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1. Introduction

With the maturity of the development of fractional calculus theory, fractional differ-
ential equations have become research hot-spots for many mathematicians, and appear
naturally in various fields such as fluid mechanics, fractals, environmental science, mod-
eling and control theory, signal processing, bioengineering and biomedical science [1–4].
Due to the nonlocal properties of fractional derivatives, fractional differential equations
can better describe complex processes and systems with genetic effects and memory. Their
descriptions of complex phenomena have the advantages of clear physical meaning, fewer
parameters and consistent experimental results [5–10], so they are useful tools in the math-
ematical modeling of complex mechanics and physical processes. Fractional differential
equations are an important mathematical tool, in which the Caputo–Katugampola frac-
tional derivative overcomes the shortcomings of traditional fractional derivative operators
such as the Caputo derivative, which is a new research development at present. In addition,
in the past 20 years, a large number of mathematicians have widely used Ulam stability to
approximate the exact solution of the problem studied, which has effectively improved the
level of scientific research.

Research on the stability of fractional differential equations has received extensive
attention. J.Vanterler da C.Sousa and E.Capelas de Oliveira used Gronwall inequality
to study the Ulam–Hyers and generalized Ulam–Hyers–Rassias stabilities of a class of
fractional differential equations [11]; Sajedi Leila investigated the existence, uniqueness
and different kinds of Ulam–Hyers stability of solutions of an impulsive coupled system
of fractional differential equations by means of the Caputo–Katugampola fuzzy fractional
derivative [12]; in 2022, Subramanian Muthaiah and Aljoudi Shorog obtained the existence
and Hyers–Ulam stability of coupled differential equations that are related to Katugampola
integrals [13]. For more details, see [14–19]. In fact, Ulam stability theory helps us to arrive
at an efficient and reliable technique for approximating fractional differential equations,
and when a given problem is stable, it is believed that there is an approximate solution
to fractional differential equations. The study of Ulam–Hyers stability is widely used in
algebra, functional analysis, calculus and dynamic systems [20–26]. The main methods
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include the successive approximation method, fixed-point theorem and the direct analysis
method, among which the research on Ulam–Hyers stability and Ulam–Hyers–Rassias
stability has become one of the central themes of mathematical analysis.

The Caputo–Katugampola fractional derivative is a very advanced theory of fractional
calculus at present. It optimizes the shortcomings of Hadamard and Riemann–Liouville
fractional derivatives. In [27,28], Katagampola unified the definition of Caputo and Caputo–
Hadamard fractional derivatives, namely, the Caputo–Katugampola fractional derivative.
The fractional derivative of Caputo–Katugampola not only includes the traditional Caputo
derivative operator, but also adds a new integral form [29,30], and the form is relatively
complex. In recent years, many outstanding scholars have studied and published a large
number articles on the Caputo–Katugampola fractional derivative [31–37].

Tran Minh Duc, Ho Vu and Van Hoa Ngo [38] established the Ulam–Hyers–Mittag–
Leffler stability, and presented the results of the global existence of fractional differential
equations involving a generalized Caputo derivative with the case of the fractional-order
derivative α ∈ (1, 2) of the given problems

cDα,ρ
a+y(t) = f (t, y(t)), ∀t ∈ [a, b],

y(a) = y1,

y′(a) = y2.

Benchohra M. and Lazreg E. J. [34] mainly studied the two types of Ulam-Hyers
stability and Ulam-Hyers-Rassias stability of a class nonlinear implicit fractional differential
equations by using generalized Gronwall inequality

cDαy(t) = f (t, y(t),c Dαy(t)), ∀t ∈ J, 0 < α ≤ 1,

y(0) = y0,

where f : J × Rd × Rd → Rd is a given function space, cDα is the Caputo fractional derivative.
In [31], the authors studied the following implicit Caputo fractional derivative and

nonlocal fractional integral conditions by using Krasnoselskii’s fixed-point theorem and
Boyd–Wong nonlinear contraction

cDq
0+u(t) = f (t, u(t),c Dq

0+u(t)), t ∈ [0, T],

u(0) = η,

u(T) = RL Ip
0+u(k), k ∈ (0, T),

where 1 < q ≤ 2, 0 < p ≤ 1,c Dq
0+u(t) is the Caputo fractional derivative of order q,

