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Abstract: The aim of this paper is to focus on the metrization question in L-fuzzy sets. Firstly, we put
forward an L-quasi (pseudo)-metric on the completely distributive lattice LX by comparing some
existing lattice-valued metrics with the classical metric and show a series of its related properties.
Secondly, we present two topologies: ψp and ζp, generated by an L-quasi-metric p with different
spherical mappings, and prove ψp = ζ ′p if p is further an L-pseudo-metric on LX . Thirdly, we
characterize an equivalent form of L-pseudo-metric in terms of a class of mapping clusters and
acquire several satisfactory results. Finally, based on this kind of L-metric, we assert that, on LX , a
Yang–Shi metric topology is Q− CI , but an Erceg metric topology is not always so.

Keywords: L-quasi (pseudo)-metric; co-prime element; irreducible element; way below; R-neighborhood;
T1-space; Q− CI .
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1. Introduction

As we know, C.L. Chang [1] firstly introduced the fuzzy set theory of Zadeh [2] into
topology in 1968, which declared the birth of [0, 1]-topology. Soon after that, J.A. Goguen [3]
further generalized the L-fuzzy set to [0, 1]-topology, and his related theory has now been
recognized as L-topology. From then on, L-topology formed another important, branch of
topology and many creative results and original thoughts were presented (see [4–36], etc.).

However, how to reasonably generalize the classical metric to L-topology has been a
great challenge for a long time. So far, there has been a lot of research work on this aspect,
including at least three well-known L-fuzzy metrics, with which the academic community
has gradually become familiar. In addition, there was an even more interesting L-fuzzy
metric recently discovered, which is parallel to the mentioned three L-fuzzy metrics. To
explain the four L-fuzzy metrics, we list them below one by one.

The first is the Erceg metric, presented in 1979 by M.A. Erceg [4]. Due to the complexity
of its definition given by M.A. Erceg, it is very inconvenient and difficult to conduct in-
depth research on this metric. In 1993, Peng Yuwei [5] provided a pointwise expression for
the Erceg metric. Based on Peng’s result, later on, this metric was further simplified by P.
Chen and F.G. Shi (see [6,7]) as below.

(I) An Erceg pseudo-metric on LX is a mapping p : M×M → [0,+∞), satisfying the
following properties:

(A1) if a ≥ b, then p(a, b) = 0;

(A2) p(a, c) ≤ p(a, b) + p(b, c);

(B1) p(a, b) =
∨

c�b
p(a, c);
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(A3) ∀a, b ∈ M, ∃x 6≤ a′ s.t. p(b, x) < r ⇔ ∃y 6≤ b′ s.t. p(a, y) < r.

An Erceg pseudo-metric p is called an Erceg metric if it further satisfies the following property:

(A4) if p(a, b) = 0, then a ≥ b,

where “� ” is the way below relation in Domain Theory and LX is a completely distributive
lattice [37,38].

The second is the Yang–Shi metric (or Shi p.q. metric), proposed in 1988 by L.C. Yang [8].
After that, this kind of metric was studied in depth by F.G. Shi and P. Chen (see [6,7,9–11,39]
etc.), and was ultimately defined [11] as follows.

(II) A Yang–Shi pseudo-metric (resp., Yang–Shi metric) on LX is a mapping p : M×M→
[0,+∞), satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following property:

(B2) p(a, b) =
∧

c�a
p(c, b).

The third is the Deng metric, supplied in 1982 by Z.K. Deng [12], which was only
limited to the special lattice IX originally (I = [0, 1]). Recently, it was extended to LX by
P. Chen [13] as follows:

(III) A Deng pseudo-metric (resp., Deng metric) on LX is a mapping p : M×M→ [0,+∞),
satisfying (A1)–(A3) (resp., (A1)–(A4)) and the following property:

(B3) p(a, b) =
∧

b�c
p(a, c).

In short, the above three L-fuzzy metrics are defined by using the same (A1)–(A4)
but different (B1), (B2) and (B3). Inspired by this, we conclude that there is another new
L-fuzzy metric [9], as below.

(IV) A Chen pseudo-metric (resp., Chen metric) on LX is a mapping p : M×M→ [0,+∞),
satisfying (A1)–(A3) (resp., (A1)-(A4)) and the following property:

(B4) p(a, b) =
∨

a�c
p(c, b).

Concerning the above four L-fuzzy metrics (I)–(IV), we [9] have investigated the relation-
ships between them on IX and acquired the following conclusion.

Let the following be true: C = { p | p is a Chen metric}; E = { p | p is an Erceg metric};
D = { p | p is a Deng metric}; Y = { p | p is a Yang–Shi metric}. Then, D = C ∩Y ∩ E.

In summary, although many scholars have engaged in the research of metrics in
L-fuzzy sets, it is a pity that, at the same time, such an important issue has been ignored.
Since the term fuzzy metric is a generalization of the classical metric, are there so few gen-
eralized L-fuzzy-metrics on LX? Therefore, this naturally leads to the following problem:
what should the most essential axiomatic system about L-fuzzy metrics consist of on earth?
To inquire into these problems, we first of all compare these existing fuzzy metrics on LX

with the classical metric, which is defined as follows.

Definition 1 ([40]). A pseudo-metric on a non-empty set X is a function d: X× X −→ [0,+∞),
satisfying the following properties:

(1) if x = y, then d(x, y) = 0;

(2) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z);

(3) d(x, y) = d(y, x) for all x, y ∈ X.

The function d is called a metric on X if d still satisfies the following property:

(4) if d(x, y) = 0, then x = y.
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It is easy to check that (A1), (A2), (A3) and (A4) in (I)–(IV) are the generalizations of (1),
(2), (3) and (4) in Definition 1, respectively. However, no axioms correspond to (B1), (B2),
(B3) or (B4). Therefore, we guess that (B1), (B2), (B3) and (B4) in these fuzzy metrics on LX

are inessential for many purposes, especially their induced topologies. In this article, we
affirm this guess, for this put forward a lattice-valued metric on LX , and show some related
properties.

2. Preliminary Information

Throughout this paper, L is a completely distributive lattice with an order reversing
involution “ ′ ” [37,38]. X is a nonempty set. LX is the set of all L-fuzzy sets of X [3]. LX

inherits the structure of lattice L with an order reversing involution in a natural way, by
defining ∨, ∧, ′ pointwise. The smallest element and the largest element in LX are denoted
by 0 and 1, respectively.

