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Abstract: Elasticity is commonly associated with regular oscillations, which are prevalent in various
systems at different scales. However, chaotic oscillations are rarely connected to elasticity. While
overdamped chaotic systems have received significant attention, there has been limited exploration
of elasticity-driven systems. In this study, we investigate the influence of elasticity on the dynamics
of chaotic systems by examining diverse models derived from mechanics, immunology, ecology,
and rheology. Through numerical MATLAB simulations obtained by using an ode15s solver, we
observe that elasticity profoundly alters the chaotic dynamics of these systems. As a result, we
term the underlying equations as the elastic-Lorenz equations. Specifically, we extensively analyze
a viscoelastic fluid confined within a closed-loop thermosyphon, considering general heat flux, to
demonstrate the impact of the viscoelastic parameter on the model’s chaotic behavior. Our findings
build upon prior research on the asymptotic behavior of this model by incorporating the presence
of a viscoelastic fluid. The results highlight the non-trivial and non-monotonic role of elasticity in
understanding the control, or lack thereof, of chaotic behavior across different scales.

Keywords: chaotic behavior; nonlinear dynamics; viscoelastic fluids; Lorenz-equations
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1. Introduction

The study of chaos theory has been a significant field in both physics and mathematics
for over half a century. It has provided valuable insights into a range of natural phenomena,
including weather patterns and celestial motion. One of the most notable examples of
chaotic systems is the groundbreaking Lorenz model, developed by Edward Lorenz in the
early 1960s [1]. This model, which describes the behavior of a simple system composed of
three interconnected nonlinear ordinary differential equations, has been used to explain a
wide variety of phenomena, such as fluid convection and airplane wing oscillation [2].

Despite its success, the Lorenz model is just one example of a chaotic system. Many
other systems may also exhibit chaotic behavior [3]. Chaotic systems have complex dy-
namics and are sensitive to initial conditions, meaning that even slight changes in these
conditions can lead to vastly different outcomes over time. This sensitivity presents chal-
lenges for predicting the long-term behavior of chaotic systems, which has implications for
fields like meteorology and climate modeling [4] and characterizing problem complexity [5].

Recently, researchers have begun exploring the role of elasticity in chaotic systems [6].
Elasticity refers to the ability of materials to deform and return to their original shape
when subjected to external forces. Many systems inherently exhibit elastic behavior, such
as underdamped oscillators and viscoelastic fluids, which introduce inertia effects into
their dynamics. However, the influence of elasticity on chaotic systems remains largely
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unexplored, with previous investigations mainly focusing on specific physically motivated
problems [7].

In this paper, we investigate the role of elasticity in chaotic systems by studying
different models borrowed from mechanics [2], ecology [8,9], immunology [10,11], and
rheology [12]. Our primary focus is on the impact of elasticity on the chaotic behavior of
these systems. We perform a detailed numerical study of a viscoelastic fluid confined in a
closed-loop thermosyphon with general heat flux and show the impact of the viscoelastic
parameter on the model’s chaotic behavior. We also extend previous work on asymptotic be-
havior for this model, considering a viscoelastic fluid [6]. There are alternative approaches
to model reduction. In particular, in [7], the so-called sparse identification of nonlinear
dynamics (SINDy) method is applied to study the chaotic dynamics of a Newtonian fluid
in a closed-loop thermosyphon. SINDy aims to discover the underlying dynamics of a
system informed by data. While these methods allow extending the range of validity of
the reduced-dimensionality model, we aim to provide a top-down derivation based on
constitutive equations from different fields.

In particular, we consider a non-Newtonian heat transfer law as an alternative to
the widely used Newton’s linear cooling model used in [13], where we also consider a
viscoelastic fluid. The heat transfer law used in this paper is the main difference of this work
with respect to previous work [13]. However, it is used in the thermosyphon model for a
Newtonian fluid (without viscoelasticity), as [14,15]. The novelty of our work is twofold:
firstly, we show—using different examples—how four wildly dissimilar fields present
strikingly similar chaotic behavior through a detailed derivation of effective equations
displaying chaos. Secondly, all of them contain elastic terms (although in the case of
immunology, in a metaphorical way) that, despite the traditional roles attributed to them,
do not necessarily provide periodic oscillations but rather create new and unpredictable
transitions from chaotic to non-chaotic behavior.

The paper is organized as follows. In Section 2, we introduce the four models in their
original context and show that they share similar underlying equations, which we denote
as the elastic-Lorenz equations, generically. In Section 3, we numerically integrate the equa-
tions from Section 2 to illustrate the nontrivial effect of elasticity. We compare and contrast
the results obtained from the three models derived from the thermosyphon equations and
discuss the implications of our findings. Finally, in Section 4, we summarize our main
results and conclusions. We also present appendices for the mathematical derivations.

2. Notations and Mathematical Formulation of the Problems
2.1. Mechanics: A Linear-Jerk-Controlled Chaotic Waterwheel

Inspired by the classic chaotic waterwheel built by Willem Malkus and Lou Howard at
MIT in the 1970s [2], we introduce a simple generalization based on the concept of smooth
control over the jerk [16], used in mechatronics in rigid robotic manipulators [17]. The
jerk is the time derivative of the acceleration. Here, we take the basic chaotic waterwheel
depicted in Figure 1 and add a linear-jerk controller: an actuator that works against the
increase of the jerk. This sort of jerk control is used in elevators to improve the passengers’
comfort during take-up and stopping.

The waterwheel’s mechanism is simple: water is introduced from the top of the system
at a consistent rate. If the flow rate is too slow, the top cups will not receive enough
water to overcome friction, and the wheel will remain stationary. However, when the
inflow rate increases, the top cup becomes heavy enough to set the wheel in motion. The
wheel eventually reaches a stable rotation in either direction because both directions are
equally likely, depending on the initial conditions. Interestingly, a further increase in flow
rate causes the stable rotation to become chaotic. During this chaotic motion, the wheel
rotates in one direction for a few turns before some cups become too full, slowing down
or reversing the wheel’s direction. The wheel changes direction erratically, and observers
have been known to place small bets on its subsequent turn after a minute.
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Figure 1. A cartoon of a linear-jerk-controlled chaotic waterwheel. Water inflow fills the water cups,
creating a torque that keeps the wheel rotating. At the center of the waterwheel, a controlled spring
is designed to control the jerk and avoid (in principle) large pulls.

The equations of motion for the original waterwheel are discussed in Ref. [2] and are
derived from two basic principles:

Iω′ = −νω︸ ︷︷ ︸
damping torque

+ gr
∫ 2π

0
m(θ, t) sin θdθ︸ ︷︷ ︸

gravitational torque

(Rigid-body motion of the wheel) (1)

∂m
∂t

= Q︸︷︷︸
water inflow

−Km︸ ︷︷ ︸
water loss

−ω
∂m
∂θ︸ ︷︷ ︸

water transport

(Conservation of water), (2)

where

• θ = angle in the lab frame.
• ω(t) = θ′, the angular velocity of the wheel.
• α(t) = ω′, the angular acceleration of the wheel.
• m(θ, t) = mass distribution of water at (angular) position θ.
• Q(θ) = water inflow rate.
• r = the wheel’s radius.
• K = the amount of mass lost.
• ν = the viscous damping coefficient.
• I = moment of inertia of the wheel.

As mentioned above, many control systems introduced a jerk-reduction feedback
control. In our case, we introduce an additional mechanism into (1),

Controlling torque: − λω′′ ≡ λα′, (3)

where ω′′ is the angular jerk of the waterwheel. Due to the circular symmetry of the wheel,
we can expand

m(θ, t) =
∞

∑
n=0

[an(t) sin nθ + bn(t) cos nθ].

and

Q(θ) =
∞

∑
n=0

qn cos nθ.
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Following the same derivation using amplitude equations, as in Appendix A (similar
to the derivation in Ref. [2]), we arrive at:

α′ = (−νω + πgra1 − Iα)/λ

ω′ = α

a′1 = ωb1 − Ka1

b′1 = −ωa1 − Kb1 + q1.

(4)

2.2. Immunology: IL7 Receptor Signaling in T Cells

T-cells play a crucial role in the adaptive immune response of jawed vertebrates. The
regulation of T-cell homeostasis is achieved through the secretion and degradation of
cytokines, including interleukin 7 (IL7) [18]. Recent studies have suggested that T-cells
exhibit elastic-type behavior, which could explain their population-level regulation [19].
This elasticity is a macroscopic property that emerges from the coordinated behavior of
individuals rather than from individual agents themselves.

We aim to model the population of T-cells, denoted as x, and the IL7 cytokine, denoted
as h(t), by connecting the dynamics at the receptor level [18] with those at the population
level [18–20]. Specifically, we propose the following equations:

x′′ = −kx− cx′ + λy, (5)

y′ = ϕx− µxz− δy, (6)

z′ = νxy− βz, (7)

Here, k and c represent the T-cell population’s damping coefficient and elastic constant.
The parameter λ measures the force exerted on the population per unit of interleukin y.
The interleukin production rate is ϕ per cell, while the interleukin consumption rate is µ
per cell per IL7 receptor, ρ. The clearance rate of IL7 due to absorption by other cells (rather
than T-cells or dilution in the lymphatic system) is represented by δ. The ligand-induced
expression of IL7 receptors per cell is denoted as ν, and the downregulation rate of IL7
receptors at the cell level is represented by β [18].

2.3. Ecology: The Evolution of Coexisting Populations

Consider a population of four species in an ecological niche. Mathematically, their
dynamics can be modeled using the generalized Lotka–Volterra (gLV) model [8] (or gener-
alizations [9]). According to gLV, the time course of each population follows the first-order
system of non-linear equations

x′i = rixi +
4

∑
j=1

βijxixj, ∀i = 1 . . . 4. (8)

In this case, it is often useful to aggregate species based on their role in the ecosystem
(predator, prey, . . . ). Also, the relevance of each species is calibrated in proportion, bij, to
their diversity. Thus, one can define a meta-population as follows:

xi =
4

∑
i=1

aijyj, and its inverse, (9)

yj =
4

∑
i=1

bjixi, (10)

where the matrix [bij] is the inverse of [aij], namely,

4

∑
j=1

aijbjk = δik,
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where δik is the Kronecker delta function.
Plugging these definitions into (8), we find:

y′j =
4

∑
k=1

4

∑
i=1

bjkrkakiyi +
4

∑
k=1

4

∑
i=1

γjkiykyi, ∀j = 1 . . . 4. (11)

where γjki depends on the matrices a, b, and β. Without defining a specific problem, it is triv-
ial to see that proper choices of b, ri, and β can be mapped into the system of Equation (20)
(Lorenz), specifically, choosing γ1ki = 0. This might be why chaotic oscillations have been
observed in ecological systems [21].

2.4. Rheology

Our final example is the most elaborated one and deserves deeper exposition. Here,
we narrow our focus on examining thermosyphon models that involve viscoelastic fluids.
This presents some interesting peculiarities that could impact the behavior of a Newtonian
fluid, such as water. On one hand, the dynamics exhibit memory, as they depend on past
events. On the other hand, small disturbances cause the fluid to act like an elastic solid
with a resonant frequency that may eventually become significant.