RL Ip
0+u(k) is the Riemann–Liouville fractional integral of order p and f : [0, T]× R× R→ R

is a continuous function.
In this paper [35], Adjimi Naas, Maamar Benbachir and Mohamed S. Abdo used

Schaefer’s and Krasnoselskii’s fixed-point theorems to study the existence and uniqueness
of solutions to fractional differential equations of Riesz–Caputo operators with boundary
value conditions

RC
0 Dϑ

Tℵ(t) +=(t,ℵ(t),RC
0 Dς

Tℵ(t)) = 0, t ∈ J := [0, T],

ℵ(0) + ℵ(T) = 0,

µℵ′(0) + σℵ′(T) = 0,

where 1 < ϑ ≤ 2, 0 < ς ≤ 1, RC
0 Dk

T is the Riesz–Caputo fractional derivative of order
k ∈ {ϑ, ς},= : J × R× R→ R is a continuous function and µ, σ are non-negative constants
with µ > σ.

In this article, we will study the existence, uniqueness, Ulam–Hyers stability and
Ulam–Hyers–Rassias stability of solutions to the following fractional implicit fractional
differential equation with a Caputo–Katugampola fractional derivative operator
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cDα,ρ
a+ϕ(t) = f (t, ϕ(t),c Dα,ρ

a+ϕ(t)), (1)

ϕ(a) = ϕ0, (2)

where ϕ ∈ Cγ[a, b], t ∈ [a, b], α ∈ (0, 1], ρ > 0, ϕ0 is a constant, f : [a, b]× Rd × Rd → Rd is
a nonlinear continuously vector-valued function and cDα,ρ

a+ is the Caputo–Katugampola
fractional derivative.

2. Preliminaries

In this section, we present some necessary definitions, lemmas and important theorems
for obtaining the main results. Also, we introduce the concept of stability of Ulam–Hyers,
Ulam–Hyers–Rassias and Banach fixed-point theorem. For more details, see [27,28,38–40].
The following function space plays a fundamental role in our discussion.

Let [a, b] ⊂ R, 0 < a < b < ∞ and C([a, b], Rd) = {ϕ : [a, b]→ Rd : ϕ is a continuously
vector-valued function}, then C([a, b], Rd) is a Banach space equipped with the norm

‖ϕ‖C([a,b],Rd) = sup
t∈[a,b]

|ϕ(t)|,

where | · | is the vector norm in Rd.
Let Cn([a, b], Rd) be the space of the vector-valued function ϕ with an n-order continu-

ous derivative, where ϕ : [a, b]→ Rd.
The weighted space Cγ([a, b], Rd) of the vector-valued function ϕ is defined by

Cγ

(
[a, b], Rd

)
=

{
ϕ : [a, b]→ Rd :

(
tρ − aρ

ρ

)γ

ϕ(t) ∈ C
(
[a, b], Rd

)}
, γ ∈ (0, 1].

Definition 1 ([41]). Let ϕ ∈ C([a, b], Rd), 0 < a < b < ∞, t ≥ a, α > 0, ρ > 0 and n = [α] + 1,
then the Caputo-Katugampola fractional derivatives are defined by

cDα,ρ
a+ϕ(t) =

ρα−n+1

Γ(n− α)

∫ t

a

s(ρ−1)(1−n)

(tρ − sρ)α−n+1 ϕ(n)(s)ds,

cDα,ρ
b−ϕ(t) =

(−1)nρα−n+1

Γ(n− α)

∫ b

t

s(ρ−1)(1−n)

(sρ − tρ)α−n+1 ϕ(n)(s)ds.