Let e ∈ L-{0}; e is called a co-prime if, for any p, q ∈ L, e ≤ p ∨ q implies e ≤ p
or e ≤ q. The set of all nonzero co-prime elements in L is denoted by M(L). We define
M(LX) = {xλ | x ∈ X, λ ∈ M(L)}, where xλ is an L-fuzzy point [38]. Conveniently, we
omit LX from the notation, namely, we write M(LX) simply as M. Therefore, M is the set
of all nonzero co-prime elements in LX. Similarly, L-fuzzy set a is called an irreducible
element if, for any x, y ∈ LX, x ∧ y ≤ a implies x ≤ a or y ≤ a. The set of all nonzero
irreducible elements on LX is denoted as J.

Let a, b ∈ LX and a is much lower than b, denoted by a � b, if, for every directed
subset D ⊆ LX, the relation b ≤ sup D always implies the existence of d ∈ D with a ≤ d.
Let a ∈ LX and B ⊂ LX. If a ≤ sup B (resp., a = sup B), then B is called a cover (resp.,
proper cover) of a. Let B, C ⊂ LX. If, for any x ∈ B, there exists some y ∈ C such that
x ≤ y, then B is called a refinement C. If B is a proper cover of a and B refines each
cover of a, then B is called a minimal set of a. Let T (a) be all minimal sets of a. Clearly,
the union of the elements of any subfamily of T (a) is still a minimal set of a. Therefore,
each L-fuzzy set a must correspond to a greatest minimal set, denoted by β(a) [38]. Let
β∗(a) = β(a) ∩M. Then, xλ belongs to β∗(a) if and only if xλ is much lower than a. Let
a ∈ LX and A ⊂ LX. Similarly, if A satisfies the following properties: (1) inf A = a; (2) if
B ⊂ LX and inf B ≤ a, then, for any x ∈ A, there exists some y ∈ B such that y ≤ x; then, A
is claimed as a maximum set of a. LetW(a) be all maximum sets of a. Obviously, the union
of the elements of any subfamily ofW(a) is still a maximum set of a. Thus, if there exists a
maximum set of a, then there must exist a greatest maximal set of a, denoted as α(a) [38].
In addition, we stipulate ∨∅ = 0 and ∧∅ = 1. Other unexplained terminologies, notations
and further details can be found in [3,9,12,38,40].

Theorem 1 ([38]). Let {ai | i ∈ I} ⊂ LX . Then, β(
∨
i∈I

ai) =
⋃
i∈I

β(ai).

Theorem 2 ([38]). Let {ai | i ∈ I} ⊂ LX . Then, α(
∧
i∈I

ai) =
⋃
i∈I

α(ai).

Definition 2 ([38,41]). Let (X, δ) be an L-topological space, xλ ∈ M and A ∈ δ′. If xλ 6≤ A, then
A is called a closed R-neighborhood of xλ. Let B ∈ LX ; if there exists a closed R-neighborhood A of α
such that B ≤ A, then B is called an R-neighborhood of α. Meanwhile, B′ is called a Q-neighborhood
of α.

3. L-Quasi-Metric on LX

In the section, by comparing the above (I)–(IV) with the classical metric in general
topology (see Definition 1), we can, first of all, define a kind of metric on LX as follows.

Definition 3. A mapping p : M×M→ [0,+∞) is called an L-quasi-metric on LX if it satisfies
the following properties:
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(A1) if a ≥ b, then p(a, b) = 0;

(A2) (triangle inequality) p(a, c) ≤ p(a, b) + p(b, c).

An L-quasi-metric p is called an L-pseudo-metric on LX if it still satisfies the following property:

(A3) ∀a, b ∈ M, ∃y 6≤ b′ s.t. p(a, y) < r ⇔ ∃x 6≤ a′ s.t. p(b, x) < r.

An L-pseudo-metric p is called an L-metric on LX if it still satisfies the following property:

(A4) if p(a, b) = 0, then a ≥ b.

Definition 4. Given a mapping p: M×M → [0,+∞). For A ∈ LX, define Dr(A) =
∨{b ∈

M | ∃a � A, p(a, b) < r}, D−r(A) =
∨{a ∈ M | Dr(a) ≤ A} and D−r ∗ D−s(A) =

∨{a ∈
M | Dr(a) ≤ D−s(A)}.

Theorem 3. If p is an L-quasi-metric on LX , then Dr(a) =
∨

s<r
Ds(a).

Proof. Obviously, when s < r, Ds(a) ≤ Dr(a). Thus, Dr(xα) ≥
∨

s<r
Ds(xα). Conversely, let

c� Dr(a). Then, by the definition of Dr(a) and the way below relation, there exist e ∈ M
and he � a such that c ≤ e and p(he, e) < r, respectively. Because c ≤ e, according to the
conditions (A1) and (A2) in Definition 3, we can obtain p(he, c) ≤ p(he, e) < r. Take s with
p(he, c) < s < r. Then, c ≤ Ds(a), and, consequently, Dr(a) ≤ ∨

s<r
Ds(a), as desired.

Theorem 4. If p is an L-quasi-metric on LX , then D−r(A) =
∧

s<r
D−s(A).

Proof. Clearly, D−r(A) ≤ ∧
s<r

D−s(A). Conversely, let c� ∧
s<r

D−s(A). Then, by the way

below relation for each s < r, there is a ∈ M such that c ≤ a and Ds(a) ≤ A. According to
the conditions (A1) and (A2) in Definition 3, we can obtain Ds(c) ≤ Ds(a), and then we can
assert Ds(c) ≤ A. Consequently,

∨
s<r

Ds(c) ≤ A. By Theorem 3, we have Dr(c) ≤ A. Hence,

c ≤ D−r(A), and then
∧

s<r
D−s(A) ≤ D−r(A), as desired.

Theorem 5. If p is an L-quasi-metric on LX , then D−r−s(A) ≤ D−r∗D−s(A).

Proof. By the definitions of D−r−s(A) and D−r ∗ D−s(A), we need to prove {a ∈ M |
Dr+s(a) ≤ A} ⊆ {b ∈ M | Dr(b) ≤ D−s(A)}. This proof is as follows. Let Dr+s(a) ≤ A.
Then, we need to check Dr(a) ≤ D−s(A). Because

Dr(a) ≤ D−s(A)⇔
∨
{e | ∃ae � a, p(ae, e) < r}

≤
∨
{c ∈ M | Ds(c) ≤ A},

if e ∈ {e | ∃ae � a, p(ae, e) < r}, then e ≤ ∨{c ∈ M | Ds(c) ≤ A}, which is equivalent to
proving that, for any g� e, it holds that Ds(g) ≤ A. In fact, let u ∈ {u | ∃gu � g, p(gu, u) <
s}. Since p(ae, e) < r, it holds that p(ae, gu) < r by the conditions (A1) and (A2) in
Definition 3. Hence, p(ae, u) ≤ p(ae, gu) + p(gu, u) < r + s. Because of Dr+s(a) ≤ A, we
have u ≤ A, and so Ds(g) ≤ A, as desired.

