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Abstract: The paper focuses on exploring the existence and uniqueness of a specific solution to
a class of Caputo impulsive fractional differential equations with boundary value conditions on
Banach space, referred to as (ω, ρ)-BVP solution. The proof of the main results of this study involves
the application of the Banach contraction mapping principle and Schaefer’s fixed point theorem.
Furthermore, we provide the necessary conditions for the convexity of the set of solutions of the
analyzed impulsive fractional differential boundary value problem. To enhance the comprehension
and practical application of our findings, we conclude the paper by presenting two illustrative
examples that demonstrate the applicability of the obtained results.
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1. Introduction and Preliminaries

The advancement of modern technology and its continuous development have led to a
growing interest in systems characterized by discontinuous trajectories, such as impulsive
automatic control systems and impulsive computing systems. These systems have garnered
substantial significance and are presently experiencing rapid growth, being applied to a
wide range of technical problems, biological phenomena characterized by thresholds,
models of bursting rhythms in medicine and biology, optimal control models in economics,
pharmacokinetics, and frequency-modulated systems [1]. These processes experience
short-term perturbations that have negligible durations compared to the overall process
duration (see [1–6]). Consequently, there is a strong rationale to investigate the qualitative
characteristics of the solutions of these impulsive systems given the considerable interest in
understanding their behavior and properties.

The concept of (ω, c)-periodic functions, defined as y(·+ ω) = cy(·), where c ∈ C,
was introduced and explored by E. Alvarez et al. in their work [7,8], naturally arising in
the investigation of Mathieu’s equations y′′ + ay = 2q cos(2t)y. In a related study by M.
Agaoglou et al. [9], the authors investigated the existence and uniqueness of (ω, c)-periodic
solutions for semilinear equations of the form u′ = Au + f (t, u) in complex Banach spaces.
Expanding upon this notion, M. Fečkan, K. Liu, and J. R. Wang [10] extended the concept
to (ω,T)-periodic solutions for the aforementioned class of semilinear equations, where T
represents a linear isomorphism on a Banach space X.

In the work by L. Ren and J. R. Wang [11], a necessary and sufficient condition for the
existence of the (ω, c)-periodic solutions to a specific type of impulsive fractional differential
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equations is provided. Furthermore, the paper discusses the existence and uniqueness of
(ω, c)-periodic solution to semilinear problems. The existence and uniqueness of solution
for impulsive fractional differential equations with Caputo derivatives in Banach spaces
were examined in the study conducted in [12]. Considering existence and uniqueness
of solution of impulsive and regular fractional differential equations, we recommend
the recent results in [13–18]. In the paper by M. Fečkan et al. [10], results regarding the
existence and uniqueness of the (ω,T)-periodic solution for impulsive linear and semilinear
problems are established.

Building upon the previous investigations into (ω, c) and (ω,T)-periodic solution for
linear and semilinear problems involving ordinary and fractional order derivatives, we
extend our focus to encompass the (ω, ρ)-BVP solution of impulsive fractional differential
equations with boundary value conditions. This research serves as a generalization of
previous studies (see [3,9–28]).

The primary goal of this paper is to showcase groundbreaking findings within the
context of (ω, ρ)-BVP solutions of impulsive fractional differential equations. Specifically,
the paper focuses on examining the scenario where the linear isomorphism ρ operates on
the Banach space X, in contrast to previous results that primarily explored (ω, c)-periodicity,
where c ∈ C. The main focus of the authors of this paper lies in exploring the existence and
uniqueness of the (ω, ρ)-BVP solution for specific classes of impulsive fractional differential
equations, considering the boundary value conditions within the context of a Banach space
X. The paper strives to present these pioneering results, shedding light on the distinct
aspects and advancements achieved in this particular case.

The organization of this paper can be described briefly as follows. At the beginning,
we recall some preliminary results and definitions from fractional derivatives, impulsive
fractional differential equations, and we provide the definition of (ω, c)-BVP functions.
In the main part of this paper, under certain conditions, we show several results on
the existence and uniqueness of the (ω, ρ)-BVP solution of impulsive Caputo fractional
differential equations with boundary conditions.