Definition 2 ([41]). Let ϕ ∈ C([a, b], Rd), t ∈ (a, b], 0 < α < 1, ρ > 0, then the Katugampola
fractional integrals are defined by

Iα,ρ
a+ ϕ(t) =

ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α
ϕ(s)ds,

Iα,ρ
b− ϕ(t) =

ρ1−α

Γ(α)

∫ b

t

sρ−1

(sρ − tρ)1−α
ϕ(s)ds.

Definition 3 ([39]). Let ϕ ∈ C([a, b], Rd), t ∈ (a, b], then the Riemann–Liouville generalized
fractional integral of ϕ is defined by

ϕα,ρ(t) = (Iα,ρ
a+ ϕ)(t) =

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1 ϕ(s)ds.

Lemma 1 ([38]). Let n− 1 < α ≤ n ∈ N, ϕ ∈ Cn([a, b], Rd), t ∈ (a, b], then
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(
Iα,ρ
a+

cDα,ρ
a+ϕ

)
(t) = ϕ(t)−

n−1

∑
k=0

ϕρ,k(a)
k!

(
tρ − aρ

ρ

)k
,

where ϕρ,k(a) =
[(

t1−ρ( d
dt )
)k

ϕ(t)
]

t=a
, n is the smallest integer greater than or equal to α.

Lemma 2 (Gronwall inequality [38]). Let p(t) and q(t) be integrable and non-negative functions.
Let r(t) be a continuous function that is non-negative and nondecreasing on [a, b]. If

p(t) ≤ q(t) + r(t)ρ1−α
∫ t

a
sρ−1(tρ − sρ)α−1 p(s)ds, ∀t ∈ [a, b],

then

p(t) ≤ q(t) +
∫ t

a

∞

∑
k=1

ρ1−kα(r(t)Γ(α))k

Γ(kα)
sρ−1(tρ − sρ)kα−1q(s)ds, ∀t ∈ [a, b].

Furthermore, if the function q(t) is nondecreasing, then

p(t) ≤ q(t)Eα,1

(
r(t)Γ(α)

(
tρ − aρ

ρ

)α)
, ∀t ∈ [a, b].

Theorem 1 (Banach fixed-point theorem). Assume that (X, d) is a nonempty complete metric
space. Furthermore, let the mapping T : X → X satisfy the inequality

d(T(x), T(y)) ≤ qd(x, y),

for a non-negative real number q < 1 and for any x, y ∈ X. Then, the operator T has a unique fixed
point x.

Definition 4. For each ε > 0, suppose that the function z ∈ C1([a, b], Rd) satisfies the inequality

|cDα,ρ
a+z(t)− f (t, z(t),c Dα,ρ

a+z(t))| ≤ ε, t ∈ [a, b]. (3)

If there exist real numbers C f > 0, β f ≥ 0 and a solution ϕ of Equation (1), such that

|z(t)− ϕ(t)| ≤ C f εEα,1

(
β f

(
tρ − aρ

ρ

)α)
, t ∈ [a, b],

then Equation (1) is Ulam–Hyers stable.

Definition 5. Let function z ∈ C1([a, b], Rd) satisfy the inequality (3), and if there exists a
function ψ f ∈ C(R+, R+), ψ f (0) = 0 and a solution ϕ of Equation (1) such that

|z(t)− ϕ(t)| ≤ ψ f (ε)Eα,1

(
β f

(
tρ − aρ

ρ

)α)
, t ∈ [a, b], β f ≥ 0,

then Equation (1) is generalized Ulam–Hyers stable.