The simplest method of dealing with viscoelasticity is through the use of the Maxwell
constitutive equation [12,22]. Despite being a simplified model, it has been demonstrated
to be valid even for complex fluids like blood, in which red blood cells alter their behavior
based on concentration and vessel geometry [23]. In this model, both Newton’s law of
viscosity and Hooke’s law of elasticity are generalized and supplemented by an evolution
equation for the stress tensor, Σ. The stress tensor is involved in the conservation of
momentum equation.

ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p +∇ · Σ + ρg, (12)

Here, p represents the hydrostatic pressure, ρ stands for the material density, and g denotes
the acceleration caused by gravity (g = 9.81 m/s2). Additionally, the continuity equation is
introduced as a complement to the aforementioned equation, assuming the material to be
incompressible (which holds sufficiently true for liquids):

∇ · v = 0. (13)

In the case of a thin section thermosyphon with a Maxwell fluid, the stress tensor Σ

simplifies to a single independent component, denoted as σ̃. This component follows the
evolution governed by the equation:

µ

E
∂σ̃

∂t
+ σ̃ = µγ̇, (14)

Here, µ represents the viscosity of the fluid, E corresponds to Young’s modulus, and γ̇ is
the only non-zero element of the shear strain rate tensor Γ̇ (which describes the rate of fluid
deformation), defined as

Γ̇ =
(
∇v + (∇v)T

)
.

Under steady flow conditions, Equation (14) reduces to Newton’s law, leading to the well-
known Navier–Stokes equation expressed in Equation (12). Additionally, for short time
scales when we expect an impulsive response from a resting state, Equation (14) simplifies
to Hooke’s law of elasticity.

In order to elucidate the coupling between fluid and thermodynamic mechanisms
discussed in Section 1, we shall establish a mathematical framework that encompasses the
variables of interest: the velocity v, the temperature distribution T within the fluid, and the



Mathematics 2023, 11, 3099 6 of 36

concentration S of the solute as it circulates through the loop. The behavior of the solute
concentration is governed by transport equations.

ρ

(
∂T
∂t

+ v · ∇T
)

= −∇ · JT + KT (15)

ρ

(
∂S
∂t

+ v · ∇S
)

= −∇ · JS + KS (16)

In the given context, JT,S denote the flows or currents of heat and solute concentration,
while KT,S represent external sources of temperature or solute concentration. Generally,
these terms are determined by constitutive equations that involve linear combinations of
gradients of other variables. For example, according to Fourier’s law of heat conduction,
JT = −ν∇T; thus, Equation (15) yields the familiar Laplacian term ν∇2T.

To proceed, we follow the same procedure as in Ref. [24], also summarized in Ap-
pendix A, and we arrive at the following equation, which generalizes Equation (2) for a
viscoelastic fluid.

ρ
µ

E

(
d2v
dt2

)
s
+ ρ

(
dv
dt

)
s
= −ρg cos φ + Fs −∇

(
∂p
∂x

+
µ

E
∂2 p
∂x∂t

)
, (17)

where the term Fs represents the component of the wall law force that acts along the pipe
(more details on this function are provided below).

Additional physical assumptions, constitutive equations, and nondimensionalization
lead to our main system of equations (see Appendix A):

ε
d2v
dt2 +

dv
dt

+ G(v)v =
∮
(T(t, x)− S(t, x)) f (x)dx, v(0) = v0,

dv
dt

(0) = w0

∂T
∂t

+ v
∂T
∂x

= h(t, x) + ν
∂2T
∂x2 , T(0, x) = T0(x)

∂S
∂t

+ v
∂S
∂x

= c
∂2S
∂x2 − b

∂2T
∂x2 , S(0, x) = S0(x)

(18)

The expression h(t, x) + ν ∂2T
∂x2 denotes the heat transfer law along the loop, where h(t, x)

is a known function (refer to [25,26]). As stated in the introduction, this study offers an
alternative approach to the widely used Newton’s linear cooling model discussed in [13].
Our specific focus lies in investigating a non-Newtonian heat transfer law that takes into
account the presence of a viscoelastic fluid.

While previous works, such as [14,15], have employed this heat transfer law in mod-
eling thermosyphons with Newtonian fluids, they did not account for the viscoelastic
effects. Hence, our current investigation merges both extensions, addressing the classical
thermosyphon problem in a comprehensive manner.

In Appendix A, we provide a detailed analytical study of the system, including
the well-posedness of the ODE/PDE model, the existence of a global attractor, and the
construction of an inertial manifold. The inertial manifold enables us to describe the
system’s asymptotic behavior via a unified and explicitly reduced system of ODEs.

3. Numerical Experiments

This section presents numerical experiments using MATLAB to integrate the differen-
tial equations numerically. In particular, we use the solver ode15s for stiff systems.
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As shown in Appendix A, we derive the system of equations

εẇ = 2a1 − 2d1 − G(v)v− w
v̇ = w

ȧ1 = A− ν4π2k2a1 + 2πkva2
ȧ2 = B− 2πva1 − ν4π2a2

ḋ1 = −c4π2d1 + b4π2a1 + v2πd2
ḋ2 = −c4π2d2 + b4π2a1 − v2πd1

(19)

where (a1(t), a2(t)) describe the temperature T(t, x), (d1(t), d2(t)) describe the solute con-
centrations S(t, x) and w(t), andv(t) denotes the acceleration and the velocity of the fluid.

We prove in Appendix A.4 that the asymptotic behavior of the temperature T(t, x) and
the solute concentration S(t, x) are given by the coefficients of Fourier expansions ak(t) and
dk(t), respectively, with k = ±1 for a circular circuit. Moreover, the equation for k = −1 is
the conjugate of k = 1, and this is enough to consider k = 1. Thus, if b1 is the coefficient of
the Fourier expansions of the heat flux, we obtain Equation (A72).

Finally, after of change of variables (see Remark A4), in order to simplify the notations,
we can omit the subscripts since we only have one coefficient; a(t) and d(t) denote the
temperature and solute concentrations, respectively. We consider the real and imaginary
parts of these coefficients, given by

a(t) = a1(t) + ia2(t), d(t) = d1(t) + id2(t) and b1 = A + iB.

Notice that if we assume the viscoelastic parameter ε, and the Soret diffusion coef-
ficients b and c are zero, we recover the model analyzed in [14] for a Newtonian fluid.
Moreover, if we include the Soret effect, but ε = 0, our model reduces to that in Ref. [15].

Hereafter, we consider the full model (19) (that we refer to as Model M3), a simplified
model without the Soret effect (Model M1), and the viscoelastic Lorenz model (Model
M2). Although M1 and M2 are intrinsically equivalent, we study this using the traditional
parametrization to preserve the familiarity with the Lorenz model in the chaos literature.

Also, as the general model (19) supersedes the other two, and it has a ground physical
interpretation, we entitle Sections 3.1 and 3.3 explicitly in terms of the physical assumptions
underlying each model.

3.1. M1 ((v(t), T(t, x)): Thermodiffusion and Viscoelasticity in a Closed-Loop Thermosyphon
without Solute S(t,x)

In this section, we consider a fluid without solute and we analyze and discuss the
behavior of the v(t) and the temperature T(t, x) ( a1(t), and a2(t)) of the fluid, given by the
solutions of the following system:

εẇ = 2a1 − G(v)v− w
v̇ = w

ȧ1 = A− ν4π2k2a1 + 2πkva2
ȧ2 = B− 2πva1 − ν4π2a2

(20)

We describe the results of numerical experiments that were obtained, considering
various parameters of the viscoelastic coefficients.

In the absence of viscoelasticity, the Lorenz-type behavior of the system was observed,
see [14]. Therefore, for the numerical simulations, we take the same values of the parameters
and the initial conditions as in [14] to explore the effect of viscoelasticity on the chaotic
behavior of the system. That is, A = 0, B = 30, and ν = 0.025, and the initial conditions,
are fixed as w(0) =, v(0) = 0, a1(0) = −0.1, and a2(0) = 1.

We study the behavior of the system upon varying the viscoelastic coefficient ε. To
assess the effect of viscoelasticity on the system response, we generated a bifurcation
diagram to visualize the dynamic behavior of the system. The parameter ε serves as a
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control variable that represents the degree of viscoelasticity in the system. By varying ε and
observing the corresponding peaks of the fluid velocity at large times, we can gain valuable
insights into the system’s response under different viscoelastic conditions, see Figure 2.

Figure 2. Bifurcation diagram Model M1. We only vary the viscoelastic parameter ε to emphasize the
role of elasticity in the chaotic/non-chaotic nature of the solutions. Despite the fact that elasticity
is associated with oscillatory motion, we show that new patterns of chaotic behavior arise for large
values of ε.

Through the analysis of the bifurcation diagram, we can observe that if the parameter
value is small, chaos remains as expected. Then, between epsilon 10−2 and 10−1, there
seems to be a region of periodicity that transitions into stable behavior between 10−1

and 10. However, the surprising finding is that near 10, the velocity behavior becomes
more complex.

Given the multidimensional nature of the system, we plot the velocity in temporal
graphs or the impact of the relevant modes of temperature on velocity in phase-space
diagrams. During our analysis, we carefully observe significant qualitative changes in
the system’s behavior. For low enough values of ε, we recover, as expected, Lorenz-type
behaviors observed in [14]; see Figure 3. In fact, the system presents chaotic behavior when
the value of the viscoelastic component is between 10−7 and 10−3.

(a) ε = 10−7 (b) ε = 10−3

Figure 3. Temperature velocity phase diagram (a1, a2, v) for Model M1.

By increasing the viscoelastic coefficient, a significant alteration in the system’s be-
havior becomes apparent. As the coefficient increases within the range of 10−3 to 10−2,
the system’s behavior gradually undergoes a transformation, eventually transitioning into
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a periodic pattern. Observe the emergence of periodic behavior in the velocity at 10−2,
Figure 4, and observe that the phase diagram has simplified for ε = 10−2.4, Figure 5.

Figure 4. Example of velocity evolution for ε = 10−2 for Model M1.

(a) ε = 10−2.4 (b) ε = 10−2

Figure 5. Temperature velocity phase diagram (a1, a2, v) for Model M1.

Beyond 10−2, the system begins to stabilize. For instance, for ε = 10−1, after a
transition, the system has stable behavior. Notice that, in this case, equilibrium is reached.
This behavior holds until ε = 10. However, it is important to note that the transition
becomes more complex as ε is larger; see Figure 6.

(a) ε = 0.1 (b) ε = 5

(c) ε = 9 (d) ε = 9.55
Figure 6. Comparison of four velocity time-courses for different values of ε and fixing the rest of the
parameters of Model M1. Note how small changes in ε between panels (c,d) also induce transient
chaotic behavior followed by stability at a fixed point.
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Corroborating what was observed in the phase diagram, as the value of ε approaches
10, the system shows a tendency to exhibit more complex behaviors. This observation
becomes evident when ε varies between 10 and 12. Surprisingly, within this range, the
system reverts back to displaying chaotic behavior; see Figure 7.

(a) ε = 10 (b) ε = 12
Figure 7. Velocity evolution on time.

Finally, when ε goes beyond 12, the system stabilizes. First, quasi-periodic behavior is
observed, and then, as ε is large enough, periodic behavior is found; see Figure 8.

(a) ε = 13 (b) ε = 30
Figure 8. Velocity evolution on time.

In summary, the effect of the viscoelastic parameter ε on chaos is far from trivial. For
large values, it tends to remove chaos but, as shown in Figure 2, there are regions where
chaos reappears. To study this more systematically, in the discussion section,we display
the maximum value of the Lyapunov exponent for different values of ε.