Preliminaries

Here, by (X, ‖ · ‖), a complex Banach space is denoted. Abbreviation C(K : X), where
K is a non-empty compact subset of R, stands for the space of continuous functions K 7→ X.
This space is a Banach space, endowed with the sup-norm. The space of X-valued piecewise
continuous functions on [0, ω] is given by

PC([0, ω] : X) ≡
{

u : [0, ω]→ X : u ∈ C
(
(ti, ti+1] : X

)
,

u(t−i ) = u(ti) and u(t+i ) exist for any i ∈ {0, · · · , m− 1}
}

,

where t0 = 0 < t1 < t2 < . . . < tm−1 < tm = ω and the symbols u(t−i ) and u(t+i ) denote
the left and the right limits of the function u(t) at the point t = ti, i ∈ {0, · · · , m − 1},
respectively. Let us recall that PC([0, ω] : X) is a Banach space endowed with the sup-norm.

The Gamma function Γ(z) is defined as Γ(z) =
∫ ∞

0 tz−1e−z dt, <z > 0. Note that
Γ(n) = (n− 1)!, for n positive integer. We let u be a given function defined on the closed
interval [t0, t1]. The Caputo fractional derivative of the function u is defined as

cDα
t0

u(t) =
1

Γ(n− α)

t∫
t0

(t− s)n−α−1u(n)(s) ds,

where n = [α] + 1.
We let ρ : X → X be linear isomorphism, and the set of all piecewise continuous and

(ω, ρ)-BVP functions be denoted by Φω,ρ, i.e.,

Φω,ρ =
{

u : u ∈ PC([0, ω] : X) and u(ω) = ρu(0)
}

.
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We continue the investigations in [10,11] by studying the (ω, ρ)-BVP solutions of the
following impulsive fractional problem:

cDα
t0

u(t) = f (t, u(t)), α ∈ (0, 1), t 6= tk, t ∈ [0, ω],

∆u(tk) = Ik
(
u(tk)

)
, k = 1, 2, . . . , m,

u(ω) = ρu(0),

(1)

where cDα
t0

is the Caputo fractional derivative of order α ∈ (0, 1) with the lower time at t0,
f : [0, ω]× X → X and Ik : X → X are continuous linear mappings, ρ : X → X is a linear
isomorphism and 0 < t1 < t2 < . . . < tm−1 < ω.

In this paper, we consider the following conditions:

(C1) There is a constant L > 0 such that

‖ f (t, u)− f (t, v)‖ ≤ L‖u− v‖ for all t ∈ [0, ω] and u, v ∈ X.

(C2) There are constants B > 0 and P > 0 such that

‖ f (t, u)‖ ≤ B‖u‖+ P, for all t ∈ [0, ω] and u ∈ X.

(C3) The operator ρ : X → X is a linear isomorphism and (ρ− E) is injective, where E is
the identity operator on X.

(C4) There is a constant M > 0 such that ‖(ρ− E)−1‖ ≤ M.
(C5) There is a finite real number C1 > 0 such that

‖Ik(u)‖ ≤ C1‖u‖, k = 1, 2, . . . , m and for all u ∈ X.

(C6) The operator Ik : X → X is continuous and there exists a constant CI ∈ [0, 1/m)
such that∥∥Ik(u)− Ik(v)

∥∥ ≤ CI‖u− v‖, k = 1, 2, . . . , m, and for all u, v ∈ X.

2. (ω, ρ)-BVP Solutions to Semilinear Impulsive Fractional Differential Boundary
Value Problem

We consider the (ω, ρ)-BVP solutions of the impulsive fractional differential prob-
lem (1). We set t0 = 0 and tm = ω.

If function u ∈ Ψ is such that the equation cDα
0 u(t) = f (t, u(t)) is satisfied almost

everywhere on [0, ω], and the conditions ∆u(tk) = Ik
(
u(tk)

)
, k = 1, 2, . . . , m and u(ω) =

ρu(0) hold, then the function u is said to be a solution of Equation (1).
The following holds true:

Proposition 1. Let (C3) hold. Then, solution u ∈ Ψ = PC([0, ω] : X) of Equation (1) is given by

u(t) = (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds + ∑
0<tk<t

Ik
(
u(tk)

)
, t ∈ (tk, tk+1], k = 0, 1 . . . , m− 1.
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Proof. By ([12] [Lemma 3.1]), solution u ∈ Ψ of Equation (1) satisfies

u(t) = u(0) +
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds + ∑
0<tk<t

Ik
(
u(tk)

)
,

t ∈ (tk, tk+1], k = 0, 1, . . . , m− 1.

We have

u(ω) = u(0) +
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

)
.

Using the boundary value condition, we have

u(0) = (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))
.

