

*Article L***-Quasi (Pseudo)-Metric in** *L***-Fuzzy Set Theory**

Peng Chen 1,2,*, Bin Meng ³ and Xiaohui Ba ⁴

- 1 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
- 2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Sepase Star Tarkushase Ca. J. H. Beijing 10005, China manufacture
- $\frac{3}{5}$ Space Star Technology Co., Ltd., Beijing 100095, China; mengb@spacestar.com.cn
4. Sebased of Flashwaria and Information Engineering, Beijing Liepteng University Ra
- ⁴ School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China; xhba@bjtu.edu.cn
- ***** Correspondence: chenpeng@ime.ac.cn or chenpengbeijing@sina.com

Abstract: The aim of this paper is to focus on the metrization question in *L*-fuzzy sets. Firstly, we put forward an *L*-quasi (pseudo)-metric on the completely distributive lattice *L ^X* by comparing some existing lattice-valued metrics with the classical metric and show a series of its related properties. Secondly, we present two topologies: *ψp* and *ζ p*, generated by an *L*-quasi-metric *p* with different spherical mappings, and prove $\psi_p = \zeta_p'$ if p is further an *L*-pseudo-metric on L^X . Thirdly, we characterize an equivalent form of *L*-pseudo-metric in terms of a class of mapping clusters and acquire several satisfactory results. Finally, based on this kind of *L*-metric, we assert that, on *L ^X*, a Yang–Shi metric topology is *Q* − *C^I* , but an Erceg metric topology is not always so.

Keywords: *L*-quasi (pseudo)-metric; co-prime element; irreducible element; way below; R-neighborhood; *T*₁-space; *Q* − *C*_{*I*}.

MSC: 54A40

1. Introduction

As we know, C.L. Chang [\[1\]](#page-13-0) firstly introduced the fuzzy set theory of Zadeh [\[2\]](#page-13-1) into topology in 1968, which declared the birth of [0, 1]-topology. Soon after that, J.A. Goguen [\[3\]](#page-13-2) further generalized the *L*-fuzzy set to [0, 1]-topology, and his related theory has now been recognized as *L*-topology. From then on, *L*-topology formed another important, branch of topology and many creative results and original thoughts were presented (see [\[4](#page-13-3)[–36\]](#page-14-0), etc.).

However, how to reasonably generalize the classical metric to *L*-topology has been a great challenge for a long time. So far, there has been a lot of research work on this aspect, including at least three well-known *L*-fuzzy metrics, with which the academic community has gradually become familiar. In addition, there was an even more interesting *L*-fuzzy metric recently discovered, which is parallel to the mentioned three *L*-fuzzy metrics. To explain the four *L*-fuzzy metrics, we list them below one by one.

The first is the Erceg metric, presented in 1979 by M.A. Erceg [\[4\]](#page-13-3). Due to the complexity of its definition given by M.A. Erceg, it is very inconvenient and difficult to conduct indepth research on this metric. In 1993, Peng Yuwei [\[5\]](#page-13-4) provided a pointwise expression for the Erceg metric. Based on Peng's result, later on, this metric was further simplified by P. Chen and F.G. Shi (see [\[6,](#page-13-5)[7\]](#page-13-6)) as below.

(I) An *Erceg pseudo-metric* on L^X is a mapping $p : M \times M \rightarrow [0, +\infty)$, satisfying the following properties:

(A1) if $a > b$, then $p(a, b) = 0$; $(A2)$ $p(a, c) \leq p(a, b) + p(b, c);$ (B1) $p(a, b) = \sqrt{ }$ *cb p*(*a*, *c*);

Citation: Chen, P.; Meng, B.; Ba, X. *L*-Quasi (Pseudo)-Metric in *L*-Fuzzy Set Theory. *Mathematics* **2023**, *11*, 3152. [https://doi.org/10.3390/](https://doi.org/10.3390/math11143152) [math11143152](https://doi.org/10.3390/math11143152)

Academic Editor: Michael Voskoglou

Received: 8 June 2023 Revised: 7 July 2023 Accepted: 8 July 2023 Published: 18 July 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

 $(A3)$ $\forall a, b \in M$, $\exists x \nleq a'$ s.t. $p(b, x) < r \Leftrightarrow \exists y \nleq b'$ s.t. $p(a, y) < r$.

An Erceg pseudo-metric *p* is called an *Erceg metric* if it further satisfies the following property:

(A4) if
$$
p(a, b) = 0
$$
, then $a \ge b$,

where " \ll " is the way below relation in Domain Theory and L^X is a completely distributive lattice [\[37,](#page-14-1)[38\]](#page-14-2).

The second is the Yang–Shi metric (or Shi *p*.*q*. metric), proposed in 1988 by L.C. Yang [\[8\]](#page-13-7). After that, this kind of metric was studied in depth by F.G. Shi and P. Chen (see [\[6,](#page-13-5)[7](#page-13-6)[,9–](#page-13-8)[11](#page-13-9)[,39\]](#page-14-3) etc.), and was ultimately defined [\[11\]](#page-13-9) as follows.

(II) A *Yang–Shi pseudo-metric (resp., <i>Yang–Shi metric)* on L^X is a mapping $p : M \times M \rightarrow$ $[0, +\infty)$, satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following property:

(B2)
$$
p(a,b) = \bigwedge_{c \ll a} p(c,b).
$$

The third is the Deng metric, supplied in 1982 by Z.K. Deng [\[12\]](#page-13-10), which was only limited to the special lattice I^X originally $(I = [0,1])$. Recently, it was extended to L^X by P. Chen [\[13\]](#page-13-11) as follows:

(III) A *Deng pseudo-metric (resp., Deng metric)* on L^X is a mapping $p : M \times M \rightarrow [0, +\infty)$, satisfying $(A1)$ – $(A3)$ (resp., $(A1)$ – $(A4)$) and the following property:

(B3)
$$
p(a,b) = \bigwedge_{b \ll c} p(a,c).
$$

In short, the above three *L*-fuzzy metrics are defined by using the same (A1)–(A4) but different (B1), (B2) and (B3). Inspired by this, we conclude that there is another new *L*-fuzzy metric [\[9\]](#page-13-8), as below.

(IV) A *Chen pseudo-metric* (resp., *Chen metric*) on L^X is a mapping $p : M \times M \rightarrow [0, +\infty)$, satisfying (A1)–(A3) (resp., (A1)-(A4)) and the following property:

$$
(B4) p(a,b) = \bigvee_{a \ll c} p(c,b).
$$

Concerning the above four *L*-fuzzy metrics **(I)–(IV)**, we [\[9\]](#page-13-8) have investigated the relationships between them on *I ^X* and acquired the following conclusion.

Let the following be true: $C = \{ p | p \text{ is a Chen metric } \}$; $E = \{ p | p \text{ is an Ereeg metric } \}$; $D = \{ p | p$ is a Deng metric $\}$; $Y = \{ p | p$ is a Yang–Shi metric $\}$. Then, $D = C \cap Y \cap E$.

In summary, although many scholars have engaged in the research of metrics in *L*-fuzzy sets, it is a pity that, at the same time, such an important issue has been ignored. Since the term fuzzy metric is a generalization of the classical metric, are there so few generalized *L*-fuzzy-metrics on *L ^X*? Therefore, this naturally leads to the following problem: what should the most essential axiomatic system about *L*-fuzzy metrics consist of on earth? To inquire into these problems, we first of all compare these existing fuzzy metrics on *L X* with the classical metric, which is defined as follows.

Definition 1 ([\[40\]](#page-14-4)). *A pseudo-metric on a non-empty set X is a function d:* $X \times X \longrightarrow [0, +\infty)$ *, satisfying the following properties:*

- *(1) if* $x = y$ *, then* $d(x, y) = 0$ *;*
- (2) *(triangle inequality)* $d(x, z) \leq d(x, y) + d(y, z)$;
- (3) $d(x, y) = d(y, x)$ *for all* $x, y \in X$.

The function d is called a metric on X if d still satisfies the following property:

(4) if
$$
d(x, y) = 0
$$
, then $x = y$.

It is easy to check that (A1), (A2), (A3) and (A4) in **(I)–(IV)** are the generalizations of (1), (2) , (3) and (4) in Definition 1, respectively. However, no axioms correspond to $(B1)$, $(B2)$, (B3) or (B4). Therefore, we guess that (B1), (B2), (B3) and (B4) in these fuzzy metrics on L^X are inessential for many purposes, especially their induced topologies. In this article, we affirm this guess, for this put forward a lattice-valued metric on *L ^X*, and show some related properties.

2. Preliminary Information

Throughout this paper, *L* is a completely distributive lattice with an order reversing involution \cdot \cdot \cdot \cdot [\[37](#page-14-1)[,38\]](#page-14-2). *X* is a nonempty set. *L^X* is the set of all *L*-fuzzy sets of *X* [\[3\]](#page-13-2). *L*^{*X*} inherits the structure of lattice *L* with an order reversing involution in a natural way, by defining ∨, ∧, ⁰ pointwise. The smallest element and the largest element in *L ^X* are denoted by 0 and 1, respectively.

Let *e* ∈ *L*-{<u>0</u>}; *e* is called a co-prime if, for any $p, q ∈ L, e ≤ p ∨ q$ implies $e ≤ p$ or $e \leq q$. The set of all nonzero co-prime elements in *L* is denoted by $M(L)$. We define $M(L^X) = \{x_\lambda \mid x \in X, \lambda \in M(L)\}$, where x_λ is an *L*-fuzzy point [\[38\]](#page-14-2). Conveniently, we omit *L ^X* from the notation, namely, we write *M*(*L ^X*) simply as *M*. Therefore, *M* is the set of all nonzero co-prime elements in *L ^X*. Similarly, *L*-fuzzy set *a* is called an irreducible element if, for any $x, y \in L^X$, $x \wedge y \le a$ implies $x \le a$ or $y \le a$. The set of all nonzero irreducible elements on *L ^X* is denoted as *J*.