3.2. M2 General Lorenz System: Considering the Viscoelastic Fluid

For the thermosyphon model without viscoelasticity, ε = 0 in (20), equivalence with
the classical Lorenz equations was shown, see [14]. The authors performed some changes
of variables to prove that the three-dimensional model of the thermosyphon corresponded
exactly to the Lorenz system in the case of linear friction. Analogously, performing the
same changes of variables as in [14], we obtain from (20) the following system:

εw′ = σ(y− x)− w
x′ = w

y′ = x·(ρ− z)− y
z′ = xy− βz.

(21)
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Observe that if the parameter ε is zero in the previous model, we recover the classical
Lorenz system: 

x′ = σ(y− x)
y′ = x·(ρ− z)− y

z′ = xy− βz.
(22)

We are interested in analyzing how the parameter ε variation affects the Lorenz
system’s chaotic regime. Therefore, taking the typical parameters that cause chaos in
the classical Lorenz system, we analyze and discuss the system’s behavior for different
parameters of the viscoelastic coefficients.

Therefore, we consider σ = 10, β = 8
3 , and ρ = 28, and initial conditions are fixed as

w(0) = 0, x(0) = 1, y(0) = 1 and z(0) = 0.
Following the analysis conducted in the previous model, we first present the bifur-

cation diagram to understand the system’s behavior, as we vary the parameter ε, see
Figure 9.

Figure 9. Bifurcation diagram, Model M2, compared with that in Figure 2. Again, elasticity does not
mean periodic behavior; rather, new complex regions of chaotic-stable transitions emerge.

Similar to what occurred in the previous model, starting from chaos, when the vis-
coelasticity is sufficiently small, chaotic behavior persists. However, when ε reaches a value
of 10−1, a predictable behavior emerges. It is worth noting that near ε = 1, small regions
with more complex behaviors appear, which require further detailed analyses.

To accomplish this, we will plot the phase diagram of (x, y, z) for notable parameter
values where the behavior changes. The chaotic behavior of the system is observed for
small enough ε. Specifically, the classical Lorenz-type behavior remains from 10−7 to 10−2;
see Figure 10.

(a) ε = 10−7 (b) ε = 10−2

Figure 10. Phase diagram (x, y, z) for Model M2.
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At values below ε = 0.1, the system exhibits chaotic behavior. However, when ε = 0.1
is reached, the system transitions towards periodic behavior. Remarkably, this periodic
behavior persists until ε = 1, but at ε = 0.1, the system begins to change from periodic
behavior. The system preserves this periodic behavior until ε = 1; see Figure 11.

(a) ε = 10−1 (b) ε = 1
Figure 11. Phase diagram (x, y, z) for Model M2.

Similar to the previous model, we have identified parameter values of epsilon that
induce chaos from the initial periodic behavior of the system. In particular, for parameter ε
values between 1.2 and 1.5, the system reverts back to chaotic behavior Figure 12.

After ε = 1.5 the behavior changes drastically again. For ε = 1.6, the solutions
present a periodic behavior. Finally, the behavior becomes stable for larger values of the
parameter ε.

As mentioned above, the Lorenz model is a paradigmatic case of a simple model
displaying a route to chaos. To illustrate this, we show four bifurcation diagrams for the
Lorenz parameter ρ in Figure 13. Note that, for small values of the viscoelastic parameter ε,
the two bifurcation diagrams are almost identical (so the chaotic patterns are preserved
even though ε → 0 is a singular perturbation). Interestingly, larger values stretch the
bifurcation pattern and create new stability gaps.

(a) ε = 1.2 (b) ε = 1.21

(c) ε = 1.5
Figure 12. Phase diagram (x, y, z) for Model M2.
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(a) ε = 1 (b) ε = 10−1

(c) ε = 10−3 (d) ε = 10−5

Figure 13. Comparison of bifurcation diagrams for the Lorenz parameter ρ with and without
elasticity. The Lorenz system, (22), is represented with blue dots, and the system (21) is represented
with green dots.

This similarity between bifurcation diagrams is best quantified in Figure 18 (red line).
For values of ε ≤ 10−1.4, the Lyapunov exponent is the same as the original Lorenz system’s.
It is also worth noting that the appearance of chaos is intermittent for larger values, as seen
in Figure 9.

3.3. M3 (v(t), T(t, x), S(t, x)): General Model (19)

In this subsection, we analyze the influence of viscoelasticity in the general case where
a binary fluid is considered, this is when we consider a solute (as water and antifreeze),
and we study the evolution of the velocity v(t), the temperature T(t, x) of the fluid (given
by a1(t), a2(t)) and the solute concentrated S(t, x) (given by d1(t), d2(t)), see (19).

We are going to proceed as in the previous cases. We will assume the values cal-
culated [15] in order to obtain chaos, and then, we discuss the behavior of the new sys-
tem depending on the value of the viscoelasticity ε. Therefore, we take A = 0, B = 30,
ν = 0.025, c = 0.001 and b = 10−3. Moreover, we consider the initial conditions w(0) = 0,
v(0) = 0, a1(0) = −0.1, a2(0) = 1, d1(0) = 0.01, d2(0) = 1.

First, to understand the system’s behavior globally, we plotted the bifurcation velocity
diagram for large time values; see Figure 14.
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Figure 14. Bifurcation diagram for Model M3. As discussed for models M1 and M2, the role of
elasticity is not to force oscillations (or resonance) but to change the chaotic behavior dramatically.

Repeating the pattern observed in previous models, for small parameter values, chaotic
behavior is preserved, and as the parameter representing viscoelasticity increases, chaos
disappears. However, what is interesting is that for values greater than 10 in the diagram,
more complex behaviors are once again observed.

To further validate the conclusions derived from the bifurcation diagram, we will
graph the velocity and the temperature phase diagram for specific values of the parameter
epsilon that are deemed relevant. First, we confirm the intuitive idea that while the
viscoelastic coefficient is small, the behavior remains chaotic. In particular, from ε = 10−7

to ε = 10−2 chaotic behavior of the system is observed; see Figure 15.

(a) ε = 10−7 (b) ε = 10−2

Figure 15. Velocity evolution for Model M3.

However, once ε exceeds 10−2, the system stabilizes rapidly, transitioning from chaotic
behavior to equilibrium. Specifically, from ε = 10−2 to ε = 10−1, the system demonstrates
periodic behavior; see Figure 16. At ε = 10−1.2, the velocity initially undergoes a complex
transition but eventually converges to equilibrium. This stabilizing effect continues to
manifest with varying degrees of complexity until reaching ε = 10.
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Figure 16. Velocity evolution for ε = 10−1 for Model M3.

For values close to (but greater than) ε = 10, the behavior of the solutions becomes
more complex. First, we obtain periodic behavior, ε = 12, then quasiperiodic behavior, and
chaos from ε = 14; see Figure 17. Beyond ε = 15, the system tends to stabilize. Sometimes
the system presents periodic behavior, ε = 15 or ε = 20, but other times, it converges to
equilibrium. For instance, ε = 21 or 25. As discussed before, the maximum Lyapunov
exponent allows to explain this non-monotonic effect of the viscoelastic parameters, as
shown in Figure 18.

Figure 17. Temperature phase diagram for ε = 14.
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Figure 18. Maximum Lyapunov Exponent. This diagram summarizes the main idea of the work:
elasticity is a non-trivial contributor to the emergence or disappearance of chaotic behavior.

4. Discussion

Through our study of three chaotic systems, it is clear that the interaction of vis-
coelasticity can lead to intricate nonlinear and chaotic behaviors. As a result, drawing
conclusions that are not specific to the studied system can be challenging. However, our
article provides general insights into all three models based on a thorough analysis of
numerical simulations.

For example, while chaos has been observed in ecological systems, our research reveals
that this is not contradictory but rather a natural outcome of the Lotka–Volterra model’s
inherent structure.

Traditionally, elasticity is linked to phenomena such as oscillations or resonance.
However, our study demonstrates that the interplay between elasticity and other model
features is more complex, resulting in complex interactions that preserve, modify, and
generate novel chaotic regimes.

The intricacies resulting from the interaction of viscoelasticity are evident in the analy-
sis of the three chaotic systems, see Table 1. As such, generalizing results beyond the specific
studied systems can pose challenges. Nevertheless, our article provides comprehensive
insights into all three models through detailed numerical simulations.

To summarize the behavior of models M1–M3, Figure 18 showcases the maximum
Lyapunov exponent, which exhibits a fascinating pattern in the three systems as the
viscoelasticity-affecting parameter increases. As viscoelasticity increases, we observe
transitions from chaos to predictable long-term behaviors, like equilibria, periodicity, or
quasi-periodicity. However, increasing the viscoelastic parameter can reintroduce chaos,
highlighting the captivating nature of these systems, wherein changes in the viscoelastic
parameter lead to transitions between ordered and chaotic dynamics.
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Table 1. Categorization of Models Based on the viscoelastic parameter ε. For the sake of simplicity,
we group stable and oscillatory behaviors under the label non-chaotic.

Model Chaos Non-Chaotic Chaos Non-Chaotic
M1 10−7 < ε < 10−3 10−3 < ε < 10 10 < ε < 12 12 < ε

M2 10−7 < ε < 10−2 10−1 < ε < 1 1.2 < ε < 1.5 ε > 1.5
M3 10−7 < ε < 10−2 10−2 < ε < 12 14 < ε < 15 ε > 15

5. Conclusions

This research delves into the role of elasticity in chaotic systems by examining four
different models from various fields, such as mechanics, immunology, ecology, and rheology.
Through numerical simulations, we discovered that elasticity has a significant impact on
the chaotic behavior of these systems, which we refer to as elastic-Lorenz equations. Our
study provides insight into the importance of elasticity in chaotic systems and sparks new
areas of research.

The implications of our findings are far-reaching. For example, in immunology, where
chaos plays a significant role in the behavior of the immune system, understanding the
effects of elasticity on chaotic dynamics could be crucial in treating diseases. Our research
also has potential applications in rheology, which studies the flow of matter and is vital in
many industrial processes. Additionally, our discoveries shed light on complex systems,
such as financial markets and ecosystems, where chaotic behavior is prevalent.

Furthermore, our research suggests potential extensions. We used the basic Maxwell
model of viscoelasticity, but exploring linear and non-linear generalizations of the constitu-
tive equation could reveal new and exciting phenomena. Another potential extension is
the use of time-fractional models, which have successfully modeled viscoelastic materials.
As our elasticity-driven models contain both the first and second derivatives of velocity,
we hope that further developments in the field will result from our findings.
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Appendix A. Mathematical Derivation of the Thermosyphon Model

For the sake of completeness, we summarize succinctly the method described in
Ref. [24].

(i) Starting from Equations (12), (13), (15) and (16), we project them along a unitary vector
tangent of the pipe (hereafter, we will refer to the coordinate along that tangent simply
as x).

(ii) Given the sufficiently small size of the thermosyphon’s cross-sectional area, denoted as
A, we can safely disregard variations in the transverse direction of the pipe, ensuring
that the process of averaging does not result in any appreciable loss of precision.

(iii) Finally, since the fluid is incompressible, the average velocity remains constant along
the entire length of the pipe.
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To emphasize the role of elasticity, we differentiate Equation (12) to eliminate the stress
component σ̃ (after multiplying by µ/E). Thus,

ρ
µ

E
∂2v
∂t2 +

µ

E
∇∂p

∂t
+ ρ

∂v
∂t

+∇p− ρg = µ∇v + non-linear terms (A1)

Based on Refs. [24,27], it is assumed that the non-linear terms and viscous term, ∇2v, can
be expressed through the wall law force, F, which is dependent on the average velocity (see
details below).