Hence,

u(t) = (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds +
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds

+ ∑
0<tk<t

Ik
(
u(tk)

)
, t ∈ (tk, tk+1], k = 0, 1 . . . , m− 1.

Theorem 1. Suppose that (C1) and (C3)–(C6) hold. If 0 < K < 1, where

K =
(M + 1)

(
L(m + 1)ωα + Γ(α + 1)CIm

)
Γ(α + 1)

,

then the impulsive fractional differential boundary value problem (1) has a unique (ω, ρ)-BVP
solution u ∈ Φω,ρ. Additionally,
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‖u‖ ≤ (M + 1)(m + 1)ωα‖ f ‖0

Γ(α + 1)− (M + 1)
(

L(m + 1)ωα + mC1Γ(α + 1)
) ,

where ‖ f ‖0 = sup
s∈[0,ω]

‖ f (s, 0)‖.

Proof. Define operator R : Ψ→ Ψ by

(Ru)(t) = (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds + ∑
0<tk<t

Ik
(
u(tk)

)
, k = 1, 2, . . . , m.

The fixed points of R clearly determine the solutions of the (ω, ρ)-boundary value
problem (1). Additionally, it is evident that R(Ψ) ⊆ Ψ. For any given u and v belonging to
Ψ, we can observe the following:

‖(Ru)(t)− (Rv)(t)‖ =
∥∥∥∥∥(ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds + ∑
0<tk<t

Ik
(
u(tk)

)

− (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, v(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, v(s)) ds + ∑
0<tk<ω

Ik(v(tk))

)

− 1
Γ(α) ∑

0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, v(s)) ds
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− 1
Γ(α)

t∫
tk

(t− s)α−1 f (s, v(s)) ds− ∑
0<tk<t

Ik(v(tk))

∥∥∥∥∥
≤
∥∥(ρ− E)−1∥∥( 1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))− f (s, v(s))‖ ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f (s, u(s))− f (s, v(s))‖ ds + ∑
0<tk<ω

∥∥Ik
(
u(tk)

)
− Ik(v(tk))

∥∥)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))− f (s, v(s))‖ ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖ f (s, u(s))− f (s, v(s))‖ ds + ∑
0<tk<t

∥∥Ik
(
u(tk)

)
− Ik(v(tk))

∥∥
≤ M

(
L

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1‖u(s)− v(s)‖ ds

+
L

Γ(α)

ω∫
tk

(ω− s)α‖u(s)− v(s)‖ ds + CIm‖u− v‖
)

+
L

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖u(s)− v(s)‖ ds

+
L

Γ(α)

t∫
tk

(t− s)α−1‖u(s)− v(s)‖ ds + CIm‖u− v‖

≤
(M + 1)

(
L(m + 1)ωα + Γ(α + 1)CIm

)
Γ(α + 1)

‖u− v‖ = K‖u− v‖.

Given that 0 < K < 1, it follows that operator R is a contraction. As a result, there
exists a unique fixed point for the operator R, satisfying the condition u(0) = ρu(ω).
Consequently, Equation (1) possesses a unique (ω, ρ)-BVP solution u ∈ Φω,ρ. Additionally,

‖u(t)‖ ≤
∥∥(ρ− E)−1∥∥( 1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))− f (s, 0)‖ ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f (s, u(s))− f (s, 0)‖ ds

)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))− f (s, 0)‖ ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖ f (s, u(s))− f (s, 0)‖ ds

+
∥∥(ρ− E)−1∥∥( 1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f (s, 0)‖ ds
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+
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f (s, 0)‖ ds

)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f (s, 0)‖ ds +
1

Γ(α)

t∫
tk

(t− s)α−1‖ f (s, 0)‖ ds

+
∥∥(ρ− E)−1∥∥ · ∑

0<tk<ω

∥∥Ik
(
u(tk)

)∥∥+ ∑
0<tk<t

∥∥Ik
(
u(tk)

)∥∥
≤
∥∥(ρ− E)−1∥∥( 1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1L‖u‖ ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1L‖u‖ ds + ∑
0<tk<ω

∥∥Ik
(
u(tk)

)∥∥)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1L‖u‖ ds

+
1

Γ(α)

t∫
tk

(t− s)α−1L‖u‖ ds + ∑
0<tk<t

‖Ik
(
u(tk)

)
‖

+
∥∥(ρ− E)−1∥∥( 1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f ‖0 ds +
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f ‖0 ds

)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f ‖0 ds +
1

Γ(α)

t∫
tk

(t− s)α−1‖ f ‖0 ds

≤ ML‖u‖
Γ(α + 1)

(
mωα + ωα

)
+ MmC1‖u‖+

L‖u‖
Γ(α + 1)

(
mωα + ωα

)
+ mC1‖u‖

+
M‖ f ‖0

Γ(α + 1)
(
mωα + ωα

)
+
‖ f ‖0

Γ(α + 1)
(
mωα + ωα

)
.

