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Abstract

:

In this work, we have characterized the frame bundle   F M   admitting metallic structures on almost quadratic  ϕ -manifolds    ϕ 2  = p ϕ + q I − q η ⊗ ζ  , where p is an arbitrary constant and q is a nonzero constant. The complete lifts of an almost quadratic  ϕ -structure to the metallic structure on   F M   are constructed. We also prove the existence of a metallic structure on   F M   with the aid of the   J ˜   tensor field, which we define. Results for the 2-Form and its derivative are then obtained. Additionally, we derive the expressions of the Nijenhuis tensor of a tensor field   J ˜   on   F M  . Finally, we construct an example of it to finish.
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1. Introduction


Numerous types of f-structures on a differentiable manifold M have been studied by Yano [1], Ishihara and Yano [2], Blair [3], Nakagawa [4] and others. Yano proposed the notion of an f-structure obeying    f 3  + f = 0 , f   is a tensor field of type (1,1), which is the generalization of an almost complex structure and an almost contact structure [5] and investigated some basic results of it. Later, Goldberg and Yano [6] and Goldberg and Perridis [7] defined a polynomial structure   P  ( J )  =  J n  +  a n   J  n − 1   + . . . +  a 2  J +  a 1  I ,   where    a 1  ,  a 2  , ⋯ ,  a n    are real numbers, J is a tensor field of type (1,1) and I is an identity tensor field of type (1,1) on M. Moreover, some important polynomial structures such as an   f ( 3 , ε )  -structure [8], a general quadratic structure [9], an almost complex structure and an almost product structure [1],   ϕ ( 4 , ± 2 )  -structures [10] and an almost r-contact structure [11] are studied and the fundamental results are established in these papers.



Recently, the polynomial structure    J 2  = p J + q I ,  p , q ∈ N ,   where  N  is the set of natural numbers, of degree 2 is known as a metallic structure on M [12,13,14]. For specific values of p and q, metallic structures become prominent structures given below:



	p
	q
	Structure



	0
	1
	an almost product structure [15]



	0
	−1
	an almost complex structure [16,17]



	1
	1
	a golden structure [18,19]



	2
	1
	a silver structure [20]








Hretceanu and Crasmareanu [21] initiated the study of golden and metallic structures on a Riemannian manifold and interpreted the geometry of submanifolds admitting both structures on M. The various geometric properties of such structures in a metallic (and golden) Riemannian manifold and a metallic (and golden) warped product Riemannian manifold were studied in [22,23,24,25,26]. Debnath and Konar [27] defined a new type of structure named as an almost quadratic  ϕ -structure   ( ϕ , ζ , η )   on M and studied some geometric properties of such structures. Next, Gonul et al. [28] established the relationship between an almost quadratic metric  ϕ -structure and a metallic structure on M. Most recently, Gok et al. [29] defined a generalized structure namely    f  ( a , b )    ( 3 , 2 , 1 )   -structures on manifolds and construct a framed    f  ( a , b )    ( 3 , 2 , 1 )   -structures on M.



On the other hand, let M be an m-dimensional differentiable manifold,   T M   its tangent bundle and   F M   its frame bundle. The notion of the mappings, namely vertical, complete and horzontal lifts from the manifold M to its tangent bundle   T M   were introduced by Sasaki [30], Yano and Ishihara [31] and Yano and Davis [32]. Kabayashi and Nomizu [33], Mok [34] and Okubo [35] have studied the complete lift of a vector field  A  to   F M  . The geometric structures such as an almost contact metric structure   ( ϕ , ζ , η , g )  , and almost complex structures J on   F M   have been studied by Bonome et al. [16], who established the integrability and normality of such structures on   F M  .



In [36], Khan has introduced a tensor field   J ˜   on   F M   and proved that   J ˜   is a metallic structure on   F M  . The integrability condition for the diagonal and horizontal lifts of the metallic structure   J ˜   on   F M   is established. The geometric structures on   F M   have been studied by Cordero et al. [37], Kowalski [38], Sekizawa [39], Kowalski and Sekizawa [40], Niedzialomski [41], Lachieze-Rey [42], Khan [43,44,45] and many more.



The main objective of this paper can be summarized as follows:




	
We study the complete lifts of an almost quadratic  ϕ -structure to the metallic structure on   F M  .



	
We establish the existence of a metallic structure on   F M   in the tensor field   J ˜  , which we define.



	
We obtain results on the 2-Form and its derivative on   F M  .



	
We derive the expressions of the Nijenhuis tensor of a tensor field   J ˜   on   F M  .



	
We construct an example related to it.








Remark:    ℑ a b   ( M )    and    ℑ a b   ( F M )    are symbolized as the set of all   ( a , b )  -type tensor fields in M and   F M   respectively [17].