Theorem 6. If p is an L-quasi-metric on LX, then {D−r(α) | α ∈ J, r ∈ [0,+∞)} is a co-
topological base, and the co-topology is denoted by ψp.

Proof. Let T be the family of all any intersections of elements of {D−r(a) | a ∈ J, r ∈
[0,+∞)}. Now, we check that T is a co-topology.

Let λ, µ ∈ J (about J, see Section 2) and s, r ∈ [0,+∞). We need to prove D−r(λ) ∨
D−s(µ) = K ∈ T . Case 1: when r = 0 and s = 0, we can obtain K = 0. Therefore,
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K ∈ T . Case 2: if K = 1, then, in view of K = ∧∅, we have K ∈ T . Case 3: if K 6= 1
or 0, then, by Theorem 2, we can obtain α(D−r(λ)) ⊇ α(K) and α(D−s(µ)) ⊇ α(K). Let
γ ∈ α(K) ⊆ α(D−r(λ)) ∩ α(D−s(µ)). Then, by Theorem 4, we may take two numbers e1, e2
with r > e1 > 0, s > e2 > 0, such that γ ∈ α(D−e1(λ)) and γ ∈ α(D−e2(µ)). Therefore, we
can obtain γ ≥ D−e1(λ) and γ ≥ D−e2(µ), respectively. Let tγ=inf{r− e1, s− e2}. Then, by
Theorem 5, we have

γ ≥ D−tγ(γ) ≥ D−tγ(D−e1(λ)) = D−tγ ∗ (D−e1(λ))

≥ D−tγ−e1(λ) ≥ D−r(λ).

Similarly, it holds that γ ≥ D−s(µ). Hence, K = ∧α(K) ≥ ∧{D−tγ(γ) | γ ∈ α(K)} ≥
D−r(λ)∨D−s(µ) = K. Consequently, K = ∧{D−tγ(γ) | γ ∈ α(K)}. T = ψp, as desired.

Theorem 7. If p is an L-quasi-metric on LX and the co-topology is ψp, then ψp(α) = {D−r(β) |
r > 0, α 6≤ β} is a Q-neighborhood base of α.

Proof. Given α 6≤ β, owing to D−r(β) ≤ β, we have α 6≤ D−r(β). In addition, by Theorem
6, we can assert that D−r(β) is a closed set. Therefore, each element of ψp(α) is a Q-
neighborhood of α. Conversely, let A ∈ ψp, satisfying α 6≤ A. Then, by Theorem 6 and the
definition of α(A), we can obtain

A = ∧{D−ri (αi) | i ∈ Γ, αi ∈ α(A)}

= ∧{αi | i ∈ Γ, αi ∈ α(A)}.

It follows that there must exist some αi such that α 6≤ αi. As a result, we have α 6≤ D−ri (αi).
Additionally, in view of A ≤ D−ri (αi), we can assert that ψp(a) is a Q-neighborhood base
of α.

Theorem 8. Suppose that p is a mapping from M×M to [0,+∞). Then, D−r(
∧

i∈Γ
ai) =

∧
i∈Γ

D−r(ai).

Proof. If Γ = ∅, then it is straightforward. Thus, we might as well set Γ 6= ∅. Obviously, by
the definition of D−r, we have D−r(ai) ≥ D−r(

∧
i∈Γ

ai) for each i ∈ Γ. Thus,
∧

i∈Γ
D−r(xαi ) ≥

D−r(
∧

i∈Γ
xαi ). Conversely, let h� ∧

i∈Γ
D−r(ai). Then, for each i ∈ Γ, there exists a ∈ M such

that h ≤ a and Dr(a) ≤ ai. Hence, Dr(h) ≤ ai, and then Dr(h) ≤
∧

i∈Γ
ai and h ≤ D−r(

∧
i∈Γ

ai).

Because h is arbitrary, it is true that
∧

i∈Γ
D−r(ai) ≤ D−r(

∧
i∈Γ

ai), as desired.

Corollary 1. Let p be an L-quasi-metric on LX and let ψp be the co-topology. If B ∈ LX, then
D−r(B) ∈ ψp.

Proof. Let B =
∧

i∈Γ
{ai | i ∈ Γ, ai ∈ J}. Then, by Theorem 8, we have D−r(B) =

∧
i∈Γ

D−r(ai),

so that D−r(B) ∈ ψp.

Theorem 9. Let p be an L-quasi-metric on LX . Then, D−r(α) ≥ A if and only if Dr(A) ≤ α.

Proof. (Sufficiency). Let e ∈ {b ∈ M | ∃a� A, p(a, b) < r}. Then, there is fe � A such that
p( fe, e) < r. Take c ∈ M with fe � c � A. Then, p(c, e) ≤ p( fe, e) < r. Hence, e ≤ Dr(c).
Since c � A ≤ D−r(α), there exists d ∈ M such that c � d and Dr(d) ≤ α. Because of
c� d, by the definition of Dr, we can obtain Dr(c) ≤ Dr(d), and then we have Dr(c) ≤ α.
Hence, e ≤ α. Therefore, we have

Dr(A) =
∨
{b ∈ M | ∃a� A, p(a, b) < r} ≤ α.
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(Necessity). For any e � A, we can deduce Dr(e) ≤ Dr(A) ≤ α, and then
e ≤ D−r(α) =

∨{e ∈ M | Dr(e) ≤ α}. Consequently, A ≤ D−r(α), as desired.

Theorem 10. Let p be an L-quasi-metric on LX and let ψp be the co-topology. Then, A =
∧

r>0
Dr(A).

Proof. Let a � A. Then, Dr(a) ≤ Dr(A). Thus D−r(Dr(A)) =
∨{a ∈ M | Dr(a) ≤

Dr(A)} ≥ A. Thus, we have Dr(A) ≥ D−r(Dr(A)) ≥ A for each r > 0. Therefore,∧
r>0

Dr(A) ≥ A. Conversely, if a 6≤ A, then there exist α ∈ LX and r > 0 such that a 6≤ α and

D−r(α) ≥ A. By Theorem 9, we can obtain Dr(A) ≤ α. Since a 6≤ α, we have a 6≤ Dr(A).
Consequently, Dr(A) ≤ A, so that

∧
r>0

Dr(A) ≤ A, as desired.