Hence,

‖u‖ ≤ (M + 1)(m + 1)ωα‖ f ‖0

Γ(α + 1)− (M + 1)
(

L(m + 1)ωα + mC1Γ(α + 1)
) .

Theorem 2. Suppose that (C2)–(C5) hold. Then, the impulsive fractional differential boundary
value problem (1) has at least one (ω, ρ)-BVP solution u ∈ Φω,ρ.

Proof. Let Br = {u ∈ Ψ : ‖u‖ ≤ r}, where

(M + 1)P(m + 1)ωα

Γ(α + 1)− (M + 1)
(

B(m + 1)ωα + C1mΓ(α + 1)
) ≤ r.
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We consider again the operator R

(Ru)(t) = (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u(s)) ds + ∑
0<tk<ω

Ik
(
u(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u(s)) ds + ∑
0<tk<t

Ik
(
u(tk)

)
, k = 1, 2 . . . , m

defined on Br.
Step 1. We show that operator R : Ψ→ Ψ is bounded. It is sufficient to show that for

any r > 0, there exists a constant K > 0, such that for each u ∈ Br, we have ‖Ru‖ ≤ K. We
let (un) be a sequence on a bounded subset B ⊆ Br. Then, by (C2) and (C5), we obtain

‖(Run)(t)‖ ≤ ‖(ρ− E)−1‖
(

1
Γ(α) ∑

0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f (s, un(s))‖ ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f (s, un(s))‖ ds + ∑
0<tk<ω

‖Ik(un(tk))‖
)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f (s, un(s))‖ ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖ f (s, un(s))‖ ds + ∑
0<tk<t

‖Ik(un(tk))‖

≤ M

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1(B‖un‖+ P) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1(B‖un‖+ P) ds + C1m‖un‖
)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1(B‖un‖+ P) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1(B‖un‖+ P) ds + C1m‖un‖

≤
(M + 1)

(
(m + 1)ωα(Br + P) + C1mrΓ(α + 1)

)
Γ(α + 1)

= K.
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Hence, (Run) is uniformly bounded on Br, which implies R(B) is bounded in Br.
Step 2. We prove that operator R : Ψ→ Ψ is equicontinuous. We let (un) be a sequence

on a bounded subset B ⊆ Br. We let t1, t2 ∈ [0, ω] and t1 < t2. Therefore,

‖(Run)(t2)− (Run)(t1)‖ =
∥∥∥∥∥(ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, un(s)) ds + ∑
0<tk<ω

Ik(un(tk))

)

+
1

Γ(α) ∑
0<tk<t2

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

+
1

Γ(α)

t2∫
tk

(t2 − s)α−1 f (s, un(s)) ds + ∑
0<tk<t2

Ik(un(tk))

− (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, un(s)) ds + ∑
0<tk<ω

Ik(un(tk))

)

− 1
Γ(α) ∑

0<tk<t1

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

− 1
Γ(α)

t1∫
tk

(t1 − s)α−1 f (s, un(s)) ds− ∑
0<tk<t1

Ik(un(tk))

∥∥∥∥∥
=

∥∥∥∥∥ 1
Γ(α) ∑

0<tk<t2

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

− 1
Γ(α) ∑

0<tk<t1

tk∫
tk−1

(tk − s)α−1 f (s, un(s)) ds

+
1

Γ(α)

t2∫
tk

(t2 − s)α−1 f (s, un(s)) ds− 1
Γ(α)

t1∫
tk

(t1 − s)α−1 f (s, un(s)) ds

+

(
∑

0<tk<t2

Ik(un(tk))− ∑
0<tk<t1

Ik(un(tk))