Definition 6. For each ε > 0, assume that the function ξ ∈ C([a, b], R+) and the function
z ∈ C1([a, b], Rd) satisfy the inequality

|cDα,ρ
a+z(t)− f (t, z(t),c Dα,ρ

a+z(t))| ≤ εξ(t), t ∈ [a, b]. (4)

If there exist real numbers C f > 0, β f ≥ 0 and a solution ϕ of Equation (1), such that

|z(t)− ϕ(t)| ≤ C f εEα,1

(
β f

(
tρ − aρ

ρ

)α)
ξ(t), t ∈ [a, b],
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then Equation (1) is Ulam–Hyers–Rassias stable with respect to ξ.

Definition 7. Assume the function ξ ∈ C([a, b], R+) and the function z ∈ C1([a, b], Rd) satisfy
the inequality

|cDα,ρ
a+z(t)− f (t, z(t),c Dα,ρ

a+z(t))| ≤ ξ(t), t ∈ [a, b]. (5)

If there are real numbers C f ,ξ > 0, β f ≥ 0 and a solution ϕ of Equation (1) such that

|z(t)− ϕ(t)| ≤ C f ,ξ Eα,1

(
β f

(
tρ − aρ

ρ

)α)
ξ(t), t ∈ [a, b],

then Equation (1) is generalized Ulam–Hyers–Rassias stable with respect to ξ.

Remark 1. A function z ∈ C1([a, b], Rd) is a solution of the inequality (2.1) if and only if there
exists a function g ∈ C([a, b], Rd) (which depends on ϕ) such that

(i) |g(t)| ≤ ε, ∀t ∈ [a, b], z0 = ϕ0.

(ii) cDα,ρ
a+z(t) = f

(
t, z(t),c Dα,ρ

a+z(t)
)
+ g(t), t ∈ [a, b].

3. The Existence and Uniqueness of the Solution

Lemma 3. Let a function f : [a, b]× Rd × Rd → Rd be a continuously vector-valued function.
Then, the problems (1) and (2) are equivalent to the problem

ϕ(t) = ϕ0 + Iα,ρ
a+ g(t), (6)

where g ∈ C([a, b], Rd) satisfies the functional equation

g(t) = f (t, ϕ0 + Iα,ρ
a+ g(t), g(t)).

Proof. If cDα,ρ
a+ϕ(t) = g(t), then Iα,ρ

a+ (cDα,ρ
a+ϕ(t)) = Iα,ρ

a+ g(t), so we obtain

ϕ(t) = ϕ0 + Iα,ρ
a+ g(t).

Theorem 2 ([29]). Assume

(H1) f : [a, b]× Rd × Rd → Rd is a continuously vector-valued function;

(H2) There exist constants K > 0 and 0 < L < 1, such that

| f (t, u, v)− f (t, ū, v̄)| ≤ K|u− ū|+ L|v− v̄|, u, ū, v, v̄ ∈ Rd, t ∈ [a, b].

If
kρ−α(tρ − aρ)α

(1− L)Γ(α + 1)
< 1,

then there exists a unique solution for Equations (1) and (2) .

Proof. Let ΩT = {ϕ : ϕ ∈ C([a, h], Rd), |ϕ(t)− ϕ0| ≤ r}, |g(t)| ≤ M,
where

h = min

b,

((
r

ραΓ(α + 1)
M

) 1
α

+ aρ

) 1
ρ

, g(t) = f (t, ϕ(t), g(t)).
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Define the operator T : ΩT → ΩT by

(Tϕ)(t) = ϕ0 +
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1g(s)ds.

For ∀ϕ ∈ ΩT ,

|(Tϕ)(t)− ϕ0| =
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|g(s)|ds

≤ Mρ−α(tρ − aρ)α

Γ(α + 1)
≤ r.

Let ϕn, ϕ ∈ ΩT , such that ϕn → ϕ in C([a, h], Rd) as n→ ∞. Since

|(Tϕn)(t)− (Tϕ)(t)| = ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|gn(s)− g(s)|ds, (7)

where gn, g ∈ C([a, h], Rd) satisfies the functional equation

gn(t) = f (t, ϕn(t), gn(t)), g(t) = f (t, ϕ(t), g(t)).