4. Some Properties of Spheres in L-Quasi-Metric Space

In this section, we investigate some relationships between several spheres which
are defined by using an L-quasi-metric on LX and show some related properties about
L-quasi-metrics by using the following spheres, which play a crucial role in characterizing
metric-induced topology.

Definition 5. Given a mapping p : M×M→ [0,+∞), for a, b ∈ M and r ∈ [0,+∞), we define
the following:

Ur(a) =
∨
{c ∈ M | p(a, c) < r};

Br(a) =
∨
{c ∈ M | p(a, c) ≤ r};

Qr(b) =
∨
{c ∈ M | p(c, b) > r};

Pr(b) =
∨
{c ∈ M | p(c, b) ≥ r}.

Theorem 11. Let p be an L-quasi-metric on LX. Then, (1) Ur(b) =
∨

s<r
Bs(b); (2) Br(b) =∧

r<s
Us(b).

Proof. (1). If s < r, then Bs(b) ≤ Ur(b). Thus,
∨

s<r
Bs(b) ≤ Ur(b). Conversely, let c� Ur(b).

Then, by the way below relation and (A2) in Definition 3, we can obtain p(b, c) < r. Taking
s with p(b, c) < s < r, we have c ≤ Us(b), and then c ≤ ∨

s<r
Us(b). Consequently,

Ur(b) ≤
∨

s<r
Us(b) ≤

∨
s<r

Bs(b).

(2). Obviously, Br(b) ≤
∧

r<s
Us(b). Conversely, let a � ∧

r<s
Us(b). Then, for any s > r,

we have p(b, a) < s. Because s is arbitrary, it is true that p(b, a) ≤ r. Hence, a ≤ Br(b).
Consequently,

∧
r<s

Us(b) ≤ Br(b).

Theorem 12. Let p be an L-quasi-metric on LX . Then,
∧

u<r
Pu(a) = Pr(a).

Proof. If u < r, then Pr(a) ≤ Pu(a). Thus, Pr(a) ≤ ∧
u<r

Pu(a). Conversely, let c� ∧
u<r

Pu(a).

Then, it holds that c� Pu(a) for every u < r. Therefore, there exists e ∈ M such that c ≤ e
and p(e, a) ≥ u, and then p(c, a) ≥ u. Because u is arbitrary, we have p(c, a) ≥ r, which
implies c ≤ Pr(a). Therefore,

∧
u<r

Pu(a) ≤ Pr(a).

Theorem 13. If p is an L-quasi-metric on LX and for any b ∈ M there is
∧

x�b
p(x, b) = 0, then

p(b, a) =
∧

x�b
p(x, a).
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Proof. Let p1(b, a) =
∧

x�b
p(x, a). Since x � b, we have x ≤ b. Therefore, by triangle

inequality p(x, a) ≥ p(b, a), p1(b, a) =
∧

x�b
p(x, a) ≥ p(b, a). Conversely, we have

p1(b, a) =
∧

x�b

p(x, a) ≤
∧

x�b

(p(b, a) + p(x, b))

= p(b, a) +
∧

x�b

p(x, b).

In view of
∧

x�b
p(x, b) = 0, we can obtain p1(b, a) ≤ p(b, a), as desired.

Corollary 2. Let p be an L-quasi-metric on LX . Then, p is a Yang–Shi pseudo-metric if and only
if, for each a ∈ M, it holds that

∧
x�a

p(x, a) = 0.

Theorem 14. If mapping p : M×M −→ [0,+∞) satisfies the property (E3)∗ for each a ∈ M
and r > 0, a 6≤ Pr(a), then, when b ≥ a, p(b, a) = 0.

Proof. If p(b, a) 6= 0, then there exists a number r ∈ R+ such that p(b, a) ≥ r, and then
b ≤ Pr(a). Therefore, a ≤ Pr(a), which contradicts (E3)∗.

Theorem 15. Let p be an L-quasi-metric on LX. If
∧

c�a
p(c, a) = λ > 0, then a 6≤ Pr(a) if and

only if r > λ.

Proof. Let r > λ. If a ≤ Pr(a), then, for each x � a, there exists y ∈ M such that x ≤ y
and p(y, a) ≥ r. Therefore, p(x, a) ≥ p(y, a) ≥ r, so that λ =

∧
x�a

p(x, a) ≥ r. This is a

contradiction. Thus, a 6≤ Pr(a).
Conversely, assume that r ≤ λ. Then, Pr(a) ≥ Pλ(a). Since a 6≤ Pr(a), it is true

that a 6≤ Pλ(a). In view of
∧

c�a
p(c, a) = λ, we have p(c, a) ≥ λ for any c � a, and

then c ≤ Pλ(a). Therefore, a ≤ Pλ(a) ≤ Pr(a). This is a contradiction. Thus, r > λ, as
desired.

A mapping p : M×M −→ [0,+∞) is called a Yang pseudo-metric on LX if it satisfies
(A1)–(A3) and (E3)∗ [8]. Therefore, by Corollary 2 and Theorems 14 and 15, we have the
following result.

Corollary 3. p is a Yang–Shi pseudo-metric if and only if p is a Yang pseudo-metric on LX .

Theorem 16. Let p be an L-quasi-metric on LX . Then, the family {Ur(a) | a ∈ M, r ∈ [0,+∞)}
is a basis for a topology which is called the metric topology induced by p and denoted by ζp.

Proof. Let ζp be the set of arbitrary unions of the family. To prove that ζp is a topology, we
only need to prove that the intersection of any two elements of ζp belongs to ζp.

Let Us(a), Ut(b) ∈ ζp and let A = Us(a)
∧

Ut(b). Case 1: if s = 0 or t = 0, then
it is easy to check A ∈ ζp. Case 2: if s 6= 0 and t 6= 0, then A 6= 0. In this case, let
c � A. Then, c � Us(a) and c � Ut(b). Therefore, p(a, c) < s and p(b, c) < t. Let
rc = (s− p(a, c)) ∧ (t− p(b, c)). Now, we prove A =

∨
c�A

Urc(c).

Clearly, A ≤ ∨
c�A

Urc(c). Conversely, let e � ∨
c�A

Urc(c). Then, there exists c � A

such that e� Urc(c), and then p(c, e) < rc. Hence, we can obtain p(c, e) < s− p(a, c) and
p(c, e) < t− p(b, c). Consequently, p(a, e) < s and p(b, e) < t. Therefore, e ≤ Us(a) and
e ≤ Ut(b), so that e ≤ A, as desired.