)∥∥∥∥∥
=

∥∥∥∥∥ 1
Γ(α)

t1∫
0

(t2 − s)α−1 f (s, un(s)) ds +
1

Γ(α)

t2∫
t1

(t2 − s)α−1 f (s, un(s)) ds

+
1

Γ(α)

tk∫
t2

(t2 − s)α−1 f (s, un(s)) ds− 1
Γ(α)

t1∫
0

(t1 − s)α−1 f (s, un(s)) ds

− 1
Γ(α)

tk∫
t1

(t1 − s)α−1 f (s, un(s)) ds +
1

Γ(α)

t2∫
tk

(t2 − s)α−1 f (s, un(s)) ds
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− 1
Γ(α)

t1∫
tk

(t1 − s)α−1 f (s, un(s)) ds + ∑
t1<tk<t2

Ik(un(tk))

∥∥∥∥∥
≤ 1

Γ(α)

t1∫
0

(
(t2 − s)α−1 − (t1 − s)α−1)‖ f (s, un(s))‖ ds

+
1

Γ(α)

t2∫
t1

(t2 − s)α−1‖ f (s, un(s))‖ ds + ∑
t1<tk<t2

‖Ik(un(tk))‖.

Putting t2 → t1, we determine that the right-hand side of the last inequality tends to 0,
so (Run) is equicontinuous.

Step 3. Operator R : Ψ → Ψ is a compact operator. Indeed, we let B ⊆ Ψ. By the
Arzela–Ascoli theorem, since R is bounded and equicontinuous, we can conclude that R(B)
is a relatively compact subset of Ψ. Therefore, R : Ψ→ Ψ is a compact operator.

Step 4. Set F (R) = {u ∈ Ψ : u = K · Ru, for some K ∈ [0, 1]} is bounded. Now, it
is clear that the fixed points of R are solutions of Equation (1). Since R is continuous, we
have to prove that set

F (R) = {u ∈ Ψ : u = K · Ru, for some K ∈ (0, 1)}

is bounded. We let u ∈ F (R). Then, u = K · Ru, for some K ∈ (0, 1). Now,

‖u(t)‖ = K‖Ru(t)‖ ≤ ‖(ρ− E)−1‖
(

1
Γ(α) ∑

0<tk<ω

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))‖ ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1‖ f (s, u(s))‖ ds + ∑
0<tk<ω

‖Ik
(
u(tk)

)
‖
)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1‖ f (s, u(s))‖ ds

+
1

Γ(α)

t∫
tk

(t− s)α−1‖ f (s, u(s))‖ ds + ∑
0<tk<t

‖Ik
(
u(tk)

)
‖

≤
(M + 1)

(
(m + 1)(Br + P)ωα + C1mrΓ(α + 1)

)
Γ(α + 1)

,

so F (R) is bounded in Ψ.
Now, using Schaefer’s fixed point theorem, we conclude that R has a fixed point, and

by the above, this point is a solution of Equation (1).

Theorem 3. Suppose that (C2)–(C5) hold. Then, the set of the (ω, ρ)-BVP solutions to the
impulsive fractional differential boundary value problem (1) is convex.

Proof. Using Theorem 2, we determine that the impulsive fractional differential Equation (1)
has a solution in Ψ. We put K = 1. Then, the set of solutions is given by F (R) = {u ∈ Ψ :
u = Ru}. For every u1, u2 ∈ F (R), 0 ≤ λ ≤ 1, t ∈ [0, ω], we have

λu1(t) + (1− λ)u2(t) = λ(Ru1)(t) + (1− λ)(Ru2)(t)
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= λ

(
(ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u1(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u1(s)) ds + ∑
0<tk<ω

Ik(u1(tk))

)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u1(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u1(s)) ds + ∑
0<tk<t

Ik(u1(tk))

)

+ (1− λ)

(
(ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f (s, u2(s)) ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f (s, u2(s)) ds + ∑
0<tk<ω

Ik(u2(tk))

)

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, u2(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, u2(s)) ds + ∑
0<tk<t

Ik(u2(tk))

)

= (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1(λ f (s, u1(s)) + (1− λ) f (s, u2(s))
)

ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1(λ f (s, u1(s)) + (1− λ) f (s, u2(s))
)

ds

+ ∑
0<tk<ω

(
λIk(u1(tk)) + (1− λ)Ik(u2(tk))

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1(λ f (s, u1(s)) + (1− λ) f (s, u2(s))
)

ds

+
1

Γ(α)

t∫
tk

(t− s)α−1(λ f (s, u1(s)) + (1− λ) f (u2(s))
)

ds

+ ∑
0<tk<t

(
λIk(u1(tk)) + (1− λ)Ik(u2(tk))

)

= (ρ− E)−1

(
1

Γ(α) ∑
0<tk<ω

tk∫
tk−1

(tk − s)α−1 f
(
s, (λu1 + (1− λ)u2)(s)