According to the incompressibility hypothesis stated in Equation (13), the average
velocity v remains constant throughout the thermosyphon and is solely dependent on time,
t, rather than the spatial coordinate along the pipe, x. Additionally, due to the projection
and averaging procedures, temperature, T, and solute concentration, S, are only functions
of time, t, and position along the loop, x. By projecting in the direction of the pipe, we
obtain Equation (17).

In Equations (12)–(14), the velocity is linked with temperature and diffusion through
the body force ρg, where the density ρ depends on temperature (hotter fluids have lower
density) and solute concentration (higher solute concentrations lead to higher densities).
Mathematically, it is possible to assume a linear correlation between density and temper-
ature. Similarly, in this work, we also assume a linear relationship between density and
solute concentration. Thus, in the end,

ρ = ρ0(1− αTT + αSS), (A2)

with αT and αS, being the so-called dilatation and thermophoretic coefficients, respectively.
In this work, we use the Boussinesq approximation [24,27], which assumes that the

density, which is proportional to the dynamical terms d2v/dt2 and dv/dt, remains approxi-
mately constant and equal to ρ0. It also assumes that the effects of temperature and solute
concentration on inertia can be neglected. Therefore, by integrating Equation (17) over
the length of the pipe L, resulting in zero integrated pressure gradients and a constant
gravitational term ρ0g, we obtain the following equation:

ρ
µ

E
d2v
dt2 + ρ

dv
dt

+
∫ L

0
Fs dx = g

∫ L

0
(αTT(t, x)− αSS(t, x)) f (x)dx, (A3)

Here, the function f (x) denotes a mathematical expression that relates cos φ to the co-
ordinate x. Following Rodriguez-Bernal et al.’s study in 1995, we make the assumption
that the local dependence of the wall law projection on velocity v can be expressed as∫ L

0 Fs dx ≡ G(v)v. The function G(v) exhibits specific general characteristics that are
elucidated in the subsequent discussion.

To complete the closure of Equations (A3) and (15), it is necessary to supplement
them with appropriate “constitutive equations” governing the behavior of temperature
and solute concentrations. The primary mechanisms considered for temperature evolution
are as follows:

• Convection accounted for in the second term on the left-hand side of Equation (15).
• Thermal diffusion (conduction), expressed as JT = −ν∇T. Thus, from Equation (15),

−∇ · JT = ν ∂2T
∂x2 .

Similarly, for solute concentration, the following physical mechanisms are taken into
consideration:

• Convection, incorporated in the second term on the left-hand side of Equation (16).
• Solute diffusion, described by JS,1 = −c∇S.
• Onsager coupling (thermodiffusion or the Soret effect), represented by JS,2 = b∇T.

Hence, from Equation (16), −∇ · (JS,1 + JS,2) = c ∂2S
∂x2 − b ∂2T

∂x2 .
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Finally, we proceed to non-dimensionalize the resulting equations, whereby lengths
are scaled by the loop length (with the entire loop represented by the interval [0, 1]),
temperatures are scaled by (gαT)

−1, and solute concentration by (gαS)
−1, to arrive at the

main focus of our work, summarized in the system of Equation 18.

Appendix A.1. Well-Posedness and Boundedness: Global Attractor

For completeness, we include the details of well-posedness and boundedness for the
present model as it requires specific work, although the techniques used are similar to those
in Refs. [28,29].

In this context, we enforce the condition that the thermal diffusivity ν ≥ 0 maintains
physical consistency. The system of Equation (18) represents an ODE/PDE system govern-
ing the evolution of the observables v, T, and S. The solute concentration S(t, x) adheres to
a solute diffusivity c > 0 and a positive Soret coefficient b, similar to previous models for
binary fluids, like in [6,15,30].

In subsequent discussions, we utilize the notation
∮
· dx =

∫ 1
0 · dx for integration along

a closed circuit path, which can be associated with integration over periodic functions
with a period of 1. The function f in the equation characterizes the loop’s geometry and
gravitational forces [24,27], where

∮
f (x) dx = 0, since the integral of f (x) = cos φ(x) over

a closed loop yields zero.
The parameter ε in Equation (18) represents the non-dimensional form of µ/E, with

time units. Roughly, ε determines the (non-dimensional) timescale for the material to
transition from an elastic to a fluid-like behavior.

We assume that the friction law G(v) at the inner wall of the loop is positive and
remains bounded away from zero. Previous works have considered G(v) as a constant for
linear friction [27] (Stokes flow) or |v| for quadratic friction [25,26]. A more general form of
G(v) is given by g̃(Re)|v|, where Re = ρvL/µ is the Reynolds number, and g̃ is a function
of Re. Here, we consider a general function of the velocity, assumed to be large [31,32].
The functions G, f , and l incorporate relevant physical constants of the model, such as the
cross-sectional area D, the length of the loop L, and the Prandtl, Rayleigh, or Reynolds
numbers. We require G and l to be continuous functions satisfying G(v) ≥ G0 > 0 and
l(v) ≥ l0 > 0, where G0 and l0 are positive constants. Additionally, we impose further
constraints on G in Equation (A23), mandating G to be a nonlinear friction function, such
that there exists a constant h0 ≥ 0, satisfying the following:

lim sup
s→∞

|G′(s)|
G(s)

= 0 and lim sup
s→∞

|sG′(s)|
G(s)

≤ h0.

We will introduce some function spaces that will be used to study the existence of
solutions of (18). Let Ω = (0, 1) and consider the spaces

L2
per(Ω) = {u ∈ L2

loc(IR), u(x + 1) = u(x)a.e.x ∈ IR}, Hm
per(Ω) = Hm

loc(IR) ∩ L2
per(Ω) (A4)

where m ∈ IN ∪ {0}, and u ∈ L2
loc(IR) (or Hm

loc(IR)) if for every open set ω ⊂⊂ IR one has
u ∈ L2

loc(ω) (or Hm
loc(ω), respectively). Finally, we consider functions with zero average,

and we denote by the following:

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x + 1) = u(x)a.e.,
∮

u(x)dx = 0}, (A5)

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1). (A6)

Appendix A.2. Existence and Uniqueness of Solutions

In this section, we demonstrate the presence and singularity of solutions for the
thermosyphon model (18), where f and h belong to L̇2

per(0, 1), T0 is in Ḣ1
per(0, 1), and S0 is

in L̇2
per(0, 1). Here, L̇2

per(0, 1) and Ḣ1
per(0, 1) are defined by (A5). It should be noted that the

term dot indicates functions that have zero averages and not the time derivatives of the
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functions. To begin with, we choose this framework by observing that for ν > 0, integrating
the temperature equation along the loop, while considering the periodicity of T, we have
the following:∮

∂T
∂x dx =

∮
∂2T
∂x2 dx = 0, and d

dt

∮
T(t, x)dx = (

∮
h(t, x).

Next, if h(t, x) = h(x), we have
∮

T(t, x)dx =
∮

T0(x)dx + t
∮

h(x)dx. Therefore, the
temperature is unbounded, as t → ∞, unless

∮
h(x)dx = 0. However, taking τ(t, x) =

T(t, x)−
∮

T(t, x)dx and h∗ = h−
∮

h(x)dx reduces to the case
∮

T(t, x)dx =
∮

T0(x)dx +
t
∮

h(x)dx = 0, since τ(t, x) would satisfy

∂τ

∂t
+ v

∂τ

∂x
= h∗(t, x) + ν

∂2τ

∂x2 , τ(0, x) = τ0(x) = T0(x)−
∮

T0(x)dx.

Additionally, if we integrate the equation for the solute concentration along the loop
and take into account the periodicity of S, we obtain the conditions

∮
∂S
∂x dx =

∮
∂2S
∂x2 dx = 0

and d
dt (
∮

S(t, x)dx) = 0. Since
∮

S(t, x)dx is constant, it means that the solute
∮

S(t, x) =∮
S0(x) for all t.

Let σ(t, x) = S(t, x)−
∮

S0(x)dx (not to be confused with the stress component σ̃).
Then, from the third equation of system (18), σ satisfies the equation:

∂σ

∂t
+ v

∂σ

∂x
= c

∂2σ

∂x2 − b
∂2τ

∂x2 , σ(0, x) = σ0(x).

Finally, since
∮

f (x)dx = 0, we have
∮
(T(t, x) − S(t, x)) f (x)dx =

∮
(τ(t, x)−

σ(t, x)) f (x)dx, and the equation for v is

ε
d2v
dt2 +

dv
dt

+ G(v)v =
∮
(τ(t, x)− σ(t, x)) f (x)dx, v(0) = v0,

dv
dt

(0) = w0.

Therefore, (v, τ, σ) satisfies system (18) with τ0, σ0, h∗ replacing T0, S0, h, respectively,
and

∮
f (x)dx =

∮
τ0(x)dx =

∮
σ0(x)dx =

∮
h∗dx = 0 and

∮
T(t, x)dx

=
∮

S(t, x)dx = 0 for all t ≥ 0. From now on, we consider all the functions of system
(18) to have zero average.

Furthermore, since ν, c > 0, the operators νA = −ν ∂2

∂x2 and cA = −c ∂2

∂x2 , along
with periodic boundary conditions, are unbounded, self-adjoint operators with a compact
resolvent in L2

per(0, 1), which are positive when restricted to the space of zero average
functions in L̇2

per(0, 1). Moreover, the equations for the temperature T and the solute
concentration S in (18) are parabolic types for ν, c > 0.

We express system (18) as the following evolution system for acceleration, velocity,
temperature, and solute concentrations:

dw
dt

+
1
ε

w = − 1
ε G(v)v + 1

ε

∮
(T(t, x)− S(t, x)) f (x)dx, w(0) = w0

dv
dt −w = 0, v(0) = v0

∂T
∂t
− ν

∂2T
∂x2 = −v ∂T

∂x + h(t, x), T(0, x) = T0(x)

∂S
∂t
− c

∂2S
∂x2 = −v ∂S

∂x − b ∂2T
∂x2 , S(0, x) = S0(x).

(A7)

That is:

d
dt


w
v
T
S

+


1
ε 0 0 0
−1 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂2

∂x2




w
v
T
S

 =


F1(w, v, T, S)
F2(w, v, T, S)
F3(w, v, T, S)
F4(w, v, T, S)

 (A8)
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with

F1(w, v, T, S) = −1
ε

G(v)v +
1
ε

∮
(T(t, x)− S(t, x)) f (x)dx, (A9)

F2(w, v, T, S) = 0, (A10)

F3(w, v, T, S) = −v
∂T
∂x

+ h(t, x), (A11)

F4(w, v, T, S) = −v
∂S
∂x
− b

∂2T
∂x2 (A12)

and initial data


w
v
T
S

(0) =


w0
v0
T0
S0

.

The operator B =


1
ε 0 0 0
−1 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂2

∂x2

 is a sectorial operator in Y = IR2 ×

Ḣ1
per(0, 1)× L̇2

per(0, 1) with domain D(B) = IR2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1) and has a compact
resolvent, see Equation (A5).

Using the results and techniques in the sectorial operator of [33] to prove the existence
of solutions of the system, we have Theorem A1.