2. Preliminaries


Let   F , A , f   and  η  be a tensor field of type (1,1), a vector field, a function and a 1-form, respectively, on M. The horizontal, vertical and  α -vertical lifts of   F , A , f   and  η  are represented by    F H  ,  A H  ,  A  ( α )   ,  f H  ,  η V    and   η  H α    on   F M   and they are expressed in terms of partial differential equations as [16,17]


     A H    =     A i   ∂  ∂  A i    −  A i   Γ  i k  h   A α k   ∂  ∂  A h    ,     



(1)






     A  ( α )     =     A i   ∂  ∂  A α i    ,       F H    =     F j h   ∂  ∂  A h    ⊗ d  x j  +  A α k   (  Γ  j k  i   F i h  −  Γ  i k  h   F j i  )   ∂  ∂  A α h    ,     



(2)






       ⊗ d  x j  +  δ α β   F j h   ∂  ∂  A α h    ⊗ d  X β j  ,     



(3)






     η V    =     η i  d  x i  ,     



(4)






     η  H α     =     A α j   Γ  i j  h   η h  d  x i  +  η i  d  X α i  ,     



(5)






     A H    =     ∑  α = 1  m   (  A α j   Γ  i j  h   η h  d  x i  +  η i  d  X α i  )  ,     



(6)




where    Γ  i j  h  ,  A i  ,  F j h    and   η i   are the local components of a linear connection ∇,  A , F and  η , respectively on M.



Proposition 1. 

  ∀ A , B ∈  ℑ 0 1   ( M )   , by using mathematical operators, we have the following


       A H   (  f V  )     =      ( A  ( f )  )  V   ) ,         A  ( α )    (  f V  )     =    0 ,        F H   (  A  ( α )   )     =      ( F  ( A )  )  α  ,        F H   (  A H  )     =      ( F  ( A )  )  H  ,        η V   (  A H  )     =      ( F  ( A )  )  V  ,        η V   (  A  ( α )   )     =    0 ,        η  H α    (  A H  )     =    0 ,        η  H α    (  A  ( β )   )     =     δ α β    ( η  ( A )  )  V  ,      



(7)




where   α , β = 1 , ⋯ , m   and   δ β α   denotes the Kronecker delta.





Proposition 2. 

Let   ∀ A , B ∈  ℑ 0 1   ( M )   . Then, we have the following


      [  A  ( α )   ,  B  ( β )   ]    =    0 ,       [  A H  ,  B  ( α )   ]    =      (  ∇ X  Y )   ( α )   ,       [  A H  ,  B H  ]    =      [ A , B ]  H  − γ R  ( A , B )  ,      



(8)




where   R  ( A , B )  =  [  ∇ A  ,  ∇ B  ]  −  ∇  [ A , B ]    , R is the curvature tensor of ∇.





Let g be a Riemannian metric on a Riemannian manifold M and   g D   its diagonal metric on   F M  , then


      g D   (  A H  ,  B H  )     =      { g  ( A , B )  }  V  ,        g D   (  A H  ,  B  ( α )   )     =    0 ,        g D   (  A  ( α )   ,  B  ( β )   )     =     δ  α β     { g  ( A , B )  }  V  , ∀ α , β = 1 , ⋯ , m     



(9)




and


     2  g D   (   ∇ ˜   A ˜    B ˜  ,  C ˜  )     =     A ˜   (  g D   (  B ˜  ,  C ˜  )  )  +  B ˜   (  g D   (  C ˜  ,  A ˜  )  )  −  C ˜   (  g D   (  A ˜  ,  B ˜  )  )        +     g D   (  [  A ˜  ,  B ˜  ]  ,  C ˜  )  +  g D   (  [  C ˜  ,  A ˜  ]  ,  B ˜  )  +  g D   (  A ˜  ,  [  C ˜  ,  B ˜  ]  )  ,     



(10)







  ∀  A ˜  ,  B ˜  ∈  ℑ 0 1   ( F M )   , where ∇ and   ∇ ˜   represent the Levi-Civita connection of   ( M , g )   and   ( F M ,  g D  )  , respectively.



Proposition 3. 

  ∀ A , B ∈  ℑ 0 1   ( M )   , by using mathematical operators, we have the following


        ∇ ˜   A  ( α )     B  ( β )      =    0 ,        g D   (    ∇ ˜   A  ( α )     B H  ,  C  ( β )   )    =    0 ,        g D   (   ∇ ˜   A  ( α )     B H  ,  C H  )     =    −  1 2   g D   ( γ R  ( C , B )  ,  A  ( α )   )  ,        g D   (   ∇ ˜   A H    B  ( α )   ,  C  ( β )   )     =     δ  α β     { g  (  ∇ A  B , C )  }  V  ,        g D   (   ∇ ˜   A H    B  ( α )   ,  C H  )     =    −  1 2   g D   ( γ R  ( C , A )  ,  B  ( α )   )  ,        g D   (   ∇ ˜   A H    B H  ,  C  ( α )   )     =    −  1 2   g D   ( γ R  ( A , B )  ,  C  ( α )   )  ,        g D   (   ∇ ˜   A H    B H  ,  C H  )     =      { g  (  ∇ A  B , C )  }  V  .      