By (H2), ∀t ∈ [a, b],

|gn(t)− g(t)| = | f (t, ϕn(t), gn(t))− f (t, ϕ(t), g(t))|
≤ K|ϕn(t)− ϕ(t)|+ L|gn(t)− g(t)|.

Then,

|gn(t)− g(t)| ≤ K
1− L

|ϕn(t)− ϕ(t)|. (8)

Thus, ϕn → ϕ, gn → g as n → ∞, (Tϕn)(t) → (Tϕ)(t). On the other hand, T is
continuous, ϕ ∈ ΩT , Tϕ ∈ ΩT , since TΩT ⊆ ΩT .

By (7) and (8), we obtain

|(Tϕn)(t)− (Tϕ)(t)| ≤ Kρ1−α

(1− L)Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|ϕn(s)− ϕ(s)|ds

≤ K
(1− L)Γ(α)

|ϕn(t)− ϕ(t)|
∫ t

a
sρ−1(

tρ − sρ

ρ
)α−1ds

≤ Kρ−α(tρ − sρ)α

(1− L)Γ(α + 1)
|ϕn(t)− ϕ(t)|.

So we can obtain that Equations (1) and (2) have a unique fixed point as

Kρ−α(tρ − sρ)α

(1− L)Γ(α + 1)
< 1,

then, there exists a unique solution for Equations (1) and (2).

4. Ulam–Hyers Stability

Theorem 3. Assume that the function (1) satisfies (H1) and (H2), then Equation (1) is Ulam–Hyers
stable.

Proof. Let z ∈ C1([a, b], Rd) be a solution of the inequation (3), i.e.,

|cDα,ρ
a+z(t)− f (t, z(t),c Dα,ρ

a+z(t))| ≤ ε, t ∈ [a, b]. (9)



Mathematics 2023, 11, 3082 7 of 12

Let us denote by ϕ ∈ C1([a, b], Rd) the unique solution of Equation (1)

cDα,ρ
a+ϕ(t) = f (t, ϕ(t),c Dα,ρ

a+ϕ(t)), ∀t ∈ [a, b], 0 < α ≤ 1,

ϕ0 = z0.

By using Lemma 3, we have

ϕ(t) = z0 +
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gϕ(s)ds, t ∈ [a, b],

where gϕ ∈ C([a, b], Rd) satisfies the functional equation

gϕ(t) = f (t, ϕ0 + Iα,ρ
a+ gϕ(t), gϕ(t)).

Then, by integration of (9),

|z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds| ≤ ερ−α(tρ − aρ)α

Γ(α + 1)
(10)

where gz(t) ∈ C([a, b], Rd) satisfies the functional equation

gz(t) = f (t, z0 + Iα,ρ
a+ gz(t), gz(t)).

For ∀t ∈ [a, b], we have

|z(t)− ϕ(t)|

=

∣∣∣∣z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gϕ(s)ds

∣∣∣∣
=

∣∣∣∣z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds +

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1(gz(s)− gϕ(s))ds

∣∣∣∣
≤
∣∣∣∣z(t)− z0 −

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds

∣∣∣∣+ ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|gz(s)− gϕ(s)|ds,

(11)

where gz(t) = f (t, z(t), gz(t)), gϕ(t) = f (t, ϕ(t), gϕ(t)).
By (H2), we have, for ∀t ∈ [a, b],

|gz(t)− gϕ(t)| = | f (t, z(t), gz(t))− f (t, ϕ(t), gϕ(t))|
≤ K|z(t)− ϕ(t)|+ L|gz(t)− gϕ(t)|.

Furthermore,

|gz(t)− gϕ(t)| ≤
K

1− L
|z(t)− ϕ(t)|. (12)

Thus, by (10), (11) and (12) we obtain

|z(t)− ϕ(t)| ≤ ερ−α(tρ − aρ)α

Γ(α + 1)
+

Kρ1−α

(1− L)Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|z(s)− ϕ(s)|ds.

