

	
1

	
968,025

	
396,864

	
9884

	
15,886

	
68,002

	
9561

	
971

	
616

	
59,576

	
3460




	
6

	
1

	
7,802,870

	
4,103,116

	
12,012

	
14,495

	
125,633

	
23,729

	
2337

	
1369

	
50,240

	
3757




	
7

	
1

	
7,585,250

	
4,333,599

	
11,004

	
5338

	
82,655

	
17,005

	
755

	
691

	
53,945

	
2792




	
8

	
1

	
3,608,348

	
3,960,953

	
12,396

	
8536

	
69,860

	
11,998

	
1150

	
282

	
57,502

	
3690




	
9

	
1

	
1,085,203

	
541,226

	
2624

	
1791

	
62,120

	
15,526

	
983

	
947

	
54,834

	
3778




	
10

	
1

	
6,460,064

	
3,381,169

	
2972

	
2258

	
104,167

	
21,514

	
709

	
386

	
59,576

	
3942




	
List

	
Computational Time [s]




	
Greedy

	
Pkt_PSO

	
PSO_1

	
PSO_2

	
ACO

	
2-Opt




	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.

	
Mean

	
St. Dev.




	
1

	
0

	
475

	
92

	
47

	
17

	
84

	
9

	
3

	
1

	
0

	
0




	
2

	
0

	
411

	
56

	
47

	
10

	
78

	
11

	
2

	
1

	
0

	
0




	
3

	
0

	
405

	
60

	
44

	
11

	
68

	
11

	
2

	
0

	
0

	
0




	
4

	
0

	
399

	
40

	
71

	
17

	
72

	
11

	
2

	
0

	
0

	
0




	
5

	
0

	
350

	
57

	
52

	
30

	
65

	
4

	
2

	
1

	
0

	
0




	
6

	
0

	
527

	
81

	
55

	
27

	
69

	
14

	
4

	
2

	
0

	
0




	
7

	
0

	
431

	
73

	
55

	
10

	
70

	
3

	
2

	
1

	
0

	
0




	
8

	
0

	
420

	
49

	
53

	
14

	
71

	
10

	
3

	
0

	
0

	
0




	
9

	
0

	
364

	
37

	
38

	
4

	
77

	
11

	
2

	
1

	
0

	
0




	
10

	
0

	
470

	
61

	
38

	
5

	
92

	
2

	
2

	
1

	
0

	
0
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Figure 1. PSO pseudocode. 






Figure 1. PSO pseudocode.



[image: Mathematics 11 03077 g001]







[image: Mathematics 11 03077 g002 550] 





Figure 2. An example of graph representation. 
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Figure 3. The subgraph generated by a picking list. 
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Figure 4. Creation of the set  H  of the candidate locations. 
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Figure 5. Pseudocode concerning the generation of a new solution. 
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Figure 6. Pseudocode of the 2-Opt local search. 
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Figure 7. The flowchart of the proposed metaheuristic. 
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Figure 8. Template of the layouts adopted. 
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Figure 9. Comparison between the ACO and the proposed PSO, with the same number of generated routes. 
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Table 1. PSO Parameters.






Table 1. PSO Parameters.





	Symbol
	Definition





	  i  
	A generic particle of the swarm.



	  C  
	A positive constant.



	   g b e s t   (t)
	The overall best solution found until iteration  t .



	  n  
	The dimension of the solution space.



	  N  
	The number of particles of the swarm.



	    p i   t    
	A n-dimensional vector that codifies the position of particle i at iteration t, i.e., a feasible solution of the problem.



	   p b e s  t i   t    
	The best solution found by particle  i  until iteration  t .



	  t  
	The current iteration or epoch of the algorithm.



	  u  
	A generic random number uniformly distributed in the range [0, 1].



	    v i   t    
	A n-dimensional vector that codifies the velocity of particle i at iteration t.



	  ω  
	The inertia factor, a random number uniformly distributed in the range [0, 1].



	  χ  
	The constraining factor, a constant with a value between     0 ,   1    .



	   f  p    
	The objective function of the problem.
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Table 2. Variables related to the picking problem and to the layout of the warehouse.
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	Symbol
	Definition





	  P  
	The picking list   P =   A , B , C , …     containing all the storage locations that must be visited by the picker to complete an order. Locations in  P  are indicated with an uppercase letter and they are not sorted; they may be sorted in lexicographical order just for convenience.



	  p  
	The picking tour   p =    h 1  ,  h 2  , … ,  h M      containing all the locations of  P  sorted in the order that the picker must follow during the tour. Please note that locations in  p  are denoted with the letter  h .



	  j  
	The positional index   j = 1 , … , M   that specifies at which point of the tour a location is visited.



	    h j    
	The j-th location to be visited, i.e.,   p  j    =    h j   .



	    d  x , y     
	The minimum distance between location 𝑥 and location  y , with   x , y ∈ P  . The minimum distance is always obtained using the Floyd–Warshall algorithm.