(11)









2.1. Metallic Structure


If a (1, 1) tensor field J obeying


   J 2  = p J + q I ,   p , q ∈ N ,  



(12)




where  N  is the set of natural numbers and I is an identity operator, determines a polynomial structure on a manifold M, the structure is referred to as metallic. A metallic manifold is defined as   ( M , J )   when a manifold M possesses a metallic structure (MS) J.



The Nijenhuis tensor   N J   of J is expressed as


   N J   ( A , B )  =  [ J A , J B ]  − J  [ J A , B ]  − J  [ A , J B ]  +  J 2   [ A , B ]  ,  



(13)




  ∀ A , B ∈  ℑ 0 1   ( M )   .




2.2. Almost Quadratic  ϕ -Structure


An   m ( = 2 n + 1 )  -dimensional differentiable manifold M with a non-null tensor field  ϕ  of type (1,1), a 1-form  η  and a vector field  ζ  on M satisfies


     ϕ 2    =    p ϕ + q I − q η ⊗ ζ ,    p 2  + 4 q ≠ 0 ,     



(14)






     η ( ζ )    =    1 ,   η ∘ ϕ = 0 ,   ϕ ( ζ ) = 0 ,     



(15)




where p is an arbitrary constant and   q ≠ 0  . The structure   ( ϕ , ζ , η )   is called an almost quadratic  ϕ -structure on M and the manifold   ( M , ϕ , ζ , η )   is called an almost quadratic  ϕ -manifold [27,28].



Furthermore,


  g ( ϕ A , B ) = g ( A , ϕ B )  



(16)




and


  g ( ϕ A , ϕ B ) = p g ( ϕ A , B ) + q g ( A , B ) − q η ( A ) η ( B ) ) .  



(17)







The structure   ( ϕ , ζ , η , g )   is referred to as an almost quadratic metric  ϕ -structure and   ( M , ϕ , ζ , η , g )   is called an almost quadratic metric  ϕ -manifold.



In addition, the 1-form  η  is associated with g such that


  g ( A , ζ ) = η ( A )  








and the fundamental 2-Form  Φ  is given by [3]


  Φ ( A , B ) = g ( A , ϕ B ) .  



(18)







The Nijenhuis tensor of   ( ϕ , ζ , η )   is denoted by   N ϕ   and is given by


   N ϕ   ( A , B )  =  [ ϕ A , ϕ B ]  − ϕ  [ ϕ A , B ]  − ϕ  [ A , ϕ B ]  +  ϕ 2   [ A , B ]  ,  



(19)







  ∀ A , B ∈  ℑ 0 1   ( M )   .





3. Proposed Theorems on FM Admitting Metallic Structures on Almost Quadratic  ϕ -Manifolds


In this section, we construct the complete lifts of an almost quadratic  ϕ -structure to the metallic structure on   F M  .



Next, we obtain the results on the 2-Form and its derivative on   F M  .



Boname et al. [16] proposed and gave the definition of   J ˜   on   F M   as


     J ˜    =     ϕ H  +  ∑  α = 1  n   η  H α   ⊗  ζ  ( α + n )   −  ∑  α = 1  n   η  H  α + n    ⊗  ζ  ( α )         +     η V  ⊗  ζ  ( 2 n + 1 )   −  η  H  2 n + 1    ⊗  ζ H  .     



(20)







Recently, Khan [36] proposed and gave the definition of the tensor field   J ˜   on   F M   as


     J ˜    =     p 2  I −    2  σ p q  − p  2    [   ϕ H  +  ∑  α = 1  n   η  H α   ⊗  ζ  ( α + n )         −     ∑  α = 1  n   η  H  α + n    ⊗  ζ  ( α )   +  η V  ⊗  ζ  ( 2 n + 1 )   −  η  H  2 n + 1    ⊗  ζ H   ] ,      



(21)




where   η =  η i  d  x i   ,    η V  =  η i  d  x i    and    η  H α   =  A α j   Γ  i j  h   η h  d  x i  +  η i  d  x α i   .



Motivated by the above definitions, let us introduce a tensor field   J ˜   of type (1,1) on   F M   as


     J ˜    =     p 2  I − A  [  ϕ H  +  q  {   ∑  α = 1  n   η  H α   ⊗  ζ  ( α + n )         −     ∑  α = 1  n   η  H  α + n    ⊗  ζ  ( α )   +  η V  ⊗  ζ  ( 2 n + 1 )   −  η  H  2 n + 1    ⊗  ζ H   } ]  ,     



(22)




where   A =   2  σ p q  − p   2   p  ϕ H  + q      ,   η =  η i  d  x i   ,



   η V  =  η i  d  x i    and    η  H α   =  A α j   Γ  i j  h   η h  d  x i  +  η i  d  x α i   .