Theorem 17. Let p be an L-quasi-metric on LX . Then, A◦ =
∨{a | ∃r > 0, Ur(a) ≤ A}.
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Proof. Let T =
∨{a | ∃r > 0, Ur(a) ≤ A}. Obviously, T ≤ A◦. Conversely, let e � A◦.

Then, by Theorem 16, there exists Ur(a) such that e � Ur(a) ≤ A, and then p(a, e) < r.
Let s = r − p(a, e). Given c ∈ M with p(e, c) < s. Then, p(a, c) ≤ p(a, e) + p(e, c) <
r− s + p(e, c) < r. Therefore, Us(e) ≤ Ur(a) ≤ A, so that e ≤ T, as desired.

Theorem 18. Given a mapping p : M×M→ [0,+∞), where p satisfies (A3) (see Definition 3).
Then, Ur(b) = D−r(b′)′.

Proof. Let p(b, a) < r. Since for every x 6≤ a′ (i.e., a 6≤ x′), there is z � x such that
z 6≤ a′(i.e., z� x and a 6≤ z′), there is w ∈ M with w 6≤ b′ such that p(z, w) < r, from (A3).
Therefore, it must hold that x 6� D−r(b′). Otherwise, there exists c ∈ M such that x ≤ c
and Dr(c) ≤ b′. Since Dr(x) ≤ Dr(c), we have Dr(x) ≤ b′. In addition, from z � x and
p(z, w) < r, we can deduce w ≤ Dr(x), so that w ≤ b′. However, this is a contradiction. In
short, as long as x 6≤ a′, it is true that x 6� D−r(b′). Thus, D−r(b′) ≤ a′, i.e., a ≤ D−r(b′)′.
Thus, Ur(b) ≤ D−r(b′)′.

Conversely, let x 6≤ D−r(b′). Then, Dr(x) 6≤ b′. Thus, there is e ∈ {e ∈ M | ∃xe �
x, p(xe, e) < r} such that e 6≤ b′. By (A3) there exists y 6≤ x′e such that p(b, y) < r, and then
y ≤ Ur(b). In view of xe � x and y 6≤ x′e, we can obtain y 6≤ x′. Therefore, Ur(b) 6≤ x′,
i.e., x 6≤ Ur(b)′. That is to say that, as long as x 6≤ D−r(b′), it must hold that x 6≤ Ur(b)′. It
follows that Ur(b)′ ≤ D−r(b′), i.e., D−r(b′)′ ≤ Ur(b), as desired.

Theorem 19. A mapping p : M × M → [0,+∞) satisfies (A3) if and only if it holds that∨
b�a

Ur(b) = Ur(a).

Proof. If Ur(b) 6≤ a′, then there exists x with p(b, x) < r such that x 6≤ a′. Because
(A3) is equivalent to Ur(a) 6≤ b′ ⇔ Ur(b) 6≤ a′ for any a, b ∈ M, we can obtain the
following formulas:

Ur(a) ≤ b′ ⇔ Ur(b) ≤ a′ =
∧

x�a
x′ ⇔ x � a, Ur(b) ≤ x′

⇔ x � a, Ur(x) ≤ b′ ⇔
∨

x�a
Ur(x) ≤ b′,

as desired.

Corollary 4. Suppose that mapping p : M×M→ [0,+∞) satisfies (A3). Then, Ur(b) = Dr(b).

Proof. By Theorem 19, Ur(b) =
∨

e�b
Ur(e) =

∨{a ∈ M | ∃e � b, p(e, a) < r} = Dr(b),

as desired.

Definition 6. Suppose that mapping p : M×M → [0,+∞) satisfies (A3). Then, for A ∈ LX

and r > 0, define Ur(A) =
∨

a�A
Ur(a).

Remark 1. If A = b ∈ M, then, by Theorem 19, Ur(A) =
∨

a�A
Ur(a). Furthermore, by Corollary

4 and Definition 6, we have Ur(A) = Dr(A). As a result, if a mapping p : M×M → [0,+∞)
satisfies (A3), then Ur(A) and Dr(A) are equivalent.

5. L-Pseudo-Metric on LX

In this section, we investigate L-pseudo-metric on LX . In particular, the relationship
between the two topologies: ψp and ζp, which have been presented in Theorem 6 and
Theorem 16 respectively, are acquired below.

Theorem 20. If p is an L-pseudo-metric on LX , then ψp = ζ ′p.



Mathematics 2023, 11, 3152 9 of 15

Proof. By Theorem 18, Ur(b) = D−r(b′)′. Therefore, in view of Theorem 6 and Theorem
16, we can assert that the result is true, as desired.

Corollary 5. If p is an L-pseudo-metric on LX , then A =
∧

r>0
Ur(A).

Proof. It is easy to check the result by Theorem 10 and Remark 1.

Theorem 21. Let p be an L-pseudo-metric on LX. Then, A =
∨{b ∈ M | ∃ a sequence

{bi � A | i ∈ N} such that p(bi, b)→ 0}.

Proof. Let b � A. Since A =
∧

s>0
Us(A), we have b � U 1

k
(A) =

∨
c�A

U 1
k
(c) for every

k ∈ N. Therefore, there exists bk � A such that b� U 1
k
(bk), so that p(bk, b) < 1

k .

Conversely, let b ∈ {b ∈ M | ∃ a sequence {bi � A | i ∈ N} such that p(bi, b) → 0}.
Then, by Corollary 1, D−r(α) is a Q-neighborhood of b for any b 6≤ α and r > 0. Now, we
check A 6≤ D−r(α).

By Theorem 9, we have b 6≤ D−r(α) ⇔ Dr(b) 6≤ α and A 6≤ D−r(α) ⇔ Dr(A) 6≤ α.
Thus, we need to prove this result: if Dr(b) 6≤ α, then Dr(A) 6≤ α, i.e., Dr(A) ≤ α⇒ Dr(b) ≤ α.
The proof is as follows.

Let Dr(A) ≤ α and it be true that Dr(b) = Ur(b) =
∨{c | p(b, c) < r}. If p(b, c) = s < r,

then
p(bi, c) ≤ p(bi, b) + p(b, c) = p(bi, b) + s.

Since p(bi, b) → 0, there exists Nr ∈ N such that, when i ≥ Nr, we have p(bi, c) < r.
Therefore, c ≤ Dr(A), so that Dr(b) ≤ Dr(A). Consequently, Dr(b) ≤ α, as desired.