	    S  x , y     
	The set of all the storage locations  l  located within the shortest path linking  x  and  y . That is, to move from  x  to  y , the picker also passes in front of all locations contained in    S  x , y    .



	  s  
	The cardinality of the set    S  x , y    , i.e., the number of locations  l  in    S  x , y    
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Table 3. Variables related to the parameters of the algorithm.
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	Symbol
	Definition





	    p i   t    
	A completed picking tour (solution) generated for particle  i  at iteration  t . With “complete” we mean that    p i   t    is made of  M  locations.



	    p i m   t    
	A partial picking tour generated for particle  i  at iteration   t .   The tour is partial because it is made of  m  locations with   m < M  .



	  T  
	The maximum number of iterations before the algorithm stops.



	   g r e e d y   
	A greedy solution shared by all the  N  particles of the swarm.



	   r n d _ i n t e n t i o  n i   t    
	A random solution generated for particle  i  at iteration  t .



	   H ⊆ P   
	A subset of  P  containing four candidate locations that can be selected to generate a new tour.



	    h k    
	One of the four candidate locations contained in   H .  



	    d  (  h j  ,  h k  )     
	The distance between the  j -th and last location of    p i j   t    and the candidate location    h k   .



	    w i   t    
	A four-elements vector    w i   t  =    w 1  ,  w 2  ,  w 3  ,  w 4      that determines the tendency of particle  i  at iteration  t  to change its position, moving toward one of reference positions.



	   D  t    
	A rescaled distance vector generated at each iteration  t , which is used to create the new solutions    p i   t    ∀   i  .



	   H →   
	The array of the candidate solution sorted in ascending order of their rescaled distance.



	  g  
	The greediness factor used to quantify the propensity of a particle to exploit the greedy solution.



	  α  
	The shape factor of the quasi-geometric distribution used to select a candidate location    h k    among the four included in   H →  .



	  γ  
	The local search probability, i.e., the probability of performing a 2-Opt-based neighbour search on a starting solution.



	  β  
	The probability of exploiting the aisle-based generation mechanism; in a certain way, this probability codifies the propensity of a particle to follow a predetermined path inside an aisle of the warehouse.
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Table 4. Parameters’ tuning obtained results (in red the experiments where Pkt_PSO did not find the global optimum, in green the best parameters combination).
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Parameters

	
Picking List 1

	
Picking List 2

	
Picking List 3

	
Picking List 4

	
Picking List 5




	
Mean

	
Std. Dev.

	
Mean

	
Std. Dev.

	
Mean

	
Std. Dev.

	
Mean

	
Std. Dev.

	
Mean

	
Std. Dev.






	
   g = 0.8 ,   α = 0.70 ,   

   β = 0.8 ,   γ = 0.20   

	
533

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.70 ,   

   β = 0.8 ,   γ = 0.05   

	
533

	
0

	
619

	
0

	
502

	
0

	
433

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.70 ,   

   β = 0.2 ,   γ = 0.20   

	
512

	
0

	
619

	
0

	
508

	
3

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.70 ,   

   β = 0.2 ,   γ = 0.05   

	
512

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.20 ,   

   β = 0.8 ,   γ = 0.20   

	
534

	
0

	
619

	
0

	
508

	
2

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.20 ,   

   β = 0.8 ,   γ = 0.05   

	
534

	
0

	
619

	
0

	
508

	
3

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.20 ,   

   β = 0.2 ,   γ = 0.20   

	
513

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.8 ,   α = 0.20 ,   

   β = 0.2 ,   γ = 0.05   

	
513

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.70 ,   

   β = 0.8 ,   γ = 0.20   

	
512

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.70 ,   

   β = 0.8 ,   γ = 0.05   

	
512

	
0

	
619

	
0

	
503

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.70 ,   

   β = 0.2 ,   γ = 0.20   

	
512

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.70 ,   

   β = 0.2 ,   γ = 0.05   

	
512

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.20 ,   

   β = 0.8 ,   γ = 0.20   

	
512

	
0

	
619

	
0

	
502

	
0

	
438

	
2

	
389

	
0




	
   g = 0.1 ,   α = 0.20 ,   

   β = 0.8 ,   γ = 0.05   

	
512

	
0

	
619

	
0

	
503

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.20 ,   

   β = 0.2 ,   γ = 0.20   

	
512

	
0

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
   g = 0.1 ,   α = 0.20 ,   

   β = 0.2 ,   γ = 0.05   

	
520

	
3

	
619

	
0

	
502

	
0

	
432

	
0

	
389

	
0




	
Global Optimum

	
512

	
[-]