Theorem A1. We assume that H(r) = rG(r) is locally Lipschitz, f , h(t) ∈ L̇2
per(0, 1), G(v) ≥

G0 > 0. Then, given (w0, v0, T0, S0) ∈ Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1), there exists a unique
solution of (18), satisfying

(w, v, T, S) ∈ C([0, ∞),Y) ∩ C(0, ∞, IR2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1)),(
dw
dt

,
dv
dt

,
∂T
∂t

,
∂S
∂t

)
∈ C(0, ∞, IR2 × Ḣ3−δ

per (0, 1)× Ḣ2−δ
per (0, 1)),

for every δ > 0. In particular, (A7) defines a nonlinear semigroup, S∗(t) in Y = IR2× Ḣ1
per(0, 1)×

L̇2
per(0, 1), with S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T(t, x), S(t, x)).

Proof.
In order to prove this, we cover several steps:
Step (i). We prove the local existence and regularity. This follows easily from the

variation of the constants formula as presented in [33]. In order to prove this, we write the
system as (A8), and we have:

Ut + BU = F(U), with U =


w
v
T
S

,

B =


1
ε 0 0 0
−1 0 0 0
0 0 −ν ∂2

∂x2 0
0 0 0 −c ∂2

∂x2

,

F =


F1
F2
F3
F4


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where the operator B is a sectorial operator in Y = IR2× Ḣ1
per(0, 1)× L̇2

per(0, 1) with domain
D(B) = IR2 × Ḣ3

per(0, 1)× Ḣ2
per(0, 1), and has a compact resolvent. In this context, operator

A = − ∂2

∂x2 must be understood in the variational sense, i.e., for every T, ϕ ∈ Ḣ1
per(0, 1),

〈A(T), ϕ〉 =
∮

∂T
∂x

∂ϕ

∂x
dx

and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2 , as in [33]. We denote
Ḣ−1

per(0, 1) as the dual space and ‖.‖ as the norm on the space L̇2
per(0, 1). If we prove that the

nonlinearity F : Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) 7→ Y− 1
2 = IR2 × L̇2

per(0, 1)× Ḣ−1
per(0, 1) is

well defined, Lipschitz, and bounded on bounded sets, we obtain the local existence for the
initial data in Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1).

Using H(v) ≡ G(v)v as a locally Lipschitz function, with f , h(t) ∈ L̇2
per(0, 1), we can

follow the approach in [28], and we will prove the nonlinear terms, F1...4 in Equations (A9)–
(A12), satisfying F1 : IR2× L̇2

per(0, 1)× L̇2
per(0, 1) 7→ IR, F2 : IR2× Ḣ1

per(0, 1)× L̇2
per(0, 1) 7→ IR,

F3 : IR2 × Ḣ1
per(0, 1) × L̇2

per(0, 1) 7→ L̇2
per(0, 1) and F4 : IR2 × Ḣ1

per(0, 1) × L̇2
per(0, 1) 7→

Ḣ−1
per(0, 1); that is, F : Y 7→ Y− 1

2 is well defined, Lipschitz, and bounded on bounded sets.
For F3, in this case, we have that

‖F3(w1, v1, T1, S1)− F3(w2, v2, T2, S2)‖ = ‖ − v1(T1)x + v2(T2)x‖ ≤

≤ ‖(v2 − v1)(T1)x‖+ ‖v2((T2 − T1))x‖ ≤

≤ ‖v2 − v1‖∞‖T1(t)‖Ḣ1
per

+ ‖v2‖∞‖T2 − T1(t)‖Ḣ1
per
≤

≤ C
(
‖v2 − v1‖∞ + ‖T2 − T1(t)‖Ḣ1

per

)
.

In this way, F3 is locally Lipschitz and bounded on bounded sets.
Applying the techniques of the variation of constants formula from [33], we obtain the

unique local solution (w, v, T, S) ∈ C([0, t∗],Y) (with a suitable t∗ > 0) of (A7), which is
given by

w(t) = w0e−
1
ε t − 1

ε

∫ t
0 e−

1
ε (t−r)H(r)dr+

+ 1
ε

∫ t
0 [
∮
(T(r, x)− S(r, x)) f (x)dx]e−

1
ε (t−r)dr

(A13)

with H(r) = G(v(r))v(r).

v(t) = v0 +
∫ t

0
w(r)dr (A14)

T(t, x) = e−νAtT0(x) +
∫ t

0
e−νA(t−r)h(x, r)]dr

−
∫ t

0
e−νA(t−r)v(r)

∂T(r, x)
∂x

dr, (A15)

S(t, x) = e−cAtS0(x) +
∫ t

0
e−cA(t−r)[−v(r)

∂S
∂x

(r)− b
∂2T
∂x2 (r)]dr. (A16)

where (w, v, T, S) ∈ C([0, t∗],Y = IR2 × Ḣ1
per(0, 1) × L̇2

per(0, 1)) and using the results
from [33], (the smoothing effect of the equations with the bootstrapping method), we
obtain the regularity of solutions.

Step (ii). To prove global existence, we must show that the solutions are bounded in
the Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1) norm on finite time intervals, and using the nonlinear-

ity of F, maps bounded on bounded sets, we can conclude.
Part I: We study the norm of temperature, T.
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To prove that the norm of T is bounded on finite time, we multiply the equation for
the temperature by T in L̇2

per(0, 1). Then, integrating by parts, we obtain:

1
2

d
dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
h(t, x)T(t, x)dx

since
∮

T(t, x) ∂T
∂x dx = 1

2

∮
∂

∂x (T
2)dx = 0.

By using Cauchy–Schwartz and Young inequalities, as well as the Poincaré inequal-
ity for functions of zero average, since

∮
T(t, x)dx = 0,, and as π2 is the first nonzero

eigenvalue of A = − ∂2

∂x2 in L̇2
per(0, 1), we obtain

1
2

d
dt
‖T‖2 + νπ2‖T‖2 ≤ 1

4δ
‖h(t)‖2 + δ‖T‖2,

for every δ > 0. Now, taking δ = νπ2

2 , we have

d
dt
‖T‖2 + νπ2‖T‖2 ≤ ‖h(t)‖

2

νπ2 , (A17)

and conclude that the norm of T in L̇2
per(0, 1) remains bounded in finite time.

Now, we will prove that the norm
∥∥∥ ∂T

∂x

∥∥∥ remains bounded in finite time intervals. For

this, multiply the second equation of (A7) by − ∂2T
∂x2 in L̇2

per(0, 1). By integrating by parts,
applying the Young inequality, and taking into account that

∮
∂T
∂x

∂2T
∂x2 dx =

1
2

∮ ∂( ∂T
∂x )

2

∂x
= 0,

since ∂T
∂x is periodic, we obtain

1
2

d
dt

∥∥∥∥∂T
∂x

∥∥∥∥2
+ ν

∥∥∥∥∂2T
∂x2

∥∥∥∥2

≤ Cδ‖h(t)‖2 + δ

∥∥∥∥∂2T
∂x2

∥∥∥∥2

(A18)

for every δ > 0 and Cδ =
1
4δ . Thus, taking δ = ν

2 , and applying the Poincaré inequality for
functions with zero average, we obtain

d
dt

∥∥∥∥∂T
∂x

∥∥∥∥2
+ νπ2

∥∥∥∥∂T
∂x

∥∥∥∥2
≤ ‖h(t)‖

2

ν
, (A19)

which proves that the norm of T in Ḣ1
per(0, 1) remains bounded in finite time.

Part II: We study the norm of solute concentration S.
In this step, we show that the norm of S in L̇2

per(0, 1) does not blow up in finite time.
Multiplying the fourth equation of (A7) by S, integrating by parts, applying the Young
inequality and again taking into account that

∮
S(t, x) ∂S

∂x dx = 1
2

∮
∂S2

∂x dx = 0, since S is also
periodic, we have

1
2

d
dt
‖S‖2 + (c− δ)‖∂S

∂x
‖2 ≤ b2Cδ‖

∂T
∂x
‖2 (A20)

for every δ > 0 with Cδ = 1
4δ . Thus, taking δ = c

2 , and using (A19) with the Poincaré
inequality for functions with zero average, we obtain

d
dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c
‖∂T

∂x
‖2 ≤ k1 (A21)

with k1 > 0. Therefore, ‖S(t)‖ remains bounded in finite time.
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Finally, since ‖T‖ and ‖S‖ are bounded in finite time, this implies that |w(t)| and
|v(t)| remain bounded in finite time. Hence, we obtain a global solution in the nonlinear
semigroup in Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1).

Appendix A.3. Boundedness of the Solutions: Global Attractor

In this section, we adapt the results and techniques in Ref. [15,28] with Refs. [6,14] for
a fluid with one component, to prove the existence of the global attractor for a binary fluid
for the semigroup defined in the space Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1), in this case, when

we consider this transfer law with temperature diffusion.
To obtain the asymptotic bounds on the solutions, as t→ ∞, we consider the prescribed

flux h(t, x), satisfying that there exists h0 > 0, such that

h0 = lim sup
t→∞

‖h(t, x)‖, with h0 = ‖h‖ if h(t, x) = h(x). (A22)

Moreover, we consider the friction function G, as in [6,14,28], satisfying the hypotheses of
the previous section; there exits a constant g0 ≥ 0, such that

lim sup
s→∞

|G′(s)|
G(s)

= 0 and lim sup
s→∞

|sG′(s)|
G(s)

≤ g0. (A23)

Using the l’Hopital’s lemma proved in [32], we have the following lemma proved
in [28].

Lemma A1. If we assume that G(r) and H(r) ≡ rG(r) satisfy the hypotheses of Theorem A1,
with (A23), then:

lim sup
t→∞

∣∣∣H̃(t)− 1
ε

∫ t
0 e−

1
ε (t−r)H̃(r)dr

∣∣∣
G̃(t)

≤ H0 (A24)

with H0 = (1 + g0)ε being a positive constant, such that H0 → 0 if ε→ 0, and G̃(r) = G(v(r))
and H̃(r) = v(r)G̃(r).

Remark A1. We note that the conditions (A23) are satisfied for all friction functions G considered
in the previous works, i.e., the thermosyphon models where G is constant, or linear or quadratic
laws. Moreover, the conditions (A23) are true for G(s) ≈ A|s|n, as s→ ∞.

Theorem A2. Under the above notation and hypotheses of Theorem A1, if we assume that G
satisfies (A24) for a constant H0 ≥ 0, and h(t, x) satisfies (A22), then

(i)

lim sup
t→∞

‖T(t)‖ ≤ h0

νπ2 , (A25)

(ii)

lim sup
t→∞

∥∥∥∥∂T
∂x

(t)
∥∥∥∥ ≤ h0

νπ2 , (A26)

(iii)

lim sup
t→∞

‖S(t)‖ ≤ bh0

cνπ2 and lim sup
t→∞

‖T(t)− S(t)‖ ≤ ‖h‖
νπ2 (1 +

b
c
). (A27)

(iv) Moreover, if c = ν + b, then we also have

lim sup
t→∞

‖T(t)− S(t)‖ ≤ h0

cπ2 with
‖h‖
cπ2 ≤

‖h‖
νπ2 (1 +

b
c
) if ν ≤ 2c

c + 1
. (A28)
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(v)

lim sup
t→∞

|v(t)| ≤ (b + c)h0‖ f ‖
cνπ2G0

+ H0 and

if c = ν + b, then lim sup
t→∞

|v(t)| ≤ H0 +
h0‖ f ‖
cπ2G0

. (A29)

(vi)

lim sup
t→∞

|w(t)| ≤ G∗0 H0 +

(
1 +

G∗0
G0

)
(b + c)h0‖ f ‖

cνπ2 and

if c = ν + b, then lim sup
t→∞

|w(t)| ≤ G∗0 H0 +

(
1 +

G∗0
G0

)
h0‖ f ‖

cπ2 . (A30)

Here, G∗0 = lim supt→∞ G(v(t) when v satisfies (A29).
In particular, we have a global compact and connected attractor A in Y = IR2 × Ḣ1

per(0, 1)×
L̇2

per(0, 1).