Theorem 1. 

Let   A ˜   be a vector field on   F M  . Then   J ˜   given by (22) is a metallic structure on   F M  .





Proof. 

To prove that   J ˜   defined in (22) is a metallic structure, we have to prove that


    J ˜  2   A ˜  = p  J ˜   (  A ˜  )  + q I ; p , q ∈ N .  



(23)







□





Taking the horizontal lift   A H   and   β  t h   -vertical lift   A  ( β )    for each   β = 1 , ⋯ 2 n + 1   on both sides of (22), we infer


      J ˜   (  A  ( β )   )     =     p 2   A  ( β )   − A  [   ( ϕ A )   ( β )   +  q  {  ε  ( β )   ζ  ( β + ε ( β ) n )         −     δ  2 n + 1  β  η   ( A )  V   ξ H   } ]  ,     



(24)




where


  ε  ( β )  =      1 ,      β ≤ n  ,       − 1 ,     n < β ≤ 2 n ,       0 ,      β = 2 n + 1  ,       



(25)




and


   J ˜   (  A H  )  =  p 2   A H  − A  [   ( ϕ A )  H  +  q   { η   ( A )  V   ζ  ( 2 n + 1 )   }  ]  .  



(26)







In view of (22), we provide


      J ˜   (  ϕ H   A ˜  )     =     p 2   ϕ H   A ˜  − A  [ −  A ˜  +  q  {   ∑  α = 1  n   η  H α    (  A ˜  )   ζ  ( α + n )         −     ∑  α = 1  n   η  H  α + n     (  A ˜  )   ζ  ( α )   +  η V   (  A ˜  )   ζ  ( 2 n + 1 )   −  η  H  2 n + 1     (  A ˜  )   ζ H   } ]  ,     



(27)






      J ˜   (  ζ  ( α )   )     =     p 2   ζ  ( α )   − A  q   (  ζ  ( α + n )   −  ζ H  )  ,     










   J ˜   (  ζ H  )  =  p 2   ζ H  − A  q   ζ  ( 2 n + 1 )   ,  








and


       J ˜  2   (  A ˜  )     =     p 2  J  A ˜  − A  [  J ˜   (  ϕ H   A ˜  )  +  q  {   ∑  α = 1  n   η  H α    (  A ˜  )   J ˜   (  ζ  ( α + n )   )        −     ∑  α = 1  n   η  H  α + n     (  A ˜  )   J ˜   (  ζ  ( α )   )  +  η V   (  A ˜  )   J ˜   (  ζ  ( 2 n + 1 )   )  −  η  H  2 n + 1     (  A ˜  )   J ˜   (  ζ H  )   } ]  ,         J ˜  2   (  A ˜  )     =    p  J ˜   (  A ˜  )  + q  A ˜  .     



(28)







Definition 1. 

The 2-Form Ω of   J ˜   is given by


   Ω  (  A ˜  ,  B ˜  )  =  g D   (  A ˜  ,  J ˜   B ˜  )  ,   



(29)




  ∀  A ˜  ,  B ˜  ∈  ℑ 0 1   ( F M )   .





Theorem 2. 

The 2-Form Ω of   (  g D  ,  J ˜  )   on   F M   is given by


       ( i )    Ω  (  A H  ,  B H  )     =     p 2  g   ( A , B )  V  − A Φ   ( A , B )  V  ,        ( i i )    Ω  (  A H  ,  B  ( β )   )     =    A  q   δ  2 n + 1  β  η   ( A )  V  η   ( B )  V  ,        ( i i i )    Ω  (  A  ( β )   ,  B  ( μ )   )     =     p 2   δ μ β    ( g  ( A , B )  )  V   − A [   δ μ β  Φ   ( A , B )  V        +     q  ε  ( μ )   δ  μ + ε ( μ ) n   β + ε ( β ) n   η   ( A )  V  η   ( B )  V   ] ,       








where   α , β , μ = 1 , ⋯ , 2 n + 1   and   ∀ A , B ∈  ℑ 0 1   ( M )   .





Proof. 