	
619

	
[-]

	
502

	
[-]

	
432

	
[-]

	
389

	
[-]
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Table 5. Comparison of the results, with Avg. Dev expressed in meters; best results are highlighted in bold.
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Layout

	
Pick. List Length

	
NeNe

	
Pkt_PSO

	
PSO_1 [22]

	
PSO_2 [23]

	
ACO [9]

	
2-Opt




	
Avg. Dev.

	
N. Wins

	
Avg. Dev.

	
N Wins

	
Avg. Dev.

	
N. Wins

	
Avg. Dev.

	
N Wins

	
Avg. Dev.

	
N Wins

	
Avg. Dev.

	
N Wins






	
L1

	
20

	
75.2

	
0/10

	
0

	
10/10

	
537.1

	
0/10

	
0.3

	
8/10

	
8.0

	
3/10

	
34.9

	
0/10




	
30

	
88.1

	
0/10

	
0

	
10/10

	
1095.2

	
0/10

	
0.3

	
8/10

	
19.1

	
0/10

	
59.7

	
0/10




	
40

	
90.8

	
0/10

	
0

	
10/10

	
1711.3

	
0/10

	
0.6

	
6/10

	
27.2

	
0/10

	
67.8

	
0/10




	
L2

	
20

	
74.0

	
0/10

	
0

	
10/10

	
390.5

	
0/10

	
0.0

	
10/10

	
5.5

	
0/10

	
66.8

	
0/10




	
30

	
108.0

	
0/10

	
0

	
10/10

	
797.2

	
0/10

	
0.0

	
10/10

	
19.9

	
0/10

	
76.6

	
0/10




	
40

	
118.7

	
0/10

	
0

	
10/10

	
1160.9

	
0/10

	
0.2

	
9/10

	
28.9

	
0/10

	
113.9

	
0/10




	
L3

	
20

	
162.3

	
0/10

	
0

	
10/10

	
720.7

	
0/10

	
0.0

	
10/10

	
16.1

	
0/10

	
112.8

	
0/10




	
30

	
129.4

	
0/10

	
0

	
10/10

	
1262.8

	
0/10

	
0.0

	
10/10

	
19.4

	
0/10

	
124.1

	
0/10




	
40

	
200.2

	
0/10

	
0

	
10/10

	
2089.1

	
0/10

	
0.0

	
10/10

	
41.8

	
0/10

	
186.8

	
0/10











[image: Table] 





Table 6. Comparison of computational times in seconds.
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Layout

	
Picking List

Length

	
Pkt_PSO

	
PSO_1 [22]

	
PSO_2 [23]

	
ACO [5]

	
2-Opt




	
Avg.

	
Avg.

	
Avg.

	
Avg.

	
Avg.






	
L1

	
20

	
32.57

	
0.49

	
22.56

	
20.55

	
0.02




	
30

	
139.44

	
0.99

	
44.66

	
39.02

	
0.09




	
40

	
410.84

	
2.03

	
88.44

	
53.76

	
0.36




	
L2

	
20

	
28.47

	
0.50

	
24.70

	
21.15

	
0.02




	
30

	
113.20

	
1.17

	
42.75

	
34.46

	
0.11




	
40

	
371.87

	
2.07

	
77.05

	
51.68

	
0.33




	
L3

	
20

	
32.35

	
0.53

	
22.51

	
22.05

	
0.02




	
30

	
136.15

	
1.24

	
44.52

	
35.24

	
0.11




	
40

	
425.26

	
2.39

	
74.59

	
49.94

	
0.38
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Table 7. 3-way ANOVA to compare performance of ACO and Pkt_PSO, *** denotes a very high significant factor.
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	Sum_Sq (Type III)
	df
	F
	p-Value





	Intercept ***
	5.15 × 107
	1
	238,180.2
	9.78 × 10−141



	ALG
	7.84 × 101
	1
	0.3623
	5.49 × 10−1



	LT ***
	1.97 × 106
	2
	4542.17
	4.36 × 10−83



	PL ***
	1.01 × 106
	2
	2351.34
	8.64 × 10−72



	(LO:PL) ***
	5.32 × 104
	4
	61.54
	1.18 × 10−23



	Residuals
	1.73 × 104
	80
	NaN
	NaN
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