Proof.

(i) From (A17), using Gronwall’s lemma, for every t ≥ t0, we have

‖T‖2 ≤
h2

0
ν2π4 +

(
‖T0‖2 −

h2
0

ν2π4

)
+

e−νπ2t, (A31)

where h0 is given by (A22), i.e.,

h0 = lim sup
t→∞

‖h(t, x)‖ = ‖h‖ if h(t, x) = h(x),

and we have (A25).
(ii) From (A19), and working as above, for every t ≥ t0,∥∥∥∥∂T

∂x

∥∥∥∥2
≤

h2
0

ν2π2 +
(∥∥∥∥∂T0

∂x

∥∥∥∥2
−

h2
0

ν2π4

)
+

e−νπ2t (A32)

then we obtain (A26).
(iii) Using Gronwall’s lemma, from (A21) with (A26), we have (A27).
(iv) From system (A7), if c = ν + b, T − S satisfies

∂(T − S)
∂t

+ v
∂(T − S)

∂x
= h(t, x) + c

∂2(T − S)
∂x2 ,

this is the same kind of equation for T. Therefore, working as in (i), we have

‖T − S‖2 ≤
h2

0
c2π4 +

(
‖T0 − S0‖2 −

h2
0

π4

)
+

e−cπ2t, (A33)

and we conclude (A28).
(v) Working as ([28]), from (A7), we have

dw
dt

+
1
ε

w = −1
ε

G(v)v +
1
ε

∮
(T(t, x)− S(t, x)) f (x)dx (A34)

and w(t) = dv
dt satisfies

dv
ds = w(0)e−

1
ε s − 1

ε

∫ s
0 e−

1
ε (s−r)H̃(r)dr+

+ 1
ε

∫ s
0

[ ∮
(T(r, x)− S(r, x)) f (x)dx

]
e−

1
ε (s−r)dr

(A35)
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where H̃(r) = H(v(r)) = v(r)G(v(r)) and G̃(s) = G(v(s)). We rewrite (A35) as

dv
ds

+ G̃(s)v = w(0)e−
1
ε s + I1(s) + I2(s), (A36)

with

I1(s) =
1
ε

∫ s

0

[ ∮
(T(r, x)− S(r, x)) f (x)dx

]
e−

1
ε (s−r)dr and (A37)

I2(s) = H̃(s)− 1
ε

∫ s

0
e−

1
ε (s−r)H̃(r).

For any δ > 0, there exits t0 > 0, such that δ(s) = w(0)e−
1
ε < δ for any s ≥ t0, and

integrating (A36) with t ≥ t0, we obtain

|v(t)| ≤ |v(t0)|e
−
∫ t

t0
G̃(s)ds

+ e−
∫ t

t0
G̃(s)ds

∫ t

t0

e
∫ s

t0
G̃(r)dr

(δ + |I1(s)|+ |I2(s)|) (A38)

Using L’Hopital’s lemma proved in [32], we obtain the following two results:

lim sup
t→∞

e−
∫ t

t0
G̃(s)ds

∫ t

t0

e
∫ s

t0
G̃(r)dr

(|I1(s)|+ |I2(s)|+ δ) =

= lim sup
t→∞

∫ t
t0

e
∫ s

t0
G̃(r)dr

(|I1(s)|+ |I2(s)|+ δ)ds

e
∫ t

t0
G̃(s)ds

≤ lim sup
t→∞

|I1(t)|+ |I2(t)|+ δ

G̃(t)
(A39)

for any δ > 0 and

lim supt→∞ |I1(t)| ≤ lim supt→∞

∫ t
0 e

r
ε |
∮
(T(t,x)−S(t,x)) f (x)dx|

εe
t
ε

≤
≤ lim supt→∞ |

∮
(T(t, x)− S(t, x)) f (x)dx|

with
lim sup

t→∞
|
∮
(T(t, x)− S(t, x)) f (x)dx| ≤ ‖ f ‖ lim sup

t→∞
(‖T‖+ ‖S‖);

and from (A38) with (A24), we conclude for any δ,

lim sup
t→∞

|v(t)| ≤
‖ f ‖ lim supt→∞(‖T − S‖)

G0
+ H0 + δ. (A40)

Thus, using ‖T − S‖ ≤ ‖T‖+ ‖S‖ with the above results, we obtain (A29).
(vi) From (A34) with Gronwall’s lemma, we have

|w(t)| ≤ |w(t0)|e−
1
ε t +

1
ε

∫ t

t0

e−
1
ε (t−r)

[
G(r)|v(r)|+ |

∮
(T(r, x)− S(r, x)) f (x)dx|

]
dr (A41)

where G̃(r) = G(v(r)). Consequently, for any δ > 0, there exits t0, such that for any t ≥ t0

1
ε

∫ t

t0

e−
1
ε (t−r)

[
G(v(r))|v(r)|+ |

∮
(T(r, x)− S(r, x)) f (x)dx|

]
dr ≤

≤
[
δ + lim sup

t→∞

[
G(v(t))|v(t)|+ |

∮
(T(t, x)− S(t, x)) f (x)dx|

]
(1− e−

1
ε (t−t0)) (A42)

this is

lim sup
t→∞

|w(t)| ≤ lim sup
t→∞

[
G(v(t))|v(t)|+ |

∮
(T(t, x)− S(t, x)) f (x)dx|+ δ

]
, (A43)
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for any δ > 0, and using the above results, we have (A30).
Finally, since the sectorial operator B, as defined in Theorem A1, has a compact

resolvent, the rest follows from [34] [Theorems 4.2.2 and 3.4.8].

Appendix A.4. Asymptotic Behavior: Reduction to Finite-Dimensional Systems

Finally, in this section, we aim to analyze the long-term behavior of system (A7) by
examining its asymptotic properties. To achieve this, we utilize the Fourier expansions of
the functions involved in the system, namely the temperature and solute concentrations.
Our focus lies on the Fourier coefficients of the loop’s geometric function, denoted as f (x),
and the prescribed flux across the loop wall, denoted as h = h(x). These coefficients play
a crucial role in studying the system’s asymptotic behavior. We establish the system’s
asymptotic behavior (A7) through the appropriate Fourier coefficients associated with f
and h.

To investigate the system’s asymptotic behavior, we consider the coefficients ak(t) for
temperature and dk(t) for the solute concentration, where k ∈ K ∩ J represent the relevant
modes. Thus, we obtain a finite system of differential equations:

dw
dt =

2Re(∑k∈(K∩J)+ ak(t)c−k)

ε −
2Re(∑k∈(K∩J)+ dk(t)c−k)

ε − G(v)v
ε − w

ε ,
dv
dt = w,

d(ak)
dt = l(v)bk − l(v)ak(t)− 4νπ2k2ak(t)− 2πkvak(t)i,

d(dk)
dt = −4cπ2k2dk(t) + 4bπ2ak(t)− 2πkvdk(t)i.

(A44)

Furthermore, it is worth noting that the Fourier expansion of any function g belonging
to Ḣm

per(0, 1), where m ≥ 0, can be expressed as g(x) = ∑k∈IZ∗ ake2πkix, with IZ∗ = IZ \ {0}.
Moreover, we have the following expression for the norm of g in Ḣm

per(0, 1):

‖g‖Ḣm
per(0,1) = (2π)m

(
∑

k∈IZ∗
k2m|ak|2

) 1
2
. (A45)

Assume that T ∈ Ḣ1
per(0, 1) and f , h, S ∈ L̇2

per(0, 1) are given by the following Fourier
series expansions:

h(x) = ∑
k∈IZ∗

bke2πkix and f (x) = ∑
k∈IZ∗

cke2πkix with IZ∗ = IZ \ {0} (A46)

T(t, x) = ∑
k∈IZ∗

ak(t)e2πkix and S(t, x) = ∑
k∈IZ∗

dk(t)e2πkix (A47)

with the initial data T0 ∈ Ḣ1
per(0, 1) are given by T0(x) = ∑k∈IZ∗ ak0e2πkix and S0 ∈ L̇2

per(0, 1)
is given by S0(x) = ∑k∈IZ∗ dk0e2πkix. Since all functions involved are real and periodic, we
have āk = a−k, b̄k = b−k, c̄k = c−k and d̄k = d−k.

Proposition A1. Under the above notation and hypotheses of Theorem A1, we consider h, f ∈
L̇2

per(0, 1) given by (A46) and the initial data T0 ∈ Ḣ1
per(0, 1) given by T0(x) = ∑k∈IZ∗ ak0e2πkix

and S0 ∈ L̇2
per(0, 1) given by S0(x) = ∑k∈IZ∗ dk0e2πkix. Let (w, v, T, S) be the solution of system

(18) given by Theorem A1, we then have the following:

(i) Coefficients ak(t) and dk(t) in (A47) satisfy the following equations:
d(ak)

dt
+
(

2kπvi + 4νk2π2
)

ak(t) = bk, ak(0) = ak0, k ∈ IZ∗

d(dk)
dt +

(
2kπvi + 4ck2π2

)
dk(t) = 4bπ2k2ak(t), dk(0) = dk0, k ∈ IZ∗.

(A48)
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(ii) The equation for velocity is

ε
d2v
dt2 +

dv
dt

+ G(v)v = ∑
k∈IZ∗

(ak(t)− dk(t))c̄k.

Proof. By using the following Fourier expansion for a generic function u(t, x) of u(t, x) =
∑k∈IZ∗ uk(t)e2πkix with IZ∗ = IZ \ {0}, the Fourier coefficients uk(t) satisfy the following
relations:

∂u(t, x)
∂t

= ∑
k∈IZ∗

duk
dt

e2πkix, (A49)

∂u(t, x)
∂x

= ∑
k∈IZ∗

2πkiuk(t)e2πkix, (A50)

∂2u(t, x)
∂x2 = − ∑

k∈IZ∗
4π2k2uk(t)e2πkix. (A51)

Consider the model (18) and the Fourier series expansions of all functions, depending on
the spatial variable x, i.e., T(t, x) = ∑k∈IZ∗ ak(t)e2πkix,

With S(t, x) = ∑k∈IZ∗ dk(t)e2πkix given by (A47), h(x) = ∑k∈IZ∗ bke2πkix and
f (x) = ∑k∈IZ∗ cke2πkix given by (A46), with the expansions of initial data for tempera-
ture T0(x) = ∑k∈IZ∗ ak0e2πkix and for solute S0(x) = ∑k∈IZ∗ dk0e2πkix, we can easily find
that the coefficients for temperature ak(t) and solute concentration dk(t) are the solutions
of (A48).