Let $a, b \in L^X$ and a is much lower than b , denoted by $a \ll b$, if, for every directed subset $D \subseteq L^X$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$. *Let a* ∈ *L*^{*X*} and *B* ⊂ *L*^{*X*}. If *a* ≤ sup *B* (resp., *a* = sup *B*), then *B* is called a cover (resp., proper cover) of *a*. Let *B*, $C \subset L^X$. If, for any $x \in B$, there exists some $y \in C$ such that $x \leq y$, then *B* is called a refinement *C*. If *B* is a proper cover of *a* and *B* refines each cover of *a*, then *B* is called a minimal set of *a*. Let $\mathcal{T}(a)$ be all minimal sets of *a*. Clearly, the union of the elements of any subfamily of $\mathcal{T}(a)$ is still a minimal set of *a*. Therefore, each *L*-fuzzy set *a* must correspond to a greatest minimal set, denoted by β (*a*) [\[38\]](#page-14-2). Let $\beta^*(a) = \beta(a) \cap M$. Then, x_λ belongs to $\beta^*(a)$ if and only if x_λ is much lower than *a*. Let *a* ∈ *L*^X and *A* ⊂ *L*^X. Similarly, if *A* satisfies the following properties: (1) inf *A* = *a*; (2) if *B* ⊂ *L*^{*X*} and inf *B* ≤ *a*, then, for any $x \in A$, there exists some $y \in B$ such that $y \leq x$; then, *A* is claimed as a maximum set of *a*. Let $W(a)$ be all maximum sets of *a*. Obviously, the union of the elements of any subfamily of $W(a)$ is still a maximum set of *a*. Thus, if there exists a maximum set of *a*, then there must exist a greatest maximal set of *a*, denoted as α (*a*) [\[38\]](#page-14-2). In addition, we stipulate ∨ $\emptyset = 0$ and ∧ $\emptyset = 1$. Other unexplained terminologies, notations and further details can be found in [\[3](#page-13-2)[,9](#page-13-8)[,12](#page-13-10)[,38](#page-14-2)[,40\]](#page-14-4).

Theorem 1 ([\[38\]](#page-14-2)). Let $\{a_i \mid i \in I\} \subset L^X$. Then, $\beta(\forall$ $\bigvee_{i\in I} a_i$ = $\bigcup_{i\in I} \beta(a_i)$ *.*

Theorem 2 ([38]). Let
$$
\{a_i \mid i \in I\} \subset L^X
$$
. Then, $\alpha(\bigwedge_{i \in I} a_i) = \bigcup_{i \in I} \alpha(a_i)$.

Definition 2 ([\[38](#page-14-2)[,41\]](#page-14-5)). Let (X, δ) be an *L*-topological space, $x_{\lambda} \in M$ and $A \in \delta'$. If $x_{\lambda} \nleq A$, then A *is called a closed R-neighborhood of* x_λ *. Let* $B\in L^X$ *; if there exists a closed R-neighborhood* A *of* α *such that B* ≤ *A, then B is called an R-neighborhood of α. Meanwhile, B* 0 *is called a Q-neighborhood of α.*

3. *L***-Quasi-Metric on** *L X*

In the section, by comparing the above **(I)–(IV)** with the classical metric in general topology (see Definition 1), we can, first of all, define a kind of metric on *L ^X* as follows.

Definition 3. A mapping $p : M \times M \to [0, +\infty)$ is called an *L*-quasi-metric on *L*^X if it satisfies *the following properties:*

(A2) (triangle inequality) $p(a, c) \leq p(a, b) + p(b, c)$ *.*

An L-quasi-metric p is called an L-pseudo-metric on L^X if it still satisfies the following property:

 $(A3)$ ∀*a*, *b* ∈ *M*, ∃*y* ≰ *b*' *s.t.* $p(a, y) < r$ ⇔ ∃*x* ≰ *a*' *s.t.* $p(b, x) < r$.

An L-pseudo-metric p is called an L-metric on L^X if it still satisfies the following property:

(A4) if $p(a, b) = 0$ *, then* $a > b$ *.*

Definition 4. *Given a mapping p:* $M \times M \rightarrow [0, +\infty)$ *. For* $A \in L^X$ *, define* $D_r(A) = \bigvee \{b \in$ $M \mid \exists a \ll A$, $p(a,b) < r$ }, $D_{-r}(A) = \bigvee \{a \in M \mid D_r(a) \le A\}$ and $D_{-r} * D_{-s}(A) = \bigvee \{a \in A\}$ $M \mid D_r(a) \leq D_{-s}(A)$.

Theorem 3. If p is an L-quasi-metric on L^X , then $D_r(a) = \bigvee_{s < r} D_s(a)$.

Proof. Obviously, when $s < r$, $D_s(a) \le D_r(a)$. Thus, $D_r(x_\alpha) \ge \forall$ $\bigvee_{s < r} D_s(x_\alpha)$. Conversely, let $c \ll D_r(a)$. Then, by the definition of $D_r(a)$ and the way below relation, there exist $e \in M$ and $h_e \ll a$ such that $c \leq e$ and $p(h_e, e) < r$, respectively. Because $c \leq e$, according to the conditions (A1) and (A2) in Definition 3, we can obtain $p(h_e, c) \leq p(h_e, e) < r$. Take s with $p(h_e, c) < s < r$. Then, $c \leq D_s(a)$, and, consequently, $D_r(a) \leq \ \forall$ $\bigvee_{s \leq r} D_s(a)$, as desired.

Theorem 4. If p is an L-quasi-metric on L^X , then $D_{-r}(A) = \bigwedge_{s < r} D_{-s}(A)$.

Proof. Clearly, $D_{-r}(A) \leq \Lambda$ *∆_{s<r}* $$ *D* $−$ *s* $($ *A* $). Conversely, let $c \ll ∑$$ $\bigwedge_{s < r} D_{-s}(A)$. Then, by the way below relation for each *s* < *r*, there is *a* \in *M* such that *c* \le *a* and *D*_{*s*}(*a*) \le *A*. According to the conditions (A1) and (A2) in Definition 3, we can obtain $D_s(c) \leq D_s(a)$, and then we can assert $D_s(c) \leq A$. Consequently, $\bigvee_{s \leq r} D_s(c) \leq A$. By Theorem 3, we have $D_r(c) \leq A$. Hence, *c* ≤ *D*_{−*r*}(*A*), and then $\bigwedge_{s \leq r}$ *D*_{−*s*}(*A*) ≤ *D*_{−*r*}(*A*), as desired.

Theorem 5. *If p is an L-quasi-metric on* L^X *, then* $D_{-r-s}(A) \leq D_{-r} * D_{-s}(A)$ *.*

Proof. By the definitions of $D_{-r-s}(A)$ and $D_{-r} * D_{-s}(A)$, we need to prove {*a* ∈ *M* | $D_{r+s}(a) \leq A$ \subseteq {*b* \in *M* | $D_r(b) \leq D_{-s}(A)$ }. This proof is as follows. Let $D_{r+s}(a) \leq A$. Then, we need to check $D_r(a) \leq D_{-s}(A)$. Because

$$
D_r(a) \le D_{-s}(A) \Leftrightarrow \bigvee \{e \mid \exists a_e \ll a, p(a_e, e) < r\}
$$
\n
$$
\le \bigvee \{c \in M \mid D_s(c) \le A\},
$$

if $e\in\{e\mid \exists a_e\ll a$, $p(a_e,e)< r\}$, then $e\leq \bigvee\{c\in M\mid D_s(c)\leq A\}$, which is equivalent to proving that, for any $g \ll e$, it holds that $D_s(g) \leq A$. In fact, let $u \in \{u \mid \exists g_u \ll g, p(g_u, u)$ *s*}. Since $p(a_e, e) < r$, it holds that $p(a_e, g_u) < r$ by the conditions (A1) and (A2) in Definition 3. Hence, $p(a_e, u) \leq p(a_e, g_u) + p(g_u, u) < r + s$. Because of $D_{r+s}(a) \leq A$, we have $u \leq A$, and so $D_s(g) \leq A$, as desired. \square

Theorem 6. If p is an L-quasi-metric on L^X , then $\{D_{-r}(\alpha) \mid \alpha \in J, r \in [0, +\infty)\}$ is a co*topological base, and the co-topology is denoted by ψp.*

Proof. Let T be the family of all any intersections of elements of $\{D_{-r}(a) \mid a \in J, r \in J\}$ $[0, +\infty)$. Now, we check that T is a co-topology.