)
ds

+
1

Γ(α)

ω∫
tk

(ω− s)α−1 f
(
s, (λu1 + (1− λ)u2)(s)

)
ds
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+ ∑
0<tk<ω

Ik
(
(λu1 + (1− λ)u2)(tk)

))

+
1

Γ(α) ∑
0<tk<t

tk∫
tk−1

(tk − s)α−1 f (s, (λu1 + (1− λ)u2)(s)) ds

+
1

Γ(α)

t∫
tk

(t− s)α−1 f (s, (λu1 + (1− λ)u2)(s)) ds

+ ∑
0<tk<t

Ik((λu1 + (1− λ)u2)(tk)).

Hence, (
λu1 + (1− λ)u2

)
(t) =

(
R
(
λu1 + (1− λ)u2

))
(t),

so λu1 + (1− λ)u2 ∈ F (R), implying F (R) is a convex set, meaning that the set of (ω, ρ)-
BVP solutions of Equation (1) is a convex set.

We end this section with two illustrative examples:

Example 1. We consider the following impulsive fractional differential boundary value problem:
cD

1
2
0 u(t) = a sin 2t cos u(t), t 6= tk, t ∈ [0, ∞),

∆u(tk) =
1

8m
(
u(tk)

)
, k = 1, 2, . . . , m,

u(π) = ρu(0),

(2)

where a ∈ R, tk =
kπ
2 , k = 1, 2, . . . , m. Therefore, f (t, u(t)) = a sin 2t cos u(t) and Ik(u(tk)) =

1
8m
(
u(tk)

)
. We set ω = π and ρ(x) = cx, where c ∈ C\{0}. For any t ∈ [0, π], u, v ∈ R we

have | f (t, u)− f (t, v)| ≤ |a| |u− v|, so (C1) is satisfied for L = |a|. Conditions (C3) and (C4) are
trivially satisfied for M = 1. Since |Ik(u(tk))| ≤ 1

8m |u|, (C5) is fulfilled for C1 = 1
8m and since

|Ik(u(tk))− Ik(v(tk))| ≤ 1
8m |u− v|, (C6) holds for CI =

1
8m . Moreover, we let a and m be such

that 3
8 Γ
( 3

2
)
− 2|a|(m + 1)

√
π > 0. Then, using Theorem 1, the impulsive fractional differential

boundary value problem (2) has a unique (π, c·)-BVP solution u ∈ Φπ,c·. Additionally, it holds
that

|u| ≤ 2|a|(m+1)
√

π

Γ
(

3
2

)
−2
(
|a|(m+1)

√
π+ 1

8 Γ
(

3
2

)) .

Example 2. We consider the following impulsive fractional differential boundary value problem:
cD

2
3
0 u(t) = a sin u(t), t 6= tk, t ∈ [0, ∞),

∆u(tk) = cos kπ, k = 1, 2, . . . , m,

u(2π) = ρu(0),

(3)

where a ∈ R, tk = kπ
2 , k = 1, 2, . . . , m. Now, f (t, u(t)) = a sin u(t) and Ik(u(tk)) = cos kπ.

We set ω = 2π and ρ(x) = exp(x). It is clear that (C2) holds for B = |a| and P > 0. Also,
it is obvious that (C3) and (C4) are satisfied with M = 1. Additionally, for C1 = 1, condition
(C5) is fulfilled. Hence, the conditions of Theorem 2 are satisfied; then, the impulsive fractional
differential boundary value problem (3) has at least one (2π, exp(·))-BVP solution u ∈ Φ2π,exp(·).
Furthermore, by Theorem 3, the set of solutions of Equation (3) is a convex set.

3. Conclusions

This paper presents established results concerning the existence of (ω, ρ)-BVP solu-
tions for a specific class of Caputo impulsive fractional differential equations with boundary
value conditions on Banach spaces. The main focus of the investigation involves providing
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sufficient conditions for the existence and uniqueness of the (ω, ρ)-periodic solution of
Equation (1) using the Banach contraction mapping principle. Additionally, the paper
presents sufficient conditions for the existence of (ω, ρ)-BVP solutions of Equation (1) using
Schaefer’s fixed point theorem.

As a future research endeavor, the authors plan to further explore the existence and
uniqueness of the (ω, ρ)-BVP solution for other types of abstract fractional differential
equations, including various types of fractional derivatives.
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