Theorem 22. Let p be an L-pseudo-metric on LX . Then, Pr(a) is a closed set in ζp.

Proof. By Corollary 5 and Remark 1, we prove Pr(a) =
∧

t>0
Dt(Pr(a)). In addition, when

t > s, it is easy to see that Ds(Pr(a)) ≤ Dt(Pr(a)). Hence, we have∧
t>0

Dt(Pr(a)) =
∧

r>s>0
Ds(Pr(a)).

Therefore, Pr(a) ≤ ∧
r>s>0

Ds(Pr(a)). Conversely, let h � ∧
r>s>0

Ds(Pr(a)). Then, for any

s with r > s > 0, it is true that h � Ds(Pr(a)). Thus, there exists e ∈ M with h ≤ e
and b ∈ M, such that b � Pr(a) and p(b, e) < s, so that p(b, a) ≥ r and p(b, h) < s.
Hence, p(h, a) ≥ p(b, a)− p(b, h) ≥ r− s, and then h ≤ Pr−s(a). By Theorem 12, we have
h ≤ ∧

r>s>0
Pr−s(a) = Pr(a). Consequently,

∧
r>s>0

Ds(Pr(a)) ≤ Pr(a), as desired.

Theorem 23. Let p be an L-pseudo-metric on LX ; then,
∨

z 6≤b′
Pλ(z)′ ≤ Dλ(b).

Proof. Let a � ∨
z 6≤b′

Pλ(z)′. Then, there exists e ∈ M such that a � e ≤ ∨
z 6≤b′

Pλ(z)′.

Therefore, e′ ≥ ∧
z 6≤b′

Pλ(z). Thus, for any x 6≤ e′, there exists z 6≤ b′ such that x 6≤ Pλ(z),

which implies p(x, z) < λ. According to (A3), there exists y = y(x) such that y 6≤ x′ and
p(b, y) < λ. Let q =

∨{y = y(x) | x 6≤ e′}. Then, q 6≤ x′, i.e., x 6≤ q′. That is to say that, as
long as x 6≤ e′, it must hold that x 6≤ q′. Hence, q′ ≤ e′, i.e., e ≤ q. Therefore, a � e ≤ q.
Thus, there exists y = y(x) such that a ≤ y, and then p(b, a) ≤ p(b, y) < λ. It follows that
a ≤ Uλ(b) = Dλ(b). Consequently,

∨
z 6≤b′

Pλ(z)′ ≤ Dλ(b), as desired.

Theorem 24. If p is an L-pseudo-metric on LX , then Br(b) =
∧

r<s
Bs(b).



Mathematics 2023, 11, 3152 10 of 15

Proof. Obviously, Br(b) ≤
∧

r<s
Bs(b). Conversely, let h � ∧

r<s
Bs(b). Then, for every s > r,

it is true that h � Bs(b). Thus, there exists e ∈ M such that e ≥ h and p(b, e) ≤ s, so
that p(b, h) ≤ p(b, e) ≤ s. Because s is arbitrary, we have p(b, h) ≤ r, and then h ≤ Br(b).
Therefore,

∧
r<s

Bs(b) ≤ Br(b), as desired.

Theorem 25. If p is an L-pseudo-metric on LX , then Br(b) = Br(b).

Proof. We only need to prove Br(b) ≤ Br(b). Let h � Br(b) =
∧

s>0
Ds(Br(b)). Then, for

every s > 0, it is true that h� Ds(Br(b)). Hence, there exist a� Br(b) and b ∈ M such that
h ≤ b and p(a, b) < s, and then p(a, h) < s. Because a� Br(b), we can obtain p(b, a) ≤ r.
Hence, we have

p(b, h) ≤ p(b, a) + p(a, h) < s + r.

It follows that h ≤ Ur+s(b) = Dr+s(b), and then h ≤ ∧
s>0

Dr+s(b). According to Theorem

11, we have h ≤ Br(b). As a result, Br(b) ≤ Br(b), as desired.

Because Br(b) is a closed set, Ur(b) ≤ Br(b). In general, Ur(b) 6= Br(b). Therefore, we
give the following result.

Theorem 26. Let p be an L-pseudo-metric on LX . If there exists c ∈ M such that p(c, a) < r and
p(b, c) < s for any a, b ∈ M satisfying p(b, a) < r + s, then Ur(b) = Br(b).

Proof. We only need to prove Br(b) ≤ Ur(b). Due to Ur(b) = Dr(b), we need to prove
Br(b) ≤ Dr(b). According to Theorem 11, we have

Br(b) =
∧
s>0

Dr+s(b).

Let a � Dr+s(b). Then, we have p(b, a) < r + s. Because there is c ∈ M such that
p(c, a) < r, p(b, c) < s and Dr(Ds(b)) =

∨
c�Ds(b)

Dr(c), we can obtain a ≤ Dr(Ds(b)).

Therefore, Dr+s(b) ≤ Dr(Ds(b)). As a result, we have Br(b) =
∧

s>0
Dr+s(b) =

∧
s>0

Ds+r(b) ≤∧
s>0

Ds(Dr(b)) = Dr(b) = Ur(b), as desired.

6. Further Properties about L-Pseudo-Metric

In this section, based on a class of spherical mappings, we acquire an equivalent
characterization of L-pseudo-metric on LX in terms of a class of mapping clusters.

Definition 7. Given a mapping p : M×M → [0,+∞). For any a, b ∈ M, define D−1
r (b) =∧{a′ | Dr(a) ≤ b′} and Dr ◦ Ds(b) =

∨{Dr(a) | a ≤ Ds(b)}.

Theorem 27. If p is an L-pseudo-metric on LX , then it satisfies the following properties:

(1)
∨

r>0
Dr(b) = 1;

(2) b ≤ Dr(b);

(3) Dr(
∨
i∈I

bi) =
∨
i∈I

Dr(bi);

(4) Dr(b) =
∨

s<r
Ds(b);

(5) Dr ◦ Ds(b) ≤ Dr+s(b);

(6) Dr(b) = D−1
r (b).
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Proof. (1) and (2) are immediate, by definitions.
(3) Let A =

∨
i∈I

bi. Then, according to β∗(
∨
i∈I

bi) =
⋃
i∈I

β∗(bi), Remark 1 and the

definition of Dr(A), (3) is true.
(4) According to Theorem 11 and Corollary 4, it is easy to check that Dr(b) =∨

s<r
Bs(b) =

∨
s<r

Ds(b).