Let $\lambda, \mu \in J$ (about *J*, see Section 2) and $s, r \in [0, +\infty)$. We need to prove $D_{-r}(\lambda) \vee D_{-r}(\lambda)$ $D_{-s}(u) = K \in \mathcal{T}$. Case 1: when $r = 0$ and $s = 0$, we can obtain $K = 0$. Therefore, *K* ∈ *T*. Case 2: if *K* = <u>1</u>, then, in view of *K* = \land ∅, we have *K* ∈ *T*. Case 3: if *K* \neq <u>1</u> or 0, then, by Theorem 2, we can obtain *α*(*D*−*r*(*λ*)) ⊇ *α*(*K*) and *α*(*D*−*s*(*µ*)) ⊇ *α*(*K*). Let $\gamma \in \alpha(K) \subseteq \alpha(D_{-r}(\lambda)) \cap \alpha(D_{-s}(\mu))$. Then, by Theorem 4, we may take two numbers e_1, e_2 with $r > e_1 > 0$, $s > e_2 > 0$, such that $\gamma \in \alpha(D_{-e_1}(\lambda))$ and $\gamma \in \alpha(D_{-e_2}(\mu))$. Therefore, we can obtain $\gamma \geq D_{-e_1}(\lambda)$ and $\gamma \geq D_{-e_2}(\mu)$, respectively. Let t_γ =inf $\{r-e_1, s-e_2\}$. Then, by Theorem 5, we have

$$
\gamma \ge D_{-t_{\gamma}}(\gamma) \ge D_{-t_{\gamma}}(D_{-e_1}(\lambda)) = D_{-t_{\gamma}} * (D_{-e_1}(\lambda))
$$

$$
\ge D_{-t_{\gamma}-e_1}(\lambda) \ge D_{-r}(\lambda).
$$

Similarly, it holds that $\gamma \geq D_{-s}(\mu)$. Hence, $K = \wedge \alpha(K) \geq \wedge \{D_{-t_{\gamma}}(\gamma) \mid \gamma \in \alpha(K)\} \geq$ *D*−*r*(*λ*)∨ *D*−*s*(*µ*) = *K*. Consequently, *K* = ∧{*D*−*t*_{*γ*}(*γ*) | *γ* ∈ *α*(*K*)}. *T* = *ψp*, as desired.

Theorem 7. If p is an *L*-quasi-metric on L^X and the co-topology is ψ_p , then $\psi_p(\alpha) = \{D_{-r}(\beta) \mid \alpha\in\mathbb{R}^d\}$ $r > 0, \alpha \nleq \beta$ *is a Q-neighborhood base of* α *.*

Proof. Given $\alpha \nleq \beta$, owing to $D_{-r}(\beta) \leq \beta$, we have $\alpha \nleq D_{-r}(\beta)$. In addition, by Theorem 6, we can assert that $D_{-r}(\beta)$ is a closed set. Therefore, each element of $\psi_p(\alpha)$ is a Qneighborhood of *α*. Conversely, let *A* ∈ $ψ$ *p*, satisfying *α* $≤$ *A*. Then, by Theorem 6 and the definition of $\alpha(A)$, we can obtain

$$
A = \wedge \{D_{-r_i}(\alpha_i) \mid i \in \Gamma, \alpha_i \in \alpha(A)\}
$$

$$
= \wedge \{\alpha_i \mid i \in \Gamma, \alpha_i \in \alpha(A)\}.
$$

It follows that there must exist some α_i such that $\alpha \nleq \alpha_i$. As a result, we have $\alpha \nleq D_{-\eta_i}(\alpha_i)$. Additionally, in view of $A \leq D_{-r_i}(\alpha_i)$, we can assert that $\psi_p(a)$ is a Q-neighborhood base of *α*.

Theorem 8. *Suppose that p is a mapping from* $M \times M$ *to* [0, $+\infty$). *Then,* $D_{-r}(\Lambda)$ $\bigwedge_{i \in \Gamma} a_i$) = $\bigwedge_{i \in \Gamma} D_{-r}(a_i)$.

Proof. If $\Gamma = \emptyset$, then it is straightforward. Thus, we might as well set $\Gamma \neq \emptyset$. Obviously, by the definition of *D*_{−*r*}</sub>, we have *D*_{−*r*}(a_i) ≥ *D*_{−*r*}(\wedge $\bigwedge_{i \in \Gamma} a_i$ for each $i \in \Gamma$. Thus, $\bigwedge_{i \in \Gamma} D_{-r}(x_{\alpha_i}) \geq$ *D*−*r*(\wedge $\bigwedge_{i\in\Gamma} x_{\alpha_i}$). Conversely, let $h \ll \bigwedge_{i\in\Gamma}$ $\bigwedge_{i \in \Gamma} D_{-r}(a_i)$. Then, for each $i \in \Gamma$, there exists $a \in M$ such that $h \le a$ and $D_r(a) \le a_i$. Hence, $D_r(h) \le a_i$, and then $D_r(h) \le \Lambda$ $\bigwedge_{i \in \Gamma} a_i$ and $h \leq D_{-r}(\bigwedge_{i \in \Gamma} a_i)$ $\bigwedge_{i \in \Gamma} a_i$). Because *h* is arbitrary, it is true that \wedge $\bigwedge_{i\in\Gamma} D_{-r}(a_i) \leq D_{-r}(\bigwedge_{i\in\Gamma}$ $\bigwedge_{i \in \Gamma} a_i$, as desired.

Corollary 1. Let p be an L-quasi-metric on L^X and let ψ_p be the co-topology. If $B \in L^X$, then $D_{-r}(B) \in \psi_p$ *.*

Proof. Let $B = \Lambda$ $\bigwedge_{i \in \Gamma} \{a_i \mid i \in \Gamma, a_i \in J\}$. Then, by Theorem 8, we have $D_{-r}(B) = \bigwedge_{i \in \Gamma} D_{-r}(a_i)$, so that $D_{-r}(B) \in \psi_p$. □

Theorem 9. Let p be an L-quasi-metric on L^X . Then, $D_{-r}(\alpha) \geq A$ if and only if $D_r(A) \leq \alpha$.

Proof. (*Sufficiency*). Let $e \in \{b \in M \mid \exists a \ll A, p(a,b) < r\}$. Then, there is $f_e \ll A$ such that $p(f_e,e) < r.$ Take $c \in M$ with $f_e \ll c \ll A.$ Then, $p(c,e) \leq p(f_e,e) < r.$ Hence, $e \leq D_r(c).$ Since $c \ll A \leq D_{-r}(\alpha)$, there exists $d \in M$ such that $c \ll d$ and $D_r(d) \leq \alpha$. Because of *c d*, by the definition of *D^r* , we can obtain *Dr*(*c*) ≤ *Dr*(*d*), and then we have *Dr*(*c*) ≤ *α*. Hence, $e \leq \alpha$. Therefore, we have

$$
D_r(A) = \bigvee \{b \in M \mid \exists a \ll A, p(a, b) < r\} \leq \alpha.
$$

(*Necessity*). For any $e \ll A$, we can deduce $D_r(e) \leq D_r(A) \leq \alpha$, and then $e \leq D_{-r}(\alpha) = \bigvee \{e \in M \mid D_r(e) \leq \alpha\}$. Consequently, $A \leq D_{-r}(\alpha)$, as desired.

Theorem 10. Let p be an L-quasi-metric on L^X and let ψ_p be the co-topology. Then, $\overline{A} = \Lambda$ $\bigwedge_{r>0} D_r(A).$

Proof. Let $a \ll A$. Then, $D_r(a) \leq D_r(A)$. Thus $D_{-r}(D_r(A)) = \sqrt{a \in M \mid D_r(a)} \leq$ $D_r(A)$ } ≥ *A*. Thus, we have $D_r(A) \geq D_{-r}(D_r(A)) \geq A$ for each $r > 0$. Therefore, \wedge $D_r(A) \geq \overline{A}$. Conversely, if $a \not\leq \overline{A}$, then there exist $\alpha \in L^X$ and $r > 0$ such that $a \not\leq \alpha$ and *r*>0 $D_{-r}(\alpha) \geq A$. By Theorem 9, we can obtain $D_r(A) \leq \alpha$. Since $a \nleq \alpha$, we have $a \nleq D_r(A)$. Consequently, $D_r(A) \leq A$, so that $\bigwedge_{r>0} D_r(A) \leq A$, as desired.

4. Some Properties of Spheres in *L***-Quasi-Metric Space**

In this section, we investigate some relationships between several spheres which are defined by using an *L*-quasi-metric on *L ^X* and show some related properties about *L*-quasi-metrics by using the following spheres, which play a crucial role in characterizing metric-induced topology.

Definition 5. *Given a mapping* $p : M \times M \to [0, +\infty)$ *, for a, b* $\in M$ *and* $r \in [0, +\infty)$ *, we define the following:*

$$
U_r(a) = \bigvee \{c \in M \mid p(a,c) < r\};
$$
\n
$$
B_r(a) = \bigvee \{c \in M \mid p(a,c) \le r\};
$$
\n
$$
Q_r(b) = \bigvee \{c \in M \mid p(c,b) > r\};
$$
\n
$$
P_r(b) = \bigvee \{c \in M \mid p(c,b) \ge r\}.
$$

Theorem 11. Let p be an L-quasi-metric on L^X. Then, (1) $U_r(b) = \bigvee_{s \le r} B_s(b)$; (2) $B_r(b) =$ \wedge $\bigwedge_{r < s} U_s(b)$.

Proof. (1). If $s < r$, then $B_s(b) \le U_r(b)$. Thus, $\bigvee_{s < r} B_s(b) \le U_r(b)$. Conversely, let $c \ll U_r(b)$. Then, by the way below relation and (A2) in Definition 3, we can obtain $p(b, c) < r$. Taking *s* with $p(b, c) < s < r$, we have $c \le U_s(b)$, and then $c \le \forall U_s(b)$. Consequently, *s*<*r* $U_r(b) \leq \sqrt{2}$ $\bigvee_{s \leq r} U_s(b) \leq \bigvee_{s \leq r}$ $\bigvee_{s \leq r} B_s(b).$

(2). Obviously, $B_r(b) \leq \Lambda$ $\bigwedge_{r < s} U_s(b)$. Conversely, let $a \ll \bigwedge_{r < s}$ $\bigwedge_{r < s} U_s(b)$. Then, for any $s > r$, we have $p(b, a) < s$. Because *s* is arbitrary, it is true that $p(b, a) \leq r$. Hence, $a \leq B_r(b)$. Consequently, $\bigwedge_{r < s} U_s(b) \leq B_r(b)$.