Using (9) and (29), we infer


      ( i )    Ω  (  A H  ,  B H  )     =     g D   (  A H  ,  p 2   B H  − A  [   ( ϕ B )  H  +  q  η   ( B )  V   ζ  ( 2 n + 1 )   ]  )  ,       =     p 2  g   ( A , B )  V  − A Φ   ( A , B )  V  ,        ( i i )    Ω  (  A H  ,  B  ( β )   )     =     g D   (  A H  ,  p 2   B  ( β )   − A [    ( ϕ B )   ( β )         +     q   { ε  ( β )  η   ( B )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  η   ( B )  V   ζ H  ]   ) }  .       =    A  q   δ  2 n + 1  β  η   ( A )  V  η   ( B )  V  ,        ( i i i )    Ω  (  A  ( β )   ,  B  ( μ )   )     =     g D   (  A  ( β )   ,  p 2   B  ( μ )   − A [    ( ϕ B )   ( μ )         +     q   { ε  ( β )  η   ( B )  V   ζ  ( μ + ε ( μ ) n )   −  δ  2 n + 1  μ  η   ( B )  V   ζ H  ]   ) }        =     p 2   δ μ β    ( g  ( A , B )  )  V   − A [   δ μ β  Φ   ( A , B )  V        +     q  ε  ( μ )   δ  μ + ε ( μ ) n   β + ε ( β ) n   η   ( A )  V  η   ( B )  V   ] .      



(30)







□





Theorem 3. 

The differential   d Ω   on   F M   is expressed as


       ( i )    d Ω  (  A H  ,  B H  ,  C H  )     =     1 3   {  p 2  [    ( X g  ( B , C )  )  V  − g   (  [ A , B ]  , C )  V  −   ( Y g  ( B , C )  )  V        +    g   (  [ A , C ]  , B )  V  +   ( Z g  ( A , B )  )  V  − g   (  [ B , C ]  , A )  V   ]        −      A [ ( A  ( Φ  ( B , C )  )   V    − ( B  ( Φ  ( A , C )  )   V        +    ( C   ( Φ  ( A , B )  )  V  −  ( Φ   (  [ A , B ]  , C )  V  )  +  ( Φ   (  [ A , C ]  , B )  V  )        −     ( Φ   (  [ B , C ]  , A )  V  )  + Ω  ( γ R  ( A , B )  ,  C H  )        −    Ω  ( γ R  ( A , C )  ,  B H  )  + Ω  ( γ R  ( B , C )  ,  A H  )   } ,         ( i i )    d Ω  (  A H  ,  B H  ,  C  ( β )   )     =     1 3   { A  q  [   δ  2 n + 1  β    ( A η  ( C )  η  ( B )  )  V        −     δ  2 n + 1  β    ( B η  ( C )  η  ( A )  )  V        −     δ  2 n + 1  β    ( η  (  [ A , B ]  )  η  ( C )  )  V  + Ω  ( γ R  ( A , B )  ,  C  ( β )   )        +     δ  2 n + 1  β    ( η  (  ∇ X  Z )  η  ( B )  )  V        −     δ  2 n + 1  β    ( η  (  ∇ Y  Z )  η  ( A )  )  V   ] }  ,        ( i i i )    d Ω  (  A H  ,  B  ( β )   ,  C  ( μ )   )     =     1 3   {   p 2   δ α β   (  ∇ X  g )    ( B , C )  V  − A  δ α β   (  ∇ A  Φ )    ( B , C )  V        +     q  ε  ( α )   δ  α +  q  ε  ( α )  n  β   η   ( B )  V   (  ∇ A  η )  C    ) V  + η   ( C )  V   (  ∇ A  η )  B )  V    } ,         ( i v )    d Ω  (  A  ( α )   ,  B  ( β )   ,  C  ( μ )   )     =    0 ,      








  ∀ A , B , C ∈  ℑ 0 1   ( M )   .





Proof. 

The differential   d Ω   is given by


     3 d Ω (  A ˜  ,  B ˜  ,  C ˜  )    =    {  A ˜   ( Ω  (  B ˜  ,  C ˜  )  )  −  B ˜   ( Ω  (  A ˜  ,  C ˜  )  )  +  C ˜   ( Ω  (  A ˜  ,  B ˜  )  )        −    Ω  (  [  A ˜  ,  B ˜  ]  ,  C ˜  )  + Ω  (  [  A ˜  ,  C ˜  ]  ,  B ˜  )  − Ω  (  [  B ˜  ,  C ˜  ]  ,  A ˜  )   } ,      











  ∀  A ˜  ,  B ˜  ,  C ˜  ∈  ℑ 0 1   ( F M )   .