Then by Lemma 2 (Gronwall inequality), we obtain

|z(t)− ϕ(t)| ≤ ερ−α(tρ − aρ)α

Γ(α + 1)
Eα,1

(
K

1− L

(
tρ − aρ

ρ

)α)
, t ∈ [a, b],

where

C f =
ρ−α(tρ − aρ)α

Γ(α + 1)
, β f =

K
1− L

.



Mathematics 2023, 11, 3082 8 of 12

Thus, the function (1) is Ulam–Hyers stable. This completes the proof.

At this point, by putting ψ f (ε) = ερ−α(tρ−aρ)α

Γ(α+1) , ψ f (0) = 0, β f = K
1−L yields that

Equation (1) is generalized Ulam–Hyers stable.

5. Ulam–Hyers–Rassias Stability

Theorem 4. Assume that the function (1) satisfies simultaneously (H1), (H2) and (H3): the
function ξ ∈ C([a, b], R+) is increasing and there exists λξ > 0, for ∀t ∈ [a, b], and we have

Iα,ρ
a+ ξ(t) ≤ λξ ξ(t).

Then, Equation (1) is Ulam–Hyers–Rassias stable with respect to ξ.

Proof: Let z ∈ C1([a, b], Rd) be a solution of the inequation (4), i.e.,

|cDα,ρ
a+z(t)− f (t, z(t),c Dα,ρ

a+z(t))| ≤ εξ(t), t ∈ [a, b], ε > 0. (13)

Let us denote by ϕ ∈ C1([a, b], Rd) the unique solution of Equation (1)

cDα,ρ
a+ϕ(t) = f (t, ϕ(t),c Dα,ρ

a+ϕ(t)), ∀t ∈ [a, b], 0 < α ≤ 1,

ϕ0 = z0.

By using Lemma 3, we have

ϕ(t) = z0 +
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gϕ(s)ds, t ∈ [a, b],

where gϕ ∈ C([a, b], Rd) satisfies the functional equation

gϕ(t) = f (t, ϕ0 + Iα,ρ
a+ gϕ(t), gϕ(t)).

But, by integration of Formula (13) and by (H3), we obtain

|z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds| ≤ ερ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1ξ(s)ds

≤ ελξξ(t), (14)

where gz ∈ C([a, b], Rd) satisfies the functional equation

gz(t) = f (t, z0 + Iα,ρ
a+ gz(t), gz(t)).

On the other hand, we have, for ∀t ∈ [a, b],

|z(t)− ϕ(t)|

=

∣∣∣∣z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gϕ(s)ds

∣∣∣∣
=

∣∣∣∣z(t)− z0 −
ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds +

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1(gz(s)− gϕ(s))ds

∣∣∣∣
≤
∣∣∣∣z(t)− z0 −

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1gz(s)ds

∣∣∣∣+ ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|gz(s)− gϕ(s)|ds,

(15)

where gz(t) = f (t, z(t), gz(t)), gϕ(t) = f (t, ϕ(t), gϕ(t)).
Therefore, by (H2), we obtain, for ∀t ∈ [a, b],

|gz(t)− gϕ(t)| = | f (t, z(t), gz(t))− f (t, ϕ(t), gϕ(t))|
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≤ K|z(t)− ϕ(t)|+ L|gz(t)− gϕ(t)|.

Then
|gz(t)− gϕ(t)| ≤

K
1− L

|z(t)− ϕ(t)|. (16)

Thus, by (14), (15) and (16) we obtain

|z(t)− ϕ(t)| ≤ ελξξ(t) +
Kρ1−α

(1− L)Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1|z(s)− ϕ(s)|ds.

Then, Lemma 2 implies that, for ∀t ∈ [a, b],

|z(t)− ϕ(t)| ≤ ελξ ξ(t)Eα,1

(
K

1− L

(
tρ − aρ

ρ

)α)
, t ∈ [a, b],

where
C f = λξ , β f =

K
1− L

.