Theorem 12. Let p be an L-quasi-metric on L^X . Then, $\bigwedge_{u < r} P_u(a) = P_r(a)$.

Proof. If $u < r$, then $P_r(a) \leq P_u(a)$. Thus, $P_r(a) \leq \Lambda$ $\bigwedge_{u < r} P_u(a)$. Conversely, let $c \ll \bigwedge_{u < r}$ $\bigwedge_{u \leq r} P_u(a)$. Then, it holds that $c \ll P_u(a)$ for every $u < r$. Therefore, there exists $e \in M$ such that $c \le e$ and $p(e, a) \ge u$, and then $p(c, a) \ge u$. Because *u* is arbitrary, we have $p(c, a) \ge r$, which $\text{implies } c \leq P_r(a).$ Therefore, $\bigwedge_{u < r} P_u(a) \leq P_r(a).$

Theorem 13. *If* p *is an L-quasi-metric on* L^X *and for any* $b \in M$ *there is* \bigwedge *xb* $p(x, b) = 0$, then $p(b, a) = \Lambda$ *xb p*(*x*, *a*)*.*

Proof. Let $p_1(b, a) = \bigwedge_{x \ll b}$ $p(x, a)$. Since $x \ll b$, we have $x \leq b$. Therefore, by triangle inequality $p(x, a) \geq p(b, a)$, $p_1(b, a) = \bigwedge_{x \ll b}$ $p(x, a) \geq p(b, a)$. Conversely, we have

$$
p_1(b,a) = \bigwedge_{x \ll b} p(x,a) \le \bigwedge_{x \ll b} (p(b,a) + p(x,b))
$$

$$
= p(b,a) + \bigwedge_{x \ll b} p(x,b).
$$

In view of $\,$ \wedge $\bigwedge_{x \ll b} p(x, b) = 0$, we can obtain $p_1(b, a) \leq p(b, a)$, as desired.

Corollary 2. *Let p be an L-quasi-metric on L ^X. Then, p is a Yang–Shi pseudo-metric if and only if, for each a* \in *M, it holds that* $\bigwedge_{x \ll a} p(x, a) = 0$ *.*

Theorem 14. If mapping $p : M \times M \longrightarrow [0, +\infty)$ satisfies the property (E3)^{*} for each $a \in M$ *and* $r > 0$, $a \nleq P_r(a)$, then, when $b \geq a$, $p(b, a) = 0$.

Proof. If $p(b,a) \neq 0$, then there exists a number $r \in R^+$ such that $p(b,a) \geq r$, and then $b \leq P_r(a)$. Therefore, $a \leq P_r(a)$, which contradicts (E3)^{*}.

Theorem 15. Let p be an L-quasi-metric on L^X . If $\bigwedge_{c \leq a} p(c, a) = \lambda > 0$, then $a \nleq P_r(a)$ if and *only if* $r > \lambda$ *.*

Proof. Let $r > \lambda$. If $a \leq P_r(a)$, then, for each $x \ll a$, there exists $y \in M$ such that $x \leq y$ and $p(y, a) \geq r$. Therefore, $p(x, a) \geq p(y, a) \geq r$, so that $\lambda = \Lambda$ $\bigwedge_{x \ll a} p(x, a) \geq r$. This is a contradiction. Thus, $a \nleq P_r(a)$.

Conversely, assume that $r \leq \lambda$. Then, $P_r(a) \geq P_\lambda(a)$. Since $a \not\leq P_r(a)$, it is true that $a \nleq P_\lambda(a)$. In view of $\bigwedge_{c \ll a} p(c, a) = \lambda$, we have $p(c, a) \geq \lambda$ for any $c \ll a$, and then $c \leq P_\lambda(a)$. Therefore, $a \leq P_\lambda(a) \leq P_r(a)$. This is a contradiction. Thus, $r > \lambda$, as desired. \square

A mapping $p : M \times M \longrightarrow [0, +\infty)$ is called a Yang pseudo-metric on L^X if it satisfies (A1)–(A3) and (E3)[∗] [\[8\]](#page-13-7). Therefore, by Corollary 2 and Theorems 14 and 15, we have the following result.

Corollary 3. *p is a Yang–Shi pseudo-metric if and only if p is a Yang pseudo-metric on LX.*

Theorem 16. Let p be an L-quasi-metric on L^X. Then, the family $\{U_r(a) \mid a \in M, r \in [0, +\infty)\}$ *is a basis for a topology which is called the metric topology induced by p and denoted by ζ ^p.*

Proof. Let ζ_p be the set of arbitrary unions of the family. To prove that ζ_p is a topology, we only need to prove that the intersection of any two elements of ζ_p belongs to ζ_p .

Let $U_s(a)$, $U_t(b) \in \zeta_p$ and let $A = U_s(a) \wedge U_t(b)$. Case 1: if $s = 0$ or $t = 0$, then it is easy to check $A \in \zeta_p$. Case 2: if $s \neq 0$ and $t \neq 0$, then $A \neq \underline{0}$. In this case, let $c \ll A$. Then, $c \ll U_s(a)$ and $c \ll U_t(b)$. Therefore, $p(a, c) < s$ and $p(b, c) < t$. Let $r_c = (s - p(a, c)) \wedge (t - p(b, c))$. Now, we prove $A = \vee$ $\bigvee_{c \ll A} U_{r_c}(c)$.

Clearly, $A \leq \forall$ $\bigvee_{c \ll A} U_{r_c}(c)$. Conversely, let $e \ll \bigvee_{c \ll A}$ $\bigvee_{c \ll A} U_{r_c}(c)$. Then, there exists $c \ll A$ such that $e \ll U_{r_c}(c)$, and then $p(c,e) < r_c$. Hence, we can obtain $p(c,e) < s - p(a,c)$ and $p(c, e) < t - p(b, c)$. Consequently, $p(a, e) < s$ and $p(b, e) < t$. Therefore, $e \le U_s(a)$ and $e \le U_t(b)$, so that $e \le A$, as desired. \square

Theorem 17. Let p be an L-quasi-metric on L^X . Then, $A^\circ = \bigvee \{a \mid \exists r > 0, U_r(a) \leq A\}$.

Proof. Let $T = \bigvee \{a \mid \exists r > 0, U_r(a) \leq A\}$. Obviously, $T \leq A^\circ$. Conversely, let $e \ll A^\circ$. Then, by Theorem 16, there exists $U_r(a)$ such that $e \ll U_r(a) \leq A$, and then $p(a,e) < r$. Let $s = r - p(a, e)$. Given $c \in M$ with $p(e, c) < s$. Then, $p(a, c) \leq p(a, e) + p(e, c)$ *r* − *s* + *p*(*e*, *c*) < *r*. Therefore, $U_s(e) \le U_r(a) \le A$, so that $e \le T$, as desired. \Box

Theorem 18. *Given a mapping* $p : M \times M \rightarrow [0, +\infty)$ *, where p satisfies* (A3) *(see Definition 3). Then,* $U_r(b) = D_{-r}(b')'.$

Proof. Let $p(b, a) < r$. Since for every $x \not\leq a'$ (i.e., $a \not\leq x'$), there is $z \ll x$ such that $z \nleq a'$ (i.e., $z \ll x$ and $a \nleq z'$), there is $w \in M$ with $w \nleq b'$ such that $p(z, w) < r$, from (A3). Therefore, it must hold that $x \not\ll D_{-r}(b')$. Otherwise, there exists $c \in M$ such that $x \leq c$ and $D_r(c) \leq b'$. Since $D_r(x) \leq D_r(c)$, we have $D_r(x) \leq b'$. In addition, from $z \ll x$ and $p(z, w) < r$, we can deduce $w \leq D_r(x)$, so that $w \leq b'$. However, this is a contradiction. In short, as long as $x \nleq a'$, it is true that $x \nleq D_{-r}(b')$. Thus, $D_{-r}(b') \leq a'$, i.e., $a \leq D_{-r}(b')'$. Thus, $U_r(b) \leq D_{-r}(b')'$.

Conversely, let $x \not\leq D_{-r}(b')$. Then, $D_r(x) \not\leq b'$. Thus, there is $e \in \{e \in M \mid \exists x_e \ll b'\}$ $f(x_e, e) < r$ such that $e \not\leq b'$. By (A3) there exists $y \not\leq x'_e$ such that $p(b, y) < r$, and then $y \le U_r(b)$. In view of $x_e \ll x$ and $y \not\le x'_e$, we can obtain $y \not\le x'$. Therefore, $U_r(b) \not\le x'$, i.e., $x \not\le U_r(b)'$. That is to say that, as long as $x \not\le D_{-r}(b')$, it must hold that $x \not\le U_r(b)'$. It follows that $U_r(b)' \leq D_{-r}(b'),$ i.e., $D_{-r}(b')' \leq U_r(b)$, as desired.