      ( i )    3 d Ω  (  A H  ,  B H  ,  C H  )     =     p 2   [   A H   ( g   ( B , C )  V  )  −  B H   ( g   ( A , C )  V  )        +     C H   ( g   ( A , B )  V  )   ] − A [   A H   ( Φ   ( B , C )  V  )        −     B H   ( Φ   ( A , C )  V  )  +  C H   ( Φ   ( A , B )  V  )   ]        −     p 2  g   (  [ A , B ]  , C )  V  + A  ( Φ   (  [ A , B ]  , C )  V  )        +    Ω  ( γ R  ( A , B )  ,  C H  )  +  p 2  g   (  [ A , C ]  , B )  V        +    A  ( Φ   (  [ A , C ]  , B )  V  )  − Ω  ( γ R  ( A , C )  ,  B H  )        −     p 2  g   (  [ B , C ]  , A )  V  + A  ( Φ   (  [ B , C ]  , A )  V  )        +    Ω ( γ R  ( B , C )  ,  A H  )       =     p 2    [  ( X g  ( B , C )  )   V  − g   (  [ A , B ]  , C )  V  −   ( Y g  ( B , C )  )  V        +    g   (  [ A , C ]  , B )  V  +   ( Z g  ( A , B )  )  V  − g   (  [ B , C ]  , A )  V   ]        −      A [ ( A  ( Φ  ( B , C )  )   V    − ( B  ( Φ  ( A , C )  )   V        +    ( C   ( Φ  ( A , B )  )  V  −  ( Φ   (  [ A , B ]  , C )  V  )  +  ( Φ   (  [ A , C ]  , B )  V  )        −     ( Φ   (  [ B , C ]  , A )  V  )  + Ω  ( γ R  ( A , B )  ,  C H  )        −    Ω  ( γ R  ( A , C )  ,  B H  )  + Ω  ( γ R  ( B , C )  ,  A H  )  ,        ( i i )    3 d Ω  (  A H  ,  B H  ,  C  ( β )   )     =    A  q   [   A H   δ  2 n + 1  β  η   ( C )  V  η   ( B )  V        −     B H   δ  2 n + 1  β  η   ( C )  V  η   ( A )  V        +     C  ( β )    {  p 2  g   ( A , B )  V  − Φ   ( A , B )  V  }        −     δ  2 n + 1  β    ( η  (  [ A , B ]  )  η  ( C )  )  V  + Ω  ( γ R  ( A , B )  ,  C  ( β )   )        +     δ  2 n + 1  β    ( η  (  ∇ X  Z )  η  ( B )  )  V        −     δ  2 n + 1  β    ( η  (  ∇ Y  Z )  η  ( A )  )  V   ]        =    A  q   [   δ  2 n + 1  β    ( A η  ( C )  η  ( B )  )  V        −     δ  2 n + 1  β    ( B η  ( C )  η  ( A )  )  V        −     δ  2 n + 1  β    ( η  (  [ A , B ]  )  η  ( C )  )  V  + Ω  ( γ R  ( A , B )  ,  C  ( β )   )        +     δ  2 n + 1  β    ( η  (  ∇ X  Z )  η  ( B )  )  V        −     δ  2 n + 1  β    ( η  (  ∇ Y  Z )  η  ( A )  )  V   ] .      











Formulas   ( i i i )   and   ( i v )   can be easily obtained. □






4. Behavior of the Nijehuis Tensor on FM


The Nijenhuis tensor of   J ˜   is expressed by


  N  (  A ˜  ,  B ˜  )  =  [  J ˜   A ˜  ,  J ˜   B ˜  ]  −  J ˜   [  J ˜   A ˜  ,  B ˜  ]  −  J ˜   [  A ˜  ,  J ˜   B ˜  ]  +   J ˜  2   [  A ˜  ,  B ˜  ]  .  











Theorem 4. 