Moreover, it is sufficient to note that∮
(T(t, x)− S(t, x)) f (x)dx = ∑

k∈IZ∗
(ak(t)− dk(t))c̄k, (A52)

since all the functions involved are real and periodic, we have for all k ∈ IZ∗ = IZ \ {0},
āk = a−k, b̄k = b−k, c̄k = c−kand d̄k = d−k; this allows us to conclude that (18) is equivalent
to infinite systems of ODEs consisting of (A48) coupled with

ε
d2v
dt2 +

dv
dt

+ G(v)v = ∑
k∈IZ∗

(ak(t)− dk(t))c−k, v(0) = v0,
dv
dt

(0) = w0.

Remark A2. It is worth mentioning that system (18) is synonymous with system (A7) concerning
acceleration, velocity, temperature, and solute concentration. Moreover, based on the proposition
above, it can be equated to the following infinite system of ordinary differential Equation (A53):

dw
dt

+
1
ε

w = −1
ε

G(v)v +
1
ε ∑

k∈IZ∗
(ak(t)− dk(t))c−k, w(0) = w0

dv
dt = w, v(0) = v0
d(ak)

dt +
(

2kπvi + 4νk2π2
)

ak(t) = bk, ak(0) = ak0, k ∈ IZ∗

d(dk)
dt +

(
2kπvi + 4ck2π2

)
dk(t) = 4bk2π2ak(t), dk(0) = dk0, k ∈ IZ∗.

(A53)

The system of Equation (A53) captures two significant characteristics: (i) the interaction
between the modes occurs through the velocity, while diffusion acts as a linear damping term, and
(ii) the evolution of temperature impacts the evolution of solute concentration.

In the subsequent analysis, we will utilize this explicit equation for the Fourier modes
of temperature and solute concentrations to examine the asymptotic behavior of the system
and derive explicit low-dimensional models. Similar explicit constructions were presented
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in various previous studies, such as [28], and by Bloch and Titi in [35] for a nonlinear
beam equation, where nonlinearity arises solely from the appearance of the L2 norm of
the unknown. Stuart also provided a related construction in [36] for a nonlocal reaction–
diffusion equation.

In the following section, we will establish the boundedness of these coefficients, which
enhances, to some extent, the boundedness of temperature and solute concentrations. This,
in turn, proves the existence of the inertial manifold for system (A7), employing similar
techniques as in Refs. [6,14,15,28,29].

Appendix A.5. Inertial Manifold

We consider the general case ν > 0 with the heat transfer law across the loop wall
given by a prescribed function h(x), and use inertial manifold techniques, in the spirit of
the non-diffusion case of [37]. In this case, the existence of an inertial manifold does not
rely on the existence of significant gaps in the spectrum of the elliptic operator but on the
invariance of particular sets of Fourier modes.

Proposition A2. Under the above notation and hypotheses of Theorem A2, with initial condi-
tions (w0, v0, T0, S0) ∈ Y = IR2 × Ḣ1

per(0, 1) × L̇2
per(0, 1), for every solution of system (A7),

(w, v, T, S), and for every k ∈ IZ∗, and recalling the expansions

h(x) = ∑
k∈IZ∗

bke2πkix and f (x) = ∑
k∈IZ∗

cke2πkix with IZ∗ = IZ \ {0}

T(t, x) = ∑
k∈IZ∗

ak(t)e2πkix and S(t, x) = ∑
k∈IZ∗

dk(t)e2πkix

with the initial data T0 ∈ Ḣ1
per(0, 1) given by T0(x) = ∑k∈IZ∗ ak0e2πkix and S0 ∈ L̇2

per(0, 1) given
by S0(x) = ∑k∈IZ∗ dk0e2πkix, we have

(i)

lim sup
t→∞

|ak(t)| ≤
|bk|

4π2νk2 , i.e., lim sup
t→∞

k2|ak(t)| ≤
|bk|

4π2ν
, (A54)

lim sup
t→∞

|dk(t)| ≤
b|bk|

4π2νk2c
, i.e., lim sup

t→∞
k2|dk(t)| ≤

b|bk|
4π2νc

, (A55)

lim sup
t→∞

|v(t)| ≤ 1
4π2ν

I0

G0

(
1 +

b
c

)
+ H0, with I0 = ∑

k∈IZ∗

|bk||ck|
k2 (A56)

and G0 is a positive constant, such that G(v) ≥ G0,

lim sup
t→∞

|w(t)| ≤ G∗0 H0 +

(
1 +

G∗0
G0

)(
1 +

b
c

)
1

4π2ν
I0, with G∗0 = lim sup

t→∞
G(v(t)). (A57)

(ii)

lim sup
t→∞

‖T(t)‖ ≤ ‖h‖
4π2ν

, lim sup
t→∞

‖T(t)‖Ḣ1
per
≤ ‖h‖

2πν
and lim sup

t→∞
‖T(t)‖Ḣ2

per
≤ ‖h‖

ν
, (A58)

lim sup
t→∞

‖S(t)‖ ≤ b
c
‖h‖

4π2ν
, lim sup

t→∞
‖S(t)‖Ḣ1

per
≤ b

c
‖h‖
2πν

and lim sup
t→∞

‖S(t)‖Ḣ2
per
≤ b

c
‖h‖

ν
, (A59)

lim sup
t→∞

|v(t)| ≤ ‖ f ‖‖h‖
G0

(
1 +

b
c

) 1
4π2ν

+ H0 (A60)

lim sup
t→∞

|w(t)| ≤ G∗0 H0 +

(
1 +

G∗0
G0

)(
1 +

b
c

)
1

4π2ν
‖ f ‖‖h‖. (A61)
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In particular, if h ∈ Ḣm
per(0, 1), we have the global compact and connected attractor A ⊂

[−M, M] × [−N, N] × C × C ⊂ IR2 × Ḣm+2
per (0, 1) × Ḣm+2

per (0, 1), where M, N are the upper
bounds for acceleration and velocity, as given in (A61) and (A60), respectively, and T, S ∈ C =
{R(x) ∈ Ḣm+2

per (0, 1), R(x) = ∑k∈IZ∗ rke2πkix, |rk| ≤ d|bk|}, where d = 1
4π2ν

max{1, b
c } and A

is a compact set in IR2 × Ḣm+2
per (0, 1)× Ḣm+2

per (0, 1).

Proof. (i) From (A48), we have

ak(t) = ak0e−4νπ2k2te−
∫ t

0 [2πkvi] + bk

∫ t

0
e−4νπ2k2(t−s)e−

∫ t
s [2πkvi]ds (A62)

and taking into account that

|e−
∫ t

0 2πkvi| = |e−
∫ t

s 2πkvi| = 1, (A63)

we obtain:

|ak(t)| ≤
|bk|

4νπ2k2 +
(
|ak0| −

|bk|
4νπ2k2

)
+

e−4νπ2k2t (A64)

and we have (A54), i.e., lim supt→∞ |ak(t)| ≤
|bk |

4νπ2k2 .
From (A48), we have

dk(t) = dk0e−4cπ2k2te−
∫ t

0 2πkvi + 4bπ2k2
∫ t

0
ak(s)e−4cπ2k2(t−s)e−

∫ t
s 2πkvids, (A65)

therefore, from (A65), we have

|dk(t)| ≤ |dk0|e−4cπ2k2t +
b
c

lim sup
t→∞

|ak(t)|(1− e−4cπ2k2t). (A66)

Finally, taking into account that (A66) with (A54), we obtain

|dk(t)| ≤
b|bk|

c4π2k2ν
+
(
|dk0| −

b|bk|
c4π2k2ν

)
+

e−4cπ2k2t, (A67)

and we have (A55), i.e., lim supt→∞ |dk(t)| ≤
b|bk |

c4π2k2ν
.

From (iii) in Theorem A2, with∮
(T(t, x)− S(t, x)) f (x)dx = ∑

k∈IZ∗
ak(t)c−k − ∑

k∈IZ∗
dk(t)c−k

and using (A54) and (A55), we have

lim sup
t→∞

|
∮
(T(t, x)− S(t, x)) f (x)dx| ≤

(
1 +

b
c

)
1

4π2ν
I0, (A68)

where I0 = ∑k∈IZ∗
|bk(t)||ck(t)|

k2 . Hence, from (A40), we obtain (A56), namely

lim sup
t→∞

|v(t)| ≤ I0

G0

1
4π2ν

(
1 +

b
c

)
+ H0

and using (A43), we obtain (A57), i.e.,

lim sup
t→∞

|w(t)| ≤ G∗0 H0 +

(
1 +

G∗0
G0

)(
1 +

b
c

)
1

4π2ν
I0, with G∗0 = lim sup

t→∞
G(v(t)).

(ii) Using Theorem A2 and taking into account Equation (A45) with
I0 ≤ ∑k∈IZ∗ |bk(t)||ck(t)| ≤ ‖h‖‖ f ‖, we find that for any solution of (A7), in conjunction
with (A58), (A59), (A60), and (A61), given that the sectorial operator B defined above (in
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Section 2.1.1) has a compact resolvent from [Theorem 4.2.2 and 3.4.8] in Ref. [30], the system
has a global, compact, and connected attractor, A, in Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1).

Next, we show thatA ⊂ [−M, M]× [−N, N]×C ×C, where C = {R(x) ∈ Ḣm+2
per (0, 1),

R(x) = ∑k∈IZ∗ rke2πkix, |rk| ≤ d|bk|},, with d = 1
4π2ν

max{1, b
c }.

From Equations (A54) and (A55), for any (w(t), v(t), T(t, x), S(t, x)) ∈ A, we have
k2|ak| ≤ d|bk| and k2|dk| ≤ d|bk|; therefore, ‖T‖Ḣm+2

per
≤ d‖h‖Ḣm

per
and ‖S‖Ḣm+2

per
≤ d‖h‖Ḣm

per
,

i.e., if h ∈ Ḣm
per(0, 1) then T, S ∈ Ḣm+2

per (0, 1), and we have (w(t), v(t), T(t, x), S(t, x)) ∈
[−M, M]× [−N, N]× C × C; that is, we have A ⊂ [−M, M]× [−N, N]× C × C.

Finally, we show that C is compact in Ḣm+2
per (0, 1).

Certainly, given any sequence {Rn} in C, we can derive a subsequence denoted as
{Rn}, which exhibits weak convergence to a function R. Moreover, for any k ∈ IZ∗, the
Fourier coefficients satisfy rn

k → rk as n→ ∞, where rk represents the kth Fourier coefficient
of R. Consequently, we have k2|rk| ≤ d|bk| for every integer N0.

‖Rn − R‖2
m+2 ≤

N0

∑
|k|=1
|k|2(m+2)|rn

k − rk|2 + C
∞

∑
|k|=N0+1

|k|2m|bk|2,

since there exists a positive constant C, such that

∞

∑
|k|=N0+1

|k|2m|k|4|rn
k − rk|2 ≤ C

∞

∑
|k|=N0+1

|k|2m|bk|2;

where ‖.‖m+2 denotes the norm in Ḣm+2
per (0, 1). Hence, the first term goes to zero, such as

n→ ∞, and the second can be made arbitrarily small, such as N0 → ∞, since h ∈ Ḣm
per(0, 1)

with ‖h‖2
m = C ∑k∈IZ∗ |k|2m|bk|2 < ∞. Consequently, R ∈ C and Rn → R in Ḣm+2

per (0, 1), and
the result is proved.