Theorem 19. *A mapping* $p : M \times M \rightarrow [0, +\infty)$ *satisfies* (A3) *if and only if it holds that* $V U_r(b) = U_r(a)$. *ba*

Proof. If $U_r(b) \nleq a'$, then there exists *x* with $p(b,x) < r$ such that $x \nleq a'$. Because (A3) is equivalent to $U_r(a) \nleq b' \Leftrightarrow U_r(b) \nleq a'$ for any $a, b \in M$, we can obtain the following formulas:

$$
U_r(a) \le b' \Leftrightarrow U_r(b) \le a' = \bigwedge_{x \ll a} x' \Leftrightarrow x \ll a, U_r(b) \le x'
$$

$$
\Leftrightarrow x \ll a, U_r(x) \le b' \Leftrightarrow \bigvee_{x \ll a} U_r(x) \le b',
$$

as desired. \square

Corollary 4. Suppose that mapping $p : M \times M \rightarrow [0, +\infty)$ satisfies (A3). Then, $U_r(b) = D_r(b)$.

Proof. By Theorem 19, $U_r(b) = \bigvee_{e \leq b} U_r(e) = \bigvee \{a \in M \mid \exists e \ll b, p(e, a) < r\} = D_r(b)$, as desired. \square

Definition 6. *Suppose that mapping* $p : M \times M \to [0, +\infty)$ *satisfies (A3). Then, for* $A \in L^X$ *and* $r > 0$, define $U_r(A) = \bigvee U_r(a)$. *aA*

Remark 1. *If* $A = b \in M$, then, by Theorem 19, $U_r(A) = \bigvee_{a \ll A} U_r(a)$. Furthermore, by Corollary *4* and Definition 6, we have $U_r(A) = D_r(A)$. As a result, if a mapping $p : M \times M \rightarrow [0, +\infty)$ *satisfies (A3), then* $U_r(A)$ *and* $D_r(A)$ *are equivalent.*

5. *L***-Pseudo-Metric on** *L X*

In this section, we investigate *L*-pseudo-metric on *L ^X*. In particular, the relationship between the two topologies: ψ_p and ζ_p , which have been presented in Theorem 6 and Theorem 16 respectively, are acquired below.

Theorem 20. *If p is an L-pseudo-metric on L^X, then* $\psi_p = \zeta'_p$.

Proof. By Theorem 18, $U_r(b) = D_{-r}(b')'$. Therefore, in view of Theorem 6 and Theorem 16, we can assert that the result is true, as desired. \Box

Corollary 5. If p is an L-pseudo-metric on L^X , then $\overline{A} = \Lambda$ $\bigwedge_{r>0} U_r(A)$.

Proof. It is easy to check the result by Theorem 10 and Remark 1. □

Theorem 21. Let p be an L-pseudo-metric on L^X. Then, $\overline{A} = \bigvee \{b \in M \mid \exists a \text{ sequence}$ ${b_i \ll A \mid i \in N}$ *such that* $p(b_i, b) \to 0}.$

Proof. Let $b \ll \overline{A}$. Since $\overline{A} = \Lambda$ $\bigwedge_{s>0}$ *U_s*(*A*), we have $b \ll U_{\frac{1}{k}}(A) = \bigvee_{c \ll k}$ *cA* $U_{\frac{1}{k}}(c)$ for every $k \in N$. Therefore, there exists $b_k \ll A$ such that $b \ll U_{\frac{1}{k}}(b_k)$, so that $p(b_k, b) < \frac{1}{k}$.

Conversely, let $b \in \{b \in M \mid \exists \text{ a sequence } \{b_i \ll A \mid i \in N\} \text{ such that } p(b_i, b) \to 0\}.$ Then, by Corollary 1, $D_{-r}(\alpha)$ is a Q-neighborhood of *b* for any $b \nleq \alpha$ and $r > 0$. Now, we check $A \nleq D_{-r}(\alpha)$.

By Theorem 9, we have $b \nleq D_{-r}(\alpha) \Leftrightarrow D_r(b) \nleq \alpha$ and $A \nleq D_{-r}(\alpha) \Leftrightarrow D_r(A) \nleq \alpha$. Thus, we need to prove this result: if $D_r(b) \nleq \alpha$, then $D_r(A) \nleq \alpha$, i.e., $D_r(A) \leq \alpha \Rightarrow D_r(b) \leq \alpha$. The proof is as follows.

Let $D_r(A) \leq \alpha$ and it be true that $D_r(b) = U_r(b) = \bigvee \{c \mid p(b,c) < r\}$. If $p(b,c) = s < r$, then

$$
p(b_i, c) \leq p(b_i, b) + p(b, c) = p(b_i, b) + s.
$$

Since $p(b_i, b) \to 0$, there exists $N_r \in N$ such that, when $i \geq N_r$, we have $p(b_i, c) < r$. Therefore, $c \le D_r(A)$, so that $D_r(b) \le D_r(A)$. Consequently, $D_r(b) \le \alpha$, as desired. \square

Theorem 22. Let p be an L-pseudo-metric on L^X . Then, $P_r(a)$ is a closed set in ζ_p .

Proof. By Corollary 5 and Remark 1, we prove $P_r(a) = \bigwedge_{t>0} D_t(P_r(a))$. In addition, when $t > s$, it is easy to see that $D_s(P_r(a)) \leq D_t(P_r(a))$. Hence, we have

$$
\bigwedge_{t>0} D_t(P_r(a)) = \bigwedge_{r>s>0} D_s(P_r(a)).
$$

Therefore, $P_r(a) \leq \Lambda$ $\bigwedge_{r>s>0} D_s(P_r(a))$. Conversely, let $h \ll \bigwedge_{r>s}$ $\bigwedge_{r>s>0} D_s(P_r(a))$. Then, for any *s* with $r > s > 0$, it is true that $h \ll D_s(P_r(a))$. Thus, there exists $e \in M$ with $h \le e$ and $b \in M$, such that $b \ll P_r(a)$ and $p(b,e) < s$, so that $p(b,a) \geq r$ and $p(b,h) < s$. Hence, $p(h, a) \geq p(b, a) - p(b, h) \geq r - s$, and then $h \leq P_{r-s}(a)$. By Theorem 12, we have $h \leq \Lambda$ *r*>*s*>0</sub> P *r*−*s*(*a*) = *Pr*(*a*). Consequently, $\bigwedge_{r>s>0} D_s(P_r(a)) ≤ P_r(a)$, as desired.

Theorem 23. Let p be an L-pseudo-metric on L^X ; then, \vee $\sum_{z \leq b'} P_{\lambda}(z)' \leq D_{\lambda}(b).$

Proof. Let $a \ll \forall$ $\bigvee_{z \leq b'} P_{\lambda}(z)'$. Then, there exists $e \in M$ such that $a \ll e \leq \bigvee_{z \leq a}$ $\bigvee_{z \not\leq b'} P_{\lambda}(z)'$. Therefore, $e' \geq \Lambda$ $\bigwedge_{z \leq b'} P_{\lambda}(z)$. Thus, for any $x \nleq e'$, there exists $z \nleq b'$ such that $x \nleq P_{\lambda}(z)$, which implies $p(x, z) < \lambda$. According to (A3), there exists $y = y(x)$ such that $y \nleq x'$ and $p(b,y) < \lambda$. Let $q = \bigvee \{ y = y(x) \mid x \not\leq e' \}.$ Then, $q \not\leq x'$, i.e., $x \not\leq q'.$ That is to say that, as long as $x \nleq e'$, it must hold that $x \nleq q'$. Hence, $q' \leq e'$, i.e., $e \leq q$. Therefore, $a \ll e \leq q$. Thus, there exists $y = y(x)$ such that $a \leq y$, and then $p(b, a) \leq p(b, y) < \lambda$. It follows that $a \le U_{\lambda}(b) = D_{\lambda}(b)$. Consequently, $\bigvee_{z \nleq b'} P_{\lambda}(z)' \le D_{\lambda}(b)$, as desired.

Theorem 24. If p is an L-pseudo-metric on L^X , then $B_r(b) = \bigwedge_{r < s} B_s(b)$.

Proof. Obviously, $B_r(b) \leq \bigwedge$ $\bigwedge_{r < s} B_s(b)$. Conversely, let $h \ll \bigwedge_{r < s}$ $\bigwedge_{r < s} B_s(b)$. Then, for every $s > r$, it is true that $h \ll B_s(b)$. Thus, there exists $e \in M$ such that $e \geq h$ and $p(b,e) \leq s$, so that $p(b, h) \leq p(b, e) \leq s$. Because *s* is arbitrary, we have $p(b, h) \leq r$, and then $h \leq B_r(b)$. Therefore, $\bigwedge_{r < s} B_s(b) \leq B_r(b)$, as desired.

Theorem 25. *If p is an L-pseudo-metric on L^X, then* $\overline{B_r(b)} = B_r(b)$ *.*

Proof. We only need to prove $B_r(b) \leq B_r(b)$. Let $h \ll B_r(b) = \bigwedge_{s>0} D_s(B_r(b))$. Then, for every $s > 0$, it is true that $h \ll D_s(B_r(b))$. Hence, there exist $a \ll B_r(b)$ and $b \in M$ such that $h \leq b$ and $p(a, b) < s$, and then $p(a, h) < s$. Because $a \ll B_r(b)$, we can obtain $p(b, a) \leq r$. Hence, we have

$$
p(b,h) \le p(b,a) + p(a,h) < s + r.
$$

It follows that $h \leq U_{r+s}(b) = D_{r+s}(b)$, and then $h \leq \Lambda$ $\bigwedge_{s>0} D_{r+s}(b)$. According to Theorem

11, we have $h \leq B_r(b)$. As a result, $\overline{B_r(b)} \leq B_r(b)$, as desired. \square

Because $B_r(b)$ is a closed set, $\overline{U_r(b)} \leq B_r(b)$. In general, $\overline{U_r(b)} \neq B_r(b)$. Therefore, we give the following result.