(5) We need to prove the following formulas:

Dr ◦ Ds(b) = ∨{Dr(a) | a ≤ Ds(b)}

= ∨{[∨{e ∈ M | ∃ f � a, p( f , e) < r} | a ≤ Ds(b)]}

≤ Dr+s(b).

In fact, let a ≤ Ds(b) =
∨{g ∈ M | ∃h� b, p(h, g) < s} and let e ∈ M, satisfying that there

exists f � a such that p( f , e) < r. Then, there must exist g with f ≤ g and hg with hg � b
such that p(hg, g) < s. Hence,

p(hg, e) ≤ p(hg, f ) + p( f , e) ≤ p(hg, g) + p( f , e) < r + s.

Thus, e ≤ Dr+s(b). Hence, Dr(a) ≤ Dr+s(b). Consequently, Dr ◦ Ds(b) ≤ Dr+s(b).
(6) By Theorem 18 and Corollary 4, we can deduce D−1

r (b) =
∧{a′ | Dr(a) ≤ b′} =

(D−r(b′))′ = Ur(b) = Dr(b).

Theorem 28. Suppose that the family {Dr(a) | a ∈ M, r ∈ [0,+∞)} satisfies the above properties
(1)–(6) and we define p(a, b) =

∨{r | b 6≤ Dr(a)}. Then, the following hold:

(a) p is a mapping from M×M to [0,+∞);

(b) As well as (A1) and (A2), p further satisfies p(a, b) =
∨

c�b
p(a, c);

(c) p is an L-fuzzy pseudo-metric on LX ;

(d) p(a, b) =
∧{r | b ≤ Dr(a)}.

Proof. First of all, we prove the following two conclusions:
(i) If p(a, b) < r, then b ≤ Dr(a);
(ii) If b ≤ Dr(a), then p(a, b) ≤ r.
(i) Suppose that b 6≤ Dr(a). Then, this means that, for any s < r, it holds that b 6≤ Ds(a).

Therefore, p(a, b) =
∨{s | b 6≤ Ds(a)} ≥ r, so that (i) is true.

(ii) Suppose that p(a, b) =
∨{s | b 6≤ Ds(a)} > r; then, there exists s > r such that

b 6≤ Ds(a). By the condition (4), we have Ds(a) ≥ Dr(a). Thus, b 6≤ Dr(a), and then
(ii) holds.

(a) Let b � 1 =
∨

r>0
Dr(a). Then, there exists r such that b ≤ Dr(a). By (ii), we can

obtain p(a, b) ≤ r ∈ [0,+∞). As for p(a, b) ≥ 0, this is obvious from the definition.
(b) (A1). If b ≤ a, then, according to property (2), for each r > 0, there is b ≤ Dr(a). In

view of (ii), we can obtain p(a, b) ≤ r. Because r is arbitrary, we have p(a, b) = 0.
(A2). Let a, b, c ∈ M, p(a, b) = r and p(b, c) = t. Then, for any s > 0, we have

p(a, b) < r + s and p(b, c) < t + s. Therefore, by (i), we know b ≤ Dr+s(a) and c ≤ Dt+s(b).
By (3) and (5), we have

c ≤ Dt+s(b) ≤ Dt+s(Dr+s(a))

≤ Dt+s ◦ Dr+s(a) ≤ Dr+t+2s(a).

Therefore, by (ii), we can obtain p(a, c) ≤ r + t + 2s. Because s is arbitrary, we have
p(a, c) ≤ r + t. Consequently, p(a, c) ≤ p(a, b) + p(b, c).

Next, we demonstrate that p(a, b) =
∨

c�b
p(a, c).
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Let c� b. Then, by (A1) and (A2), p(a, c) ≤ p(a, b). If p(a, b) = 0, then
∨

c�b
p(a, c) =

0. Thus, we might as well suppose p(a, b) = r > 0. For any s ∈ (0, r), by (ii), we
know b 6≤ Ds(a), which implies that there exists e � b such that e 6≤ Ds(a), and then
p(a, e) ≥ s. Hence,

∨
c�b

p(a, c) ≥ s. Because s is arbitrary, we can assert that
∨

c�b
p(a, c) ≥ r.

If
∨

c�b
p(a, c) > t > r, then there exists e � b such that p(a, e) > t. By (ii), we know

e 6≤ Dt(a). Thereby, b 6≤ Dt(a), so that p(a, b) = r > t. This is a contradiction. As a result,
we can assert that

∨
c�b

p(a, c) = r.

(c) We need to prove (A3). Suppose D−1
r (b) ≤ a′. Then, by the definition of D−1

r , we
can obtain

D−1
r (b) =

∧
{e′ | Dr(e) ≤ b′, e ∈ M} ≤ a′

⇔
∨
{e | Dr(e) ≤ b′, e ∈ M} ≥ a.

Thus, for any h� a, there exists e such that h ≤ e and Dr(e) ≤ b′, and then Dr(h) ≤ Dr(e) ≤ b′.
By the property (3), we know Dr(a) =

∨
h�a

Dr(h) ≤ b′. In view of the property (6), we can

obtain D−1
r (a) ≤ b′.

Similarly, we can prove that D−1
r (b) ≤ a′ if D−1

r (a) ≤ b′. Therefore, D−1
r (b) ≤ a′ ⇔

D−1
r (a) ≤ b′. By the property (6), we have Dr(a) 6≤ b′ ⇔ Dr(b) 6≤ a′, which is equivalent

to (A3).
(d) Let inf{r | b ≤ Dr(a)} = t. If p(a, b) = sup{r | b 6≤ Dr(a)} > t, then there

exists r > t such that b 6≤ Dr(a). By the property (4), b 6≤ Ds(a) for any s < r. Thus,
t = inf{r | b ≤ Dr(a)} ≥ r. This is a contradiction. If t > p(a, b), then there is a
number u satisfying t > u > p(a, b). Since t = inf{r | b ≤ Dr(a)} > u, we can assert
that b 6≤ Du(a). Therefore, by conclusion (i), it holds that p(a, b) ≥ u. This contradicts
p(a, b) < u. Consequently, p(a, b) = t, so that p(a, b) = inf{r | b ≤ Dr(a)}, as desired.

7. L-Metric on LX

In this section, we shall show the relationship between L-pseudo-metric and L-metric
on LX . First of all we give the following concept.

Definition 8. The space (X, δ) is claimed T1 if and only if b = b for any b ∈ M.

Theorem 29. Let p be an L-fuzzy pseudo-metric on LX . Then, (X, ζp) is T1-space if and only if p
satisfies (A4).