Now, we will prove that there exists an inertial manifold M (see a definition in
Ref. [38]) for the semigroup S∗(t) in the phase space Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1), i.e.,

a submanifold of Y , such that

(i) S∗(t)M⊂M for every t ≥ 0,
(ii) there exists δ > 0, satisfying that for every bounded set, B ⊂ Y , there exists C(B) ≥ 0,

such that dist(S(t),M) ≤ C(B)e−δt, t ≥ 0; see, for example, [38,39].

Assume that h ∈ Ḣ1
per(0, 1) with

h = ∑
k∈K

bke2πkix

with bk 6= 0 for every k ∈ K ⊂ IZ∗ with 0 /∈ K, since
∮

h(x)dx = 0. We denote by V1
and V0 the closure of the subspaces of Ḣ1

per(0, 1) and L̇2
per(0, 1), respectively, generated by

{e2πkix, k ∈ K}.

Theorem A3. Assume that h ∈ Ḣ1
per(0, 1) and f ∈ L̇2

per(0, 1). Then, the setM = IR2×V1×V0
is an inertial manifold for the flow of S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T(t), S(t)) in the space
Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1). Moreover, if K is a finite set, the dimension ofM is 2|K|+ 2,

where |K| is the number of elements in K.

Proof.
Step (i). First, we show thatM is invariant. Note that if k /∈ K, then bk = 0; therefore,
if ak0 = 0, from (A62), we have that ak(t) = 0 for every t, i.e., T(t, x) = ∑

k∈K
ak(t)e2πkix,

and if dk0 = 0, using ak(t) = 0, from (A65), we have dk(t) = 0 for every t, i.e., S(t, x) =
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∑
k∈K

dk(t)e2πkix. Therefore, if (w0, v0, T0, S0) ∈ M, then (w(t), v(t), T(t), S(t)) ∈ M for

every t, i.e.,M is invariant.

Step (ii). From previous assertions,
∮
(T(t, x)− S(t, x)) f (x)dx = ∑

k∈K
ak(t) · c−k− ∑

k∈K
dk(t) ·

c−k, the flow onM is given by

dw
dt + 1

ε w + 1
ε G(v)v = 1

ε ∑k∈K ak(t) · c−k − 1
ε ∑k∈K dk(t) · c−k

dv
dt = w

d(ak)
dt +

[
2πkvi + 4νπ2k2

]
ak(t) = bk, k ∈ K

d(dk)
dt +

[
2πkvi + 4cπ2k2

]
dk(t) = 4bπ2k2ak(t), k ∈ K

ak = dk = 0, k /∈ K

(A69)

Now, we consider the following decomposition in Ḣ1
per(0, 1), T = T1 + T2, where T1

is the projection of T on V1 and T2 is the projection of T on the subspace generated by
{e2πkix, k ∈ IZ∗ \ K} i.e., T1 = ∑

k∈K
ake2πkix and T2 = ∑

k∈IZ∗\K
ake2πkix = T − T1.

Analogously, we consider the decomposition S = S1 + S2 in L̇2
per(0, 1), where S1 is the

projection of S on V0, i.e., S1 = ∑k∈K dke2πkix and S2 = S− S1. Then, given (w0, v0, T0, S0) ∈
Y , we decompose T0 = T1

0 + T2
0 , S0 = S1

0 + S2
0, and T(t) = T1(t) + T2(t), S(t) = S1(t) +

S2(t) and we consider (w(t), v(t), T1(t), S1(t)) ∈ M and

(w(t), v(t), T(t), S(t))− (w(t), v(t), T1(t), S1(t)) = (0, 0, T2(t), S2(t)).

From (A64), and taking into account that bk = 0 for k ∈ IZ∗, we derive |ak(t)| ≤
|ak0|e−4νπ2k2t; moreover, with 4νπ2k2t ≥ 4νπ2t for every k ∈ IZ∗ with (A45), it implies that
‖T2(t)‖Ḣ1

per
≤ ‖T2

0 ‖Ḣ1
per

e−4νπ2t i.e., T2(t)→ 0 in Ḣ1
per(0, 1) if t→ ∞.

Moreover, we have S2(t) = ∑k∈IZ∗\K dk(t)e2πkix; therefore,

‖S2(t)‖2
L̇2

per
= ∑

k∈IZ∗\K
|dk(t)|2.

Since bk = 0 for k ∈ IZ∗ \ K, from (A67), we have

|dk(t)|2 ≤ |dk0|2e−8cπ2k2t.

Thus,
‖S2(t)‖2

L̇2
per
≤ 4e−8cπ2t‖S20‖2

L̇2
per

. (A70)

Therefore, ‖T2(t)‖Ḣ1
per

and ‖S2(t)‖L̇2
per
→ 0 as t → ∞ with the exponential decay rate

e−4π2δt, where δ = min{ν, c}. Thus,M attracts (w(t), v(t), T(t), S(t)) with the exponential
rate e−4π2δt in IR2 × Ḣ1

per(0, 1)× L̇1
per(0, 1).

Remark A3. If T0, S0 ∈ Ḣm
per(0, 1), from |ak(t)| ≤ |ak0|e−4δπ2t and taking into account of (A45),

we have ‖T2(t)‖Ḣm
per(0,1) ≤ e−4δπ2t‖T2

0 ‖Ḣm
per(0,1); Furthermore, we note that, by working as above,

we have:

‖S2(t)‖2
Ḣm

per(0,1) ≤ 4e−8δπ2t‖S20‖2
Ḣm

per(0,1)

and the invariantM, attracts the solutions (w(t), v(t), T(t), S(t)) in

IR2 × Ḣm
per(0, 1)× Ḣm

per(0, 1)
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with exponential rate e−4π2δt.

Appendix A.6. The Explicit Reduced Subsystem

Under the hypotheses and notation of Theorem A3, we suppose that

f (x) = ∑
k∈J

cke2πkix, (A71)

with ck 6= 0 for every k ∈ J ⊂ IZ and ck = 0 if k /∈ J.. On the inertial manifold∮
(T(t, x)− S(t, x)) f (x)dx = ∑

k∈K
ak(t) · c−k − ∑

k∈K
dk(t) · c−k = ∑

K∩J
(ak(t)− dk(t))c−k.

Hence, the behaviors of velocity v and acceleration w are influenced by the Fourier
coefficients of T and S within the set K∩ J. To solve the complete system, we first determine
the coefficients of T and S belonging to K ∩ J, and then proceed to solve the equations for
the coefficients of T and S, where k /∈ K ∩ J (i.e., |K \ (K ∩ J)|).

It is worth noting that 0 /∈ K ∩ J. Since K = −K and J = −J, the set K ∩ J contains an
even number of elements, denoted as 2n0. Therefore, the number of positive elements in
K ∩ J, denoted as (K ∩ J)+, is n0.

Corollary A1. Under the assumptions and notation of Theorem A3, if we assume that the set
K ∩ J is finite with |K ∩ J| = 2n0, then the asymptotic behavior of system (A7) can be described
by a system of N = 4n0 + 2 coupled equations in IZRN . These equations determine the variables
(w, v, ak, dk) for k ∈ K ∩ J, along with a family of |K \ (K ∩ J)| linear non-autonomous equations.

Proof. On the inertial manifold:∮
(T(t, x)− S(t, x)) f (x)dx = ∑

k∈K
(ak − dk)(t)c−k = ∑

k∈K∩J
ak(t)c−k − ∑

k∈K∩J
dk(t)c−k.

Consequently, the system’s dynamics rely on the coefficients within K ∩ J. Addi-
tionally, the equations for a−k and d−k are conjugates of the equations for ak and dk, re-

spectively. This implies that ∑
k∈K∩J

ak(t)c−k = 2Re

 ∑
k∈(K∩J)+

ak(t)c−k

 and ∑
k∈K∩J

dk(t)c−k

= 2Re

 ∑
k∈(K∩J)+

dk(t)c−k

.

From this, taking real and imaginary parts of ak, (ak
1, ak

2) and dk, (dk
1, dk

2), k ∈ (K ∩ J)+
in (A53) with n0 = |(K ∩ J)+|, we conclude.

Remark A4. Taking the real and imaginary parts of the coefficients of the temperature, ak(t), the
heat flux at the wall of the loop, bk, the geometry of the circuit, ck, and the solute concentration,
dk(t), k ∈ (K ∩ J)+, as

ak(t) = ak
1(t) + iak

2(t), bk = bk
1 + ibk

2, ck = ck
1 + ick

2, dk(t) = dk
1(t) + idk

2(t)

the asymptotic behavior of system (A7) is given by a reduced explicit system of ODEs in IRN , with
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N = 4n0 + 2, given by

dw
dt

+
1
ε

w +
1
ε

G(v)v(t) =
1
ε

2 ∑
k∈(k∩J)+

[ak
2(t)c

k
2 − ak

1(t)c
k
1]−

− 1
ε 2 ∑k∈(k∩J)+ [d

k
2(t)c

k
2 − dk

1(t)c
k
1]

dv
dt = w
d(ak

1)
dt + [4π2k2νak

1(t)− 2πkv(t)ak
2(t)] = bk

1, k ∈ (K ∩ J)+
d(ak

2)
dt + [2πkv(t)ak

1(t) + 4π2k2νak
2(t)] = bk

2, k ∈ (K ∩ J)+
d(dk

1)
dt + [4cπ2k2dk

1(t)− 2πkv(t)dk
2(t)] = 4bπ2k2ak

1(t), k ∈ (K ∩ J)+
d(dk

2)
dt + [4cπ2k2dk

2(t) + 2πkv(t)dk
1(t)] = 4bπ2k2ak

2(t), k ∈ (K ∩ J)+

Thus, we reduced the asymptotic behavior of the initial system (A7) to the dynamics
of the reduced explicit system (A72). It is worth noting that, from the above analysis, it
is possible to design the geometry of the circuit and/or the external heating source, by
properly choosing the functions f and/or the ambient temperature, h, so that the resulting
system has an arbitrary number of equations of the form N = 4n + 2.

Note that K and J may be infinite sets, but their intersection is finite. For instance, for a
circular circuit, we have f (x) ∼ a sin(x) + b cos(x), i.e., J = {±1}, and then K ∩ J is either
{±1} or the empty set.

If we take, for the sake of simplicity, a circular geometry, then J = {±1} and
K ∩ J = {±1}. Also, if we take k = 1 and omit the equation for −k, the conjugate of
k, we have the following transformed set of equations:

dw
dt = 2Re(a1(t)c−1)

ε − 2Re(d1(t)c−1)
ε − G(v)v

ε − w
ε ,

dv
dt = w,

d(a1)
dt = l(v)b1 − l(v)a1(t)− 4νπ2a1(t)− 2πva1(t)i,

d(d1)
dt = −4cπ2d1(t) + 4bπ2a1(t)− 2πvd1(t)i

(A72)

where the variables of interest are w(t), representing the fluid acceleration, v(t), the fluid
velocity, a1(t), the Fourier mode of temperature, and the Fourier mode of solute concentra-
tion, d1(t). To simplify the notation, we can omit the subscripts as we only have a single
coefficient.

To reduce the number of independent parameters, we introduce a change of variables:
a1c−1 → a and d1c−1 → d. Additionally, we express the equations in terms of their real and
imaginary components using the following approach:

a(t) = a1(t) + ia2(t),

d(t) = d1(t) + id2(t)

b1 = A + iB

with a1(t), a2(t), d1(t), d2(t), A, B ∈ IR. Finally, we integrate the system to arrive at
Equation (19) in Section 3.
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