Theorem 26. Let p be an L-pseudo-metric on L^X . If there exists $c \in M$ such that $p(c, a) < r$ and $p(b, c) < s$ for any $a, b \in M$ satisfying $p(b, a) < r + s$, then $\overline{U_r(b)} = B_r(b)$.

Proof. We only need to prove $B_r(b) \le \overline{U_r(b)}$. Due to $U_r(b) = D_r(b)$, we need to prove $B_r(b) \leq D_r(b)$. According to Theorem 11, we have

$$
B_r(b) = \bigwedge_{s>0} D_{r+s}(b).
$$

Let $a \ll D_{r+s}(b)$. Then, we have $p(b,a) < r+s$. Because there is $c \in M$ such that $p(c, a) < r$, $p(b, c) < s$ and $D_r(D_s(b)) =$ $c \ll D_s(b)$ *V* $D_r(c)$, we can obtain $a \leq D_r(D_s(b))$. Therefore, $D_{r+s}(b) \le D_r(D_s(b))$. As a result, we have $B_r(b) = \bigwedge_{s>0} D_{r+s}(b) = \bigwedge_{s>0} D_{s+r}(b) \le$ \wedge $\bigwedge_{s>0}$ $D_s(D_r(b)) = D_r(b) = U_r(b)$, as desired.

6. Further Properties about *L***-Pseudo-Metric**

In this section, based on a class of spherical mappings, we acquire an equivalent characterization of *L*-pseudo-metric on L^X in terms of a class of mapping clusters.

Definition 7. *Given a mapping* $p : M \times M \rightarrow [0, +\infty)$ *. For any* $a, b \in M$, *define* $D_r^{-1}(b)$ = $\Lambda\{a' \mid D_r(a) \leq b'\}$ and $D_r \circ D_s(b) = \bigvee \{D_r(a) \mid a \leq D_s(b)\}.$

Theorem 27. *If p is an L-pseudo-metric on LX, then it satisfies the following properties:*

- *(1)* W $\bigvee_{r>0} D_r(b) = 1;$
- $(b < D_r(b))$;
- (3) $D_r(\sqrt{2})$ $\bigvee_{i\in I} b_i$ = $\bigvee_{i\in I} D_r(b_i)$ *;*
- (4) $D_r(b) = \bigvee_{s < r} D_s(b);$
- $(D_r \circ D_s(b) \leq D_{r+s}(b)$;
- (6) $D_r(b) = D_r^{-1}(b)$.

Proof. (1) and (2) are immediate, by definitions.

(3) Let $A = \bigvee$ $\bigvee_{i\in I} b_i$. Then, according to $\beta^*(\bigvee_{i\in I}$ $\bigvee_{i \in I} b_i$ = $\bigcup_{i \in I} \beta^*(b_i)$, Remark 1 and the definition of $D_r(A)$, (3) is true.

(4) According to Theorem 11 and Corollary 4, it is easy to check that $D_r(b)$ = W $\bigvee_{s \leq r} B_s(b) = \bigvee_{s \leq r} D_s(b).$

(5) We need to prove the following formulas:

$$
D_r \circ D_s(b) = \vee \{ D_r(a) \mid a \le D_s(b) \}
$$

= $\vee \{ [\vee \{ e \in M \mid \exists f \ll a, p(f, e) < r \} \mid a \le D_s(b)] \}$
 $\le D_{r+s}(b).$

In fact, let $a\leq D_s(b)=\bigvee\{g\in M\mid \exists h\ll b, p(h,g)< s\}$ and let $e\in M$, satisfying that there exists $f \ll a$ such that $p(f,e) < r$. Then, there must exist *g* with $f \le g$ and h_g with $h_g \ll b$ such that $p(h_g, g) < s$. Hence,

$$
p(h_g, e) \le p(h_g, f) + p(f, e) \le p(h_g, g) + p(f, e) < r + s.
$$

Thus, $e \le D_{r+s}(b)$. Hence, $D_r(a) \le D_{r+s}(b)$. Consequently, $D_r \circ D_s(b) \le D_{r+s}(b)$.

(6) By Theorem 18 and Corollary 4, we can deduce $D_r^{-1}(b) = \Lambda\{a' \mid D_r(a) \le b'\}$ = $(D_{-r}(b'))' = U_r(b) = D_r(b).$

Theorem 28. *Suppose that the family* $\{D_r(a) | a \in M, r \in [0, +\infty)\}$ *satisfies the above properties* (1) – (6) *and we define* $p(a,b) = \sqrt{\{r \mid b \not\le D_r(a)\}}$ *. Then, the following hold:*

- *(a) p is a mapping from* $M \times M$ *to* $[0, +\infty)$ *;*
- *(b)* As well as $(A1)$ and $(A2)$, p further satisfies $p(a, b) = \sqrt{a^2 + b^2}$ *cb p*(*a*, *c*)*;*
- *(c) p is an L-fuzzy pseudo-metric on LX;*
- (*d*) $p(a,b) = \Lambda\{r \mid b \le D_r(a)\}.$

Proof. First of all, we prove the following two conclusions:

(i) If $p(a, b) < r$, then $b \le D_r(a)$;

(ii) If $b \leq D_r(a)$, then $p(a, b) \leq r$.

(i) Suppose that $b \nleq D_r(a)$. Then, this means that, for any $s < r$, it holds that $b \nleq D_s(a)$. Therefore, $p(a, b) = \bigvee \{ s \mid b \not\leq D_s(a) \} \geq r$, so that (i) is true.

(ii) Suppose that $p(a, b) = \sqrt{\{s \mid b \not\leq D_s(a)\}} > r$; then, there exists $s > r$ such that *b* \leq *D*_{*s*}(*a*). By the condition (4), we have *D*_{*s*}(*a*) ≥ *D*_{*r*}(*a*). Thus, *b* \leq *D*_{*r*}(*a*), and then (ii) holds.

(a) Let $b \ll \underline{1} = \sqrt{2}$ *V* $D_r(a)$. Then, there exists *r* such that $b \leq D_r(a)$. By (ii), we can

obtain $p(a, b) \le r \in [0, +\infty)$. As for $p(a, b) \ge 0$, this is obvious from the definition.

(b) (A1). If $b \le a$, then, according to property (2), for each $r > 0$, there is $b \le D_r(a)$. In view of (ii), we can obtain $p(a, b) \le r$. Because *r* is arbitrary, we have $p(a, b) = 0$.

(A2). Let $a, b, c \in M$, $p(a, b) = r$ and $p(b, c) = t$. Then, for any $s > 0$, we have $p(a,b) < r + s$ and $p(b,c) < t + s$. Therefore, by (i), we know $b \le D_{r+s}(a)$ and $c \le D_{t+s}(b)$. By (3) and (5) , we have

$$
c\leq D_{t+s}(b)\leq D_{t+s}(D_{r+s}(a))
$$

$$
\leq D_{t+s} \circ D_{r+s}(a) \leq D_{r+t+2s}(a).
$$

Therefore, by (ii), we can obtain $p(a, c) \le r + t + 2s$. Because *s* is arbitrary, we have $p(a, c) \leq r + t$. Consequently, $p(a, c) \leq p(a, b) + p(b, c)$.

Next, we demonstrate that $p(a, b) = \sqrt{a^2 + b^2}$ *cb p*(*a*, *c*).

Let *c* \ll *b*. Then, by (A1) and (A2), $p(a, c) \leq p(a, b)$. If $p(a, b) = 0$, then \lor *cb* $p(a, c) =$ 0. Thus, we might as well suppose $p(a, b) = r > 0$. For any $s \in (0, r)$, by (ii), we know $b \nleq D_s(a)$, which implies that there exists $e \ll b$ such that $e \not\leq D_s(a)$, and then $p(a,e) \geq s$. Hence, \forall *cb* $p(a, c) \geq s$. Because *s* is arbitrary, we can assert that \forall *cb* $p(a, c) \geq r$. If W *cb* $p(a, c) > t > r$, then there exists $e \ll b$ such that $p(a, e) > t$. By (ii), we know $e \nleq D_t(a)$. Thereby, $b \nleq D_t(a)$, so that $p(a, b) = r > t$. This is a contradiction. As a result, we can assert that $\hspace{0.1em}\bigvee\hspace{0.1em}$ *cb* $p(a, c) = r$.

(c) We need to prove (A3). Suppose $D_r^{-1}(b) \le a'$. Then, by the definition of D_r^{-1} , we can obtain

$$
D_r^{-1}(b) = \bigwedge \{e' \mid D_r(e) \le b', e \in M\} \le a'
$$

$$
\Leftrightarrow \bigvee \{e \mid D_r(e) \le b', e \in M\} \ge a.
$$

Thus, for any $h \ll a$, there exists e such that $h \le e$ and $D_r(e) \le b'$, and then $D_r(h) \le D_r(e) \le b'$. By the property (3), we know $D_r(a) = \bigvee_{h \ll a} D_r(h) \leq b'$. In view of the property (6), we can obtain $D_r^{-1}(a) \leq b'$.

Similarly, we can prove that $D_r^{-1}(b) \le a'$ if $D_r^{-1}(a) \le b'$. Therefore, $D_r^{-1}(b) \le a' \Leftrightarrow$ *D*_{*r*}⁻¹(*a*) ≤ *b*^{*'*}. By the property (6), we have *D_r*(*a*) ≰ *b*^{*'*} \Leftrightarrow *D_r*(*b*) ≰ *a*^{*'*}, which is equivalent to (A3).