So, Equation (1) is Ulam–Hyers–Rassias stable. This completes the proof.
Putting ε = 1, C f ,ξ = λξ , β f =

K
1−L yields that Equation (1) is generalized Ulam–Hyers–

Rassias stable.

6. Examples

Example 1. We consider the following fractional Cauchy problem

cD
1
2 ,3
0+ ϕ(t) =

3 + |ϕ(t)|+ |cD
1
2 ,3
0+ ϕ(t)|

3et+2(1 + |ϕ(t)|+ |cD
1
2 ,3
0+ ϕ(t)|)

, ∀t ∈ [0, 1], (17)

ϕ(0) = 1. (18)

Set

f (t, u, v) =
3 + |u|+ |v|

3et+2(1 + |u|+ |v|) , t ∈ [0, 1], u, v ∈ Rd.

Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ Rd and t ∈ [0, 1],

| f (t, u, v)− f (t, ū, v̄)| ≤ 1
3e2 (|u− ū|+ |v− v̄|).

By (H2): K = L = 1
3e2 , we obtain

Kρ−α(tρ − sρ)α

(1− L)Γ(α + 1)
≤ 2

√
3

3(3e2 − 1)
√

π
< 1.

It follows from Theorem 2 that the problem (17), (18) has a unique solution, and from Theorem 3,
Equation (17) is Ulam–Hyers stable.

Example 2. We consider the following fractional Cauchy problem

cD
1
2 ,2
0+ ϕ(t) =

t
50

(cos ϕ(t)− ϕ(t) sin t) +
|cD

1
2 ,2
0+ ϕ(t)|

50 + |cD
1
2 ,2
0+ ϕ(t)|

, ∀t ∈ [0, 1], (19)

ϕ(0) = 1. (20)

Set
f (t, u, v) =

t
50

(cos u− u sin t) +
v

50 + v
, t ∈ [0, 1], u, v ∈ Rd.
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Clearly, the function f is continuous.
For any u, v, ū, v̄ ∈ Rd and t ∈ [0, 1],

| f (t, u, v)− f (t, ū, v̄)| ≤ 1
50
| cos u− cos ū|+ 1

50
| sin t||u− ū|+ 50|v− v̄|

(50 + v)(50 + v̄)

≤ 1
50
|u− ū|+ 1

50
|u− ū|+ 1

50
|v− v̄|

≤ 1
25
|u− ū|+ 1

50
|v− v̄|.

By (H2): K = 1
25 , L = 1

50 , we obtain

Kρ−α(tρ − sρ)α

(1− L)Γ(α + 1)
≤ 2

√
2

49
√

π
< 1.

Thus, according to Theorem 2, Equations (19) and (20) have a unique solution.
Let ξ(t) = t2 , we have

Iα,ρ
a+ ξ(t) ≤

√
2

Γ( 3
2 )

t2 := λξξ(t).

Thus, condition (H3) is satisfied with ξ(t) = t2 and λξ = 2
√

2
Γ(π)

, and it follows from Theorem 4
that Equation (19) is Ulam–Hyers–Rassias stable.

7. Conclusions

In this paper, we have analyzed the existence and uniqueness of solutions, the Ulam–
Hyers stability and the Ulam–Hyers–Rassias stability for Caputo–Katugampola fractional
implicit differential equations in terms of Banach fixed-point theorem and generalized
Gronwall inequality. Finally, two examples are given to verify the correctness of the results.

With the wide application of fractional differential equations in many fields, more and
more scholars began to study fractional operations, and a large number of definitions of
fractional integrals and derivatives came into being. The (k, Ψ)-Hilfer fractional derivative
operator is a new definition proposed recently [42–46]. Different types of fractional deriva-
tives can be obtained when the parameter values are different. It is a more extensive and
more complex fractional derivative definition, which will also be a future research direction
for us.
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