  ∀  A ˜  ,  B ˜  ∈  ℑ 0 1   ( F M )   , then


       ( i )    N  (  A H  ,  B H  )     =      p A  2   {   (  ∇  ϕ B   A )   ( β )   −   (  ∇  ϕ A   B )   ( β )   }        +     A 2    [ ϕ A , ϕ B ]  H  − A  J ˜    [ ϕ A , B ]  H        −    A  J ˜    [ A , ϕ B ]  H  +   J ˜  2    [ A , B ]  H        +     A 2    ( η  ( B )   V   (   (  ∇  ϕ A   ζ )   ( 2 n + 1 )   −   (  ∇  ϕ B   ζ )   ( 2 n + 1 )   )        +     A 2   (   (  ∇  ϕ A   ζ )   ( 2 n + 1 )   +   ( ϕ  ∇ A  ζ )   ( 2 n + 1 )   )   ( η    ( B )  V        −     A 2   (   (  ∇  ϕ B   ζ )   ( 2 n + 1 )   +   ( ϕ  ∇ B  ζ )   ( 2 n + 1 )   )   ( η    ( A )  V        +     A 2   ( η   (  ∇ B  ζ )  V  η   ( A )  V  − η   (  ∇ A  ζ )  V  η   ( B )  V  )   ζ H        +      p A  2   {   (  ∇ B  A )   ( 2 n + 1 )   −   (  ∇ A  B )   ( 2 n + 1 )   }        −     A 2  γ R  ( ϕ A , ϕ B )  + A  J ˜  γ R  ( ϕ A , B )        +    A  J ˜  γ R  ( ϕ A , B )  −   J ˜  2  γ R  ( A , B )  ,        ( i i )    N  (  A  ( α )   ,  B  ( β )   )     =     q   {   A 2   [ (   δ  2 n + 1  β  η   ( B )  V    (  ∇ ζ   ( ϕ A )  )  α        +    ε  ( α )  η   ( A )  V  η   ( B )  V   δ  2 n + 1  β    (  ∇ ζ  ζ )   ( α + ε ( α ) n )         −     δ  2 n + 1  β  η   ( A )  V    (  ∇ ζ   ( ϕ B )  )  α        −    ε  ( β )  η   ( A )  V  η   ( B )  V   δ  2 n + 1  α    (  ∇ ζ  ζ )   ( β + ε ( β ) n )         +     δ  2 n + 1  α   δ  2 n + 1  β   (   [ ζ , ζ ]  H  − γ R  ( ζ , ζ )  )   ]        −      p A  2    (  ∇ ζ  B )   ( β )   −  p 2   δ  2 n + 1  β  η   ( B )  V    (  ∇ A  ζ )   ( α )         −      p A  2   A  ( α )    δ  2 n + 1  α  η   ( A )  V        +     A 2   X  ( α )    δ  2 n + 1  α  η   ( A )  V   (    ( ϕ  ∇ ζ  B )   ( β )         +    ε  ( β )  η   (  ∇ ζ  B )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  η   (  ∇ ζ  B )  V   ζ H   )        −      p A  2   B  ( β )    δ  2 n + 1  α  η   ( B )  V        +     A 2   Y  ( α )    δ  2 n + 1  α  η   ( B )  V   (    ( ϕ  ∇ ζ  A )   ( β )         +    ε  ( β )  η   (  ∇ ζ  A )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  η   (  ∇ ζ  A )  V   ζ H   ) }  ,      










       ( i i i )    N  (  A H  ,  B  ( β )   )     =    −   p A  2   q   δ  2 n + 1  β  η   ( B )  V    (  ∇ ζ  A )   ( β )   −   p A  2    (  ∇  ϕ A   B )   ( β )         +     A 2    (  ∇  ϕ A   ϕ B )   ( β )   +  A 2   q   { ε   ( β )  η   ( B )  V    (  ∇  ϕ A   ζ )   ( β + ε ( β ) n )         −     δ  2 n + 1  β  η   ( B )  V   (  [ ϕ A , ζ ]  − γ R  ( ϕ A , ζ )  )        +     δ  2 n + 1  β  η   ( A )  V  η   ( B )  V    (  ∇ ζ  ζ )   ( 2 n + 1 )   − ϕ  ∇  ϕ A     B )   ( β )         +    ε  ( β )  η   (  ∇  ϕ A   B )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  η   (  ∇  ϕ A   B )  V   ζ H   ) }        +      p A  2    (  ∇  ϕ A   B )  V   − p A (    ( ϕ  ∇ X  Y )   ( β )         +    p A (   ( ϕ  ∇ A  ϕ B )   ( β )         +     q   { ε  ( β )  η   (  ∇ X  Y )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  η   (  ∇ X  Y )  V   ζ H  )        +    + ε  ( β )  η   (  ∇ A  ϕ B )  V   ζ  ( β + ε ( β ) n )         −     δ  2 n + 1  β  η   (  ∇ A  ϕ B )  V   ζ H   ) + ε   ( β )  η   ( B )  V    ( ϕ  ∇ A  ζ )   ( β + ε ( β ) n )         +     ε 2   ( β )  η   ( B )  V  η   ( ϕ  ∇ A  ζ )  V   ζ  ( β + ε ( β ) n )   −  δ  2 n + 1  β  ε  ( β )  η   ( B )  V  η   ( ϕ  ∇ A  ζ )  V   ζ H   )        −     δ  2 n + 1  β  η   ( B )  V   (   ( ϕ  [ A , ζ ]  )  H  + η   [ A , ζ ]  V   ζ  ( 2 n + 1 )   , − γ  J ˜  R  ( A , ζ )  )   ) }       








where   α , β = 1 , ⋯ , 2 n + 1  .





Proof. 

Using (22) and Theorem (1), Theorem (4) is proven. □






5. Example


Let   {  e i  , ϕ  e i  , ζ }   be a basis in   ( M , ϕ , ζ , η , g )   where i denotes 1 to n. The coderivative   δ Ω   with basis   {  e i H  ,   ( ϕ  e i  )  H  ,  ζ H  ,  e i  ( α )   ,   ( ϕ  e i  )   ( α )   ,  ζ  ( α )   }   can be expressed as [16]