(d) Let $\inf\{r \mid b \leq D_r(a)\} = t$. If $p(a,b) = \sup\{r \mid b \not\leq D_r(a)\} > t$, then there exists $r > t$ such that $b \not\le D_r(a)$. By the property (4), $b \not\le D_s(a)$ for any $s < r$. Thus, $t = \inf\{r \mid b \leq D_r(a)\} \geq r$. This is a contradiction. If $t > p(a, b)$, then there is a number *u* satisfying $t > u > p(a, b)$. Since $t = \inf\{r \mid b \le D_r(a)\} > u$, we can assert that $b \nleq D_u(a)$. Therefore, by conclusion (i), it holds that $p(a, b) \geq u$. This contradicts $p(a, b) < u$. Consequently, $p(a, b) = t$, so that $p(a, b) = \inf\{r \mid b \le D_r(a)\}$, as desired. \Box

7. *L***-Metric on** *L X*

In this section, we shall show the relationship between *L*-pseudo-metric and *L*-metric on *L ^X*. First of all we give the following concept.

Definition 8. *The space* (X, δ) *is claimed* T_1 *if and only if* $b = \overline{b}$ *for any* $b \in M$ *.*

Theorem 29. Let p be an L-fuzzy pseudo-metric on L^X . Then, (X, ζ_p) is T_1 -space if and only if p *satisfies* (A4).

Proof. Let $b \in M$ and let $h \ll \overline{b} = \Lambda$ $\bigwedge_{r>0} D_r(b)$. Then, for each $r > 0$, we can obtain

 $h \ll D_r(b) \leq B_r(b)$. Therefore, $p(b, h) = 0$. Hence, by (A4) we know $h \leq b$, and then $b = \bar{b}$. Conversely, suppose that $p(b, a) = 0$. Then, for each $r > 0$, we have $a \le D_r(b)$, and then we can obtain $a \leq \Lambda$ $\bigwedge_{r>0} D_r(b) = b = b$. Therefore, *p* satisfies (A4).

Corollary 6. *The space* (X, δ) *is L-metrizable if and only if it is* T_1 -space- and *L-pseudo-metrizable.*

8. Applications

In this section, we further show some related applications of *L*-quasi (pseudo)-metric on L^X .

Theorem 30. If p is an L-pseudo-metric on L^X and satisfies the property $p(a, b) = \bigwedge_{c \le a} p(c, b)$, *then the following apply:*

(a)
$$
\bigvee_{z \not\leq b'} P_{\lambda}(z)' = D_{\lambda}(b);
$$

(b) The family $\{P_r(b) \mid b \in M, r \in [0, +\infty)\}$ *is a closed topological base and the topology is denoted by ηp;*

```
(c) η_p = ζ'_p.
```
Proof. First of all we prove the result: (i) $c \leq P_r(b) \Leftrightarrow p(c, b) \geq r$ for any $c, b \in M$. In fact, we only need to prove $c \leq P_r(b) \Rightarrow p(c, b) \geq r$. Let $h \ll c$. Then, there exists $e \in M$ such that $e \geq h$ and $p(e, b) \geq r$, so that $r \leq p(e, b) \leq p(e, h) + p(h, b) = p(h, b)$. Therefore, $p(c, b) = \Lambda$ $p(h, b) \geq r$.

hc (a) By Theorem 23, we only need to prove \vee $\sum_{z \leq b'} P_{\lambda}(z)' \geq D_{\lambda}(b)$. Let $a \ll D_{\lambda}(b)$.

Then, $p(b, a) < \lambda$. In addition, for $\forall x \not\leq a'$, i.e., $a \not\leq x'$, by (A3), there exists $z \not\leq b'$ such that $p(x, z) < \lambda$. By (i), we have $x \nleq P_{\lambda}(z)$, so that $x \nleq \bigwedge_{z \nleq b'} P_{\lambda}(z)$. Because $x \nleq a'$ implies $x \nleq \Lambda$ $\bigwedge_{z \not\leq b'} P_{\lambda}(z)$, we can assert that $\bigwedge_{z \not\leq b'} P_{\lambda}(z) \leq a'$, i.e., $a \leq \bigvee_{z \not\leq b'} P_{\lambda}(z)$ $\bigvee_{z \nleq b'} P_{\lambda}(z)'$. Hence, W $\bigvee_{z \nleq b'} P_{\lambda}(z)' \geq D_{\lambda}(b).$

(b) It needs to be proven that the intersection of any subset of ${P_r(b) | r \in [0, +\infty), b \in \mathbb{R}^n}$ *M*} is a topology, i.e.,

$$
\eta_p = \{ \bigwedge_{i \in \Gamma} P_i(b_i) \mid \Gamma \subseteq [0, +\infty), b_i \in M \}
$$

because $\wedge \oslash = \underline{1}$ and \wedge $\bigwedge_{r>0} P_r(a) = \emptyset$ for any $a \in M$, $\underline{0,1} \in \eta_p$. Secondly, let $A \subseteq \eta_p$ and $B \subseteq \eta_p$. Then, according to the definition of η_p , it is straightforward for $A \wedge B \in \eta_p$. Thus, we only need to prove that, for any $a, b \in M$ and any $r, s \in [0, +\infty)$, $P_r(a) \vee P_s(b)$ is the intersection of some elements in $\{P_r(a) \mid a \in M, r \in (0, +\infty)\}$. The proof is as follows.

Case 1: when $r = 0$ or $s = 0$, $P_r(a) = P_0(a) = \underline{1}$ or $P_s(b) = P_0(b) = \underline{1}$ is true. Therefore, $P_r(a) \vee P_s(b) = \underline{1} \in \eta_p;$

Case 2: when $r, s \in (0, +\infty)$ and we let $A = P_r(a) \vee P_s(b)$. Then, according to Theorem 22, we can assert that *A* is a closed set in ζ_p . Therefore, we have $A' = \bigvee D_{r_i}(c_i)$, i.e.,

 $A = (\bigvee D_{r_i}(c_i))' = \bigwedge D_{r_i}(c_i)'$. By (a), we can obtain $A = \bigwedge \bigwedge P_{r_i}(z)$, as desir $\bigcup_i D_{r_i}(c_i)$ ['] = \bigwedge_i $\bigwedge_i D_{r_i}(c_i)'$. By (a), we can obtain $A = \bigwedge_i$ *i* \wedge *z*≰*c*[']_{*i*} $P_{r_i}(z)$, as desired.

(c) By (b), we know that it is an open set for every $D_r(b)$ in η_p . By Theorem 20, it is a closed set for every $P_r(b)$ in ζ_p^{\prime} , which implies $\eta_p = \zeta_p^{\prime}$.

Suppose that, for any *a* ∈ *M*, there exists a corresponding *Q*-*neighborhoods* base of *a* and the base is countable. Then, the space (X, δ) is called Q - C_I [\[41,](#page-14-5)[42\]](#page-14-6).

Theorem 31. *Suppose that p is an L-pseudo-metric on* L^X *and satisfies the property* $p(a, b)$ = \wedge *n c*≪*a p*(*c*, *b*). *Then,* (1) {*P_r*(*a*)' | *a* ∈ *M*,*r* ∈ [0, +∞)} *is a Q* − *neighborhoods base of a*; (2) *the space* (X, ζ_p) *is* $Q - C_I$ *.*

Proof. (1) Let $A \in \zeta_p'$ satisfying $a \not\leq A$, i.e., A is a closed R-neighborhood of a . Then, by Theorem 8, the family $\{P_r(b) \mid b \in M, r \in [0, +\infty)\}$ is a closed topology base for ζ_p . Therefore, $A = \Lambda$ $\bigwedge_{i \in \Gamma} P_{r_i}(b_{r_i})$. Since *a* $\nleq A$, there exists some *s* $\in \Gamma$ such that *a* $\nleq P_s(b)$. Let $p(a,b) = t$. Then, $p(a,b) = t < s$. Take any $e \in M$ satisfying $p(e,b) \geq s$. Since $s \leq p(e,b) \leq s$. $p(e, a) + p(a, b) = p(e, a) + t$, we have $s - t \leq p(e, a)$, which implies $e \leq P_{s-t}(a)$. Therefore,

 $P_s(b) \leq P_{s-t}(a)$, so that $\{P_r(a) \mid a \in M, r \in [0, +\infty)\}$ is a *Q-neighborhoods* base of *a*.

(2) Let *B* be an R-neighborhood of *a* and let Q^+ be the set of all rational numbers in $(0, +\infty)$. Then, for any $r > 0$, there exists $t \in Q^+$ with $0 < t < r$ such that $P_r(a) \leq P_t(a)$. Therefore, we can assert that $\{P_t(a)^\prime, t \in Q^+\}$ is also a *Q-neighborhoods* base of *a*, so that ζ_p is $Q - C_I$.

However, if *p* is an *L*-pseudo-metric on L^X and satisfies $p(a, b) = \bigvee$ $\bigvee_{c \ll b} p(a, c)$, then ζ_p is not $Q - C_I$.

Actually, in 1985, M.K. Luo [\[43\]](#page-14-7) constructed an example of this kind of metric on *I X* whose metric topology had no *σ*-locally finite base. Therefore, the topological space is not C_{II} , so that ζ_p was, of course, not $Q - C_I$.

9. Conclusions

In this paper, first, we put forward an *L*-quasi (pseudo)-metric on *L ^X* and show a series of its related properties. Secondly, we present two topologies: *ψp* and *ζ p*, generated by an *L*-quasi-metric with different spherical mappings and prove that $\psi_p = \zeta_p'$ if *p* is further an *L*-pseudo-metric on *L ^X*. Thirdly, we characterize an equivalent form of the *L*-metric in terms of a class of mapping clusters and acquire a desired result. Finally, based on the *L*-metric, we assert that a Yang–Shi metric topology is *Q* − *C^I* , but, in general, an Erceg metric topology is not.

In future work, we will continue to investigate the Chen metric on L^X and study this kind of topological space whose topology has a *σ*-locally finite base. Beyond that, we also intend to inquire into some questions on the fuzzifying metric topology.

Author Contributions: Conceptualization, P.C.; formal analysis, P.C., B.M. and X.B.; funding acquisition, P.C.; investigation, P.C.; methodology, P.C.; project administration, P.C.; supervision, P.C.; validation, X.B.; visualization, X.B. and B.M.; writing-original draft, P.C.; writing—review and editing, P.C. All authors have read and agreed to the published version of the manuscript.

Funding: The project is funded by Development of Integrated Communication and Navigation Chips and Modules (2021000056).

Data Availability Statement: Not applicable.

Acknowledgments: The author wishes to express deep gratitude to Fu-Gui Shi from Beijing Institute of Technology, and likes to thank the editors and the anonymous reviewers for their fruitful comments and suggestions which lead to a number of improvements of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Chang, C.L. Fuzzy topological spaces. *J. Math. Anal. Appl.* **1968**, *24*, 182–190. [\[CrossRef\]](http://doi.org/10.1016/0022-247X(68)90057-7)
- 2. Zadeh, L.A. Fuzzy sets. *Inform. Control* **1965**, *8*, 338–353. [\[CrossRef\]](http://dx.doi.org/10.1016/S0019-9958(65)90241-X)
- 3. Goguen, J.A. The fuzzy Tychonoff Theorem. *J. Math. Anal. Appl.* **1973**, *18*, 734–742. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(73)90288-6)
- 4. Erceg, M.A. Metric spaces in fuzzy set theory. *J. Math. Anal. Appl.* **1979**, *69*, 205–230. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(79)90189-6)
- 5. Peng, Y.W. Simplification of Erceg fuzzy metric function and its application. *Fuzzy Set Syst.* **1993**, *54*, 181–189.
- 6. Chen, P.; Shi, F.G. Further simplification of Erceg metric and its properties. *Adv. Math.* **2007**, *36*, 586–592. (In Chinese)
- 7. Chen, P.; Shi, F.G. A note on Erceg pseudo-metric and pointwise pseudo-metric. *J. Math. Res. Exp.* **2008**, *28*, 339–443.
- 8. Yang, L.C. Theory of p.q. metrics on completely distributive lattices. *Chin. Sci. Bull.* **1988**, *33*, 247–250. (In Chinese)
- 9. Chen, P. *Metrics in L-Fuzzy Topology*; China Science Press (Postdoctoral Library): Beijing, China, 2017. (In Chinese)
- 10. Shi, F.G. Pointwise quasi-uniformities and p.q. metrics on completely distributive lattices. *Acta Math. Sin.* **1996**, *39*, 701–706. (In Chinese)
- 11. Shi, F.G.; Zheng, C.Y. Metrization theorems on *L*-topological spaces. *Fuzzy Set Syst.* **2005**, *149*, 455–471. [\[CrossRef\]](http://dx.doi.org/10.1016/j.fss.2004.02.003)
- 12. Deng, Z.K. Fuzzy pseudo-metric spaces. *J. Math. Anal. Appl.* **1982**, *86*, 74–95. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(82)90255-4)
- 13. Chen, P.; Qiu, X. Expansion theorem of Deng metric. *Fuzzy Syst. Math.* **2019**, *33*, 54–65. (In Chinese)
- 14. Adibi, H.; Cho, Y.; O'regan, D.; Saadati, R. Common fixed point theorems in *L*-fuzzy metric spaces. *Appl. Math. Comput.* **2006**, *182*, 820–828. [\[CrossRef\]](http://dx.doi.org/10.1016/j.amc.2006.04.045)
- 15. Al-Mayahi, N.F.; Ibrahim, L.S. Some properties of two-fuzzy metric spaces. *Gen. Math. Notes* **2013**, *17*, 41–52.
- 16. Çayh, G.D. On the structure of uninorms on bounded lattices. *Fuzzy Set Syst.* **2019**, *357*, 2–26.
- 17. Chen, P.; Duan, P. Research on a kind of pointwise parametric in *L* lattices. *Fuzzy Syst. Math.* **2016**, *30*, 23–30. (In Chinese)
- 18. Chen, P.; Duan, P. Research of Deng metric and its related problems. *Fuzzy Syst. Math.* **2015**, *29*, 28–35. (In Chinese)
- 19. Chen, P. The relation between two kinds of metrics on lattices. *Ann. Fuzzy Sets Fuzzy Log. Fuzzy Syst.* **2011**, *1*, 175–181.
- 20. Diamond, P.; Kloeden, P. Metric spaces of fuzzy sets. *Fuzzy Set Syst.* **1990**, *35*, 241–249. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(90)90197-E)
- 21. Eklund, P.; Gäbler, W. Basic notions for topology I. *Fuzzy Set Syst.* **1988**, *26*, 171–195. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(88)90147-9)
- 22. Eklund, P.; Gäbler, W. Basic notions for topology II. *Fuzzy Set Syst.* **1988**, *27*, 333–356. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(88)90127-3)
- 23. George, A.; Veeramani, P. On some results in fuzzy metric spaces. *Fuzzy Set Syst.* **1994**, *64*, 395–399. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(94)90162-7)
- 24. Kim, D.S.; Kim, Y.K. Some properties of a new metric on the space of fuzzy numbers. *Fuzzy Set Syst.* **2004**, *145*, 395–410. [\[CrossRef\]](http://dx.doi.org/10.1016/S0165-0114(03)00281-1)
- 25. Morillas, S.; Gregori, V.; Peris-Fajarnés, G. A fast impulsive noise color image filter using fuzzy Metrics. *Real-Time Imaging* **2005**, *11*, 417–428. [\[CrossRef\]](http://dx.doi.org/10.1016/j.rti.2005.06.007)
- 26. Morsi, N.N. On fuzzy pseudo-normed vector spaces. *Fuzzy Set Syst.* **1988**, *27*, 351–372. [\[CrossRef\]](http://dx.doi.org/10.1016/0165-0114(88)90061-9)
- 27. Sharma, S. Common fixed point theorems in fuzzy metric spaces. *Fuzzy Set Syst.* **2002**, *127*, 345–352. [\[CrossRef\]](http://dx.doi.org/10.1016/S0165-0114(01)00112-9)
- 28. Šostak, A.P. Basic structures of fuzzy topology. *J. Math. Sci.* **1996**, 78, 662–701. [\[CrossRef\]](http://dx.doi.org/10.1007/BF02363065)
- 29. Yager, R.R. Defending against strategic manipulation in uninorm-based multi-agent decision making. *Fuzzy Set Syst.* **2003**, *140*, 331–339. [\[CrossRef\]](http://dx.doi.org/10.1016/S0165-0114(02)00521-3)
- 30. Huang, H. Characterizations of endograph metric and Γ-convergence on fuzzy sets. *Fuzzy Sets Syst.* **2018**, *350*, 55–84. [\[CrossRef\]](http://dx.doi.org/10.1016/j.fss.2018.02.014)
- 31. Hutton, B. Uniformities on fuzzy topological spaces. *J. Math. Anal. Appl.* **1977**, *58*, 559–571. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(77)90192-5)
- 32. Shi, F.G. (*L*, *M*)-fuzzy metric spaces. *Indian J. Math.* **2010**, *52*, 231–250.
- 33. Liang, J.H. A few problems in fuzzy metric spaces. *Ann. Math.* **1984**, *6A*, 59–67. (In Chinese)
- 34. Liang, J.H. Pointwise characterizations of fuzzy metrics and its applications. *Acta Math. Sin.* **1987**, *30*, 733–741. (In Chinese)
- 35. Luo, M.K. Paracompactness in fuzzy topological spaces. *J. Math. Anal. Appl.* **1988**, *130*, 55–77. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(88)90386-1)
- 36. Qiu, D.; Dong, R.; Li, H. On metric spaces induced by fuzzy metric spaces. *Iran. J. Fuzzy Syst.* **2016**, *13*, 145–160.
- 37. Gierz, G.; Hofmann, K.H.; Keimel, K.; Lawson, J.D.; Mislove, M.; Scott, D.S. *A Compendium of Continuous Lattices*; Springer: Berlin/Heidelberg, Germany, 1980.
- 38. Wang, G.J. *Theory of L-Fuzzy Topological Spaces*; Shaanxi Normal University Publishers: Xi'an, China, 1988. (In Chinese)
- 39. Shi, F.G. Pointwise pseudo-metrics in *L*-Fuzzy set theory. *Fuzzy Set Syst.* **2001**, *121*, 209–216. [\[CrossRef\]](http://dx.doi.org/10.1016/S0165-0114(00)00013-0)
- 40. Kelley, J.L. *General Topology*; Springer Science: Berlin, Germany, 1975.
- 41. Pu, P.M.; Liu, Y.M. Fuzzy topology I. neighborhood structure of a fuzzy point and Moore-Smith convergence. *J. Math. Anal. Appl.* **1980**, *76*, 571–599.
- 42. Liang, J.H. Fuzzy Smirnov-Nagata metrization theorem. *Northeast. Math. J.* **1987**, *3*, 419–428. (In Chinese)
- 43. Luo, M.K. A note on fuzzy paracompact and fuzzy metric. *J. Sichuan Univ.* **1985**, *4*, 141–150. (In Chinese)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.