     δ Ω (  A ˜  )    =    −  ∑  i = 1  n   {  (   ∇ ˜   e i H   Ω )   (  e i H  ,  A ˜  )  +  (   ∇ ˜    ( ϕ  e i  )  H   Ω )   (   ( ϕ  e i  )  H  ,  A ˜  )  }        +     ∑  j = 1  n   (   ∇ ˜   ζ  ( j )    Ω )   (  ζ  ( j )   ,  A ˜  )  −  (   ∇ ˜   ζ  ( 2 n + 1 )    Ω )   (  ζ  ( 2 n + 1 )   ,  A ˜  )        −     (   ∇ ˜   ζ H   Ω )   (  ζ H  ,  A ˜  )  −  ∑  α = 1   2 n + 1    ∑  i = 1  n   {   ∇ ˜   e i  ( α )    Ω )   (  e i  ( α )   ,  A ˜  )        +     (   ∇ ˜    ( ϕ  e i  )   ( α )    F )   (   ( ϕ  e i  )   ( α )   ,  A ˜  )   } .      



(31)







Taking    A ˜  =  A  ( β )     in (31), using (11) and (29), we acquire


     δ Ω (  A  ( β )   )    =    −  ∑  i = 1  n   {  g D   (  ∇  e i H    e i H  ,  J ˜   A  ( β )   )  +  g D   (  ∇    ( ϕ E  i    )  H      ( ϕ  e i  )  H  ,  J ˜   A  ( β )   )  }        −     g D   (  ∇  ζ H    ζ H  ,  J ˜   A  ( β )   )        =    −  ∑  i = 1  n   { −  g D   ( γ R  (  e i  ,  e i  )  ,  p 2   A  ( β )   )  − A [  −  g D   ( γ R  ( ϕ  e i  ,  e i  )  ,  A  ( β )   )        −     q   δ  2 n + 1  β  η   ( A )  V  g   (  ∇  e i   ζ ,  e i  )  V  −  q   δ  2 n + 1  β  η   ( A )  V  g   (  ∇  ϕ  e i    ζ , ϕ  e i  )  V   }        +     q   δ  2 n + 1  β  g  (  ∇  ζ H    ζ H  ,  A V  )   ]        =     p 2   ∑  i = 1  n   {  g D   ( γ R  (  e i  ,  e i  )  ,  A  ( β )   )  − A [  −  g D   ( γ R  (  e i  , ϕ  e i  )  ,  A  ( β )   )        +     q   δ  2 n + 1  β   { η   ( A )  V    ( δ η )  V  ,  (  ∇ ζ  η )   A V  }   ] ,      








where


     δ η = −  ∑  i = 1  n   {  (  ∇  e i   η )   ζ i  +  (  ∇  ϕ  e i    η )  ϕ  ζ i  }      








and


      (  ∇ ζ  η )  A = g  ( A ,  ∇ ζ  ζ )  .     











Taking    A ˜  =  A H    in (31), using (11) and (29), we acquire


     δ Ω (  A H  )    =    −  ∑  i = 1  n   {   g D   (  ∇  e i H    e i H  ,  J ˜   A H  )  +  g D   (  ∇    ( ϕ E  i    )  H      ( ϕ  e i  )  H  ,  J ˜   A H  }        −     g D   (  ∇  ζ  ( 2 n + 1 )     ζ  ( 2 n + 1 )   ,  J ˜   A H  )  −  g D   (  ∇  ζ H    ζ H  ,  J ˜   A H  )        −     ∑  α = 1   2 n + 1    ∑  i = 1  n   (   g D   (  ∇  e i  ( α )     e i  ( α )   ,  J ˜   A H  )  +  g D   (  ∇    ( ϕ E  i    )   ( α )       ( ϕ  e i  )   ( α )   ,  J ˜   A H  )  .       =    −  p 2   ∑  i = 1  n   [   ( g  (  ∇  e i    e i  , A )  )  V  +   ( g  (  ∇  ϕ  e i    ϕ  e i  , A )  )  V  +   ( g  (  ∇ ζ  ζ , A )  )  V  ]        −    A [ −  ∑  i = 1  n   ( − g   (  (  ∇  e i   ϕ )   e i  , A )  V  − g   (  (  ∇  ϕ  e i    ϕ )  ϕ  e i  , A )  V  )        +    g   (  (  ∇ ζ  ϕ )  ζ , A )  V   ] .        =    −  p 2   ∑  i = 1  n   [   ( g  (  ∇  e i    e i  , A )  )  V  +   ( g  (  ∇  ϕ  e i    ϕ  e i  , A )  )  V  +   ( g  (  ∇ ζ  ζ , A )  )  V  ]        −    A   ( δ Φ  ( A )  )  V  ,     








where


  δ Φ  ( A )  = −  ∑  i = 1  n   (  ∇  e i   Φ )   (  e i  , A )  +  (  ∇  ϕ  e i    Φ )   ( ϕ  e i  , A )   ) −   (  ∇ ζ  Φ )   ( ζ , A )  .  








and


   (  ∇ A  Φ )   ( B , C )   = − g (   (  ∇ A  ϕ )   ( B , C )  .  
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