Proof. Let b ∈ M and let h � b =
∧

r>0
Dr(b). Then, for each r > 0, we can obtain

h� Dr(b) ≤ Br(b). Therefore, p(b, h) = 0. Hence, by (A4) we know h ≤ b, and then b = b̄.
Conversely, suppose that p(b, a) = 0. Then, for each r > 0, we have a ≤ Dr(b), and

then we can obtain a ≤ ∧
r>0

Dr(b) = b = b. Therefore, p satisfies (A4).

Corollary 6. The space (X, δ) is L-metrizable if and only if it is T1-space- and L-pseudo-metrizable.

8. Applications

In this section, we further show some related applications of L-quasi (pseudo)-metric
on LX .

Theorem 30. If p is an L-pseudo-metric on LX and satisfies the property p(a, b) =
∧

c�a
p(c, b),

then the following apply:
(a)

∨
z 6≤b′

Pλ(z)′ = Dλ(b);
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(b) The family {Pr(b) | b ∈ M, r ∈ [0,+∞)} is a closed topological base and the topology is
denoted by ηp;

(c) ηp=ζ ′p.

Proof. First of all we prove the result: (i) c ≤ Pr(b) ⇔ p(c, b) ≥ r for any c, b ∈ M. In
fact, we only need to prove c ≤ Pr(b) ⇒ p(c, b) ≥ r. Let h � c. Then, there exists e ∈ M
such that e ≥ h and p(e, b) ≥ r, so that r ≤ p(e, b) ≤ p(e, h) + p(h, b) = p(h, b). Therefore,
p(c, b) =

∧
h�c

p(h, b) ≥ r.

(a) By Theorem 23, we only need to prove
∨

z 6≤b′
Pλ(z)′ ≥ Dλ(b). Let a � Dλ(b).

Then, p(b, a) < λ. In addition, for ∀x 6≤ a′, i.e., a 6≤ x′, by (A3), there exists z 6≤ b′

such that p(x, z) < λ. By (i), we have x 6≤ Pλ(z), so that x 6≤ ∧
z 6≤b′

Pλ(z). Because x 6≤ a′

implies x 6≤ ∧
z 6≤b′

Pλ(z), we can assert that
∧

z 6≤b′
Pλ(z) ≤ a′, i.e., a ≤ ∨

z 6≤b′
Pλ(z)′. Hence,∨

z 6≤b′
Pλ(z)′ ≥ Dλ(b).

(b) It needs to be proven that the intersection of any subset of {Pr(b) | r ∈ [0,+∞), b ∈
M} is a topology, i.e.,

ηp = {
∧
i∈Γ

Pi(bi) | Γ ⊆ [0,+∞), bi ∈ M}

because
∧

∅ = 1 and
∧

r>0
Pr(a) = ∅ for any a ∈ M, 0, 1 ∈ ηp. Secondly, let A ⊆ ηp and

B ⊆ ηp. Then, according to the definition of ηp, it is straightforward for A
∧

B ∈ ηp. Thus,
we only need to prove that, for any a, b ∈ M and any r, s ∈ [0,+∞), Pr(a) ∨ Ps(b) is the
intersection of some elements in {Pr(a) | a ∈ M, r ∈ (0,+∞)}. The proof is as follows.

Case 1: when r = 0 or s = 0, Pr(a) = P0(a) = 1 or Ps(b) = P0(b) = 1 is true. Therefore,
Pr(a) ∨ Ps(b) = 1 ∈ ηp;

Case 2: when r, s ∈ (0,+∞) and we let A = Pr(a)∨ Ps(b). Then, according to Theorem
22, we can assert that A is a closed set in ζp. Therefore, we have A′ =

∨
i

Dri (ci), i.e.,

A = (
∨
i

Dri (ci))
′ =

∧
i

Dri (ci)
′. By (a), we can obtain A =

∧
i

∧
z 6≤c′i

Pri (z), as desired.

(c) By (b), we know that it is an open set for every Dr(b) in ηp. By Theorem 20, it is a
closed set for every Pr(b) in ζ ′p, which implies ηp=ζ ′p.

Suppose that, for any a ∈ M, there exists a corresponding Q-neighborhoods base of a
and the base is countable. Then, the space (X, δ) is called Q-CI [41,42].

Theorem 31. Suppose that p is an L-pseudo-metric on LX and satisfies the property p(a, b) =∧
c�a

p(c, b). Then, (1) {Pr(a)′ | a ∈ M, r ∈ [0,+∞)} is a Q− neighborhoods base of a; (2) the

space (X, ζp) is Q− CI .

Proof. (1) Let A ∈ ζ ′p satisfying a 6≤ A, i.e., A is a closed R-neighborhood of a. Then,
by Theorem 8, the family {Pr(b) | b ∈ M, r ∈ [0,+∞)} is a closed topology base for ζp.
Therefore, A =

∧
i∈Γ

Pri (bri ). Since a 6≤ A, there exists some s ∈ Γ such that a 6≤ Ps(b). Let

p(a, b) = t. Then, p(a, b) = t < s. Take any e ∈ M satisfying p(e, b) ≥ s. Since s ≤ p(e, b) ≤
p(e, a) + p(a, b) = p(e, a) + t, we have s− t ≤ p(e, a), which implies e ≤ Ps−t(a). Therefore,
Ps(b) ≤ Ps−t(a), so that {Pr(a)′ | a ∈ M, r ∈ [0,+∞)} is a Q-neighborhoods base of a.

(2) Let B be an R-neighborhood of a and let Q+ be the set of all rational numbers in
(0,+∞). Then, for any r > 0, there exists t ∈ Q+ with 0 < t < r such that Pr(a) ≤ Pt(a).
Therefore, we can assert that {Pt(a)′, t ∈ Q+} is also a Q-neighborhoods base of a, so that
ζp is Q− CI .
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However, if p is an L-pseudo-metric on LX and satisfies p(a, b) =
∨

c�b
p(a, c), then ζp

is not Q− CI .
Actually, in 1985, M.K. Luo [43] constructed an example of this kind of metric on IX

whose metric topology had no σ-locally finite base. Therefore, the topological space is not
CI I , so that ζp was, of course, not Q− CI .

9. Conclusions

In this paper, first, we put forward an L-quasi (pseudo)-metric on LX and show a series
of its related properties. Secondly, we present two topologies: ψp and ζp, generated by an
L-quasi-metric with different spherical mappings and prove that ψp = ζ ′p if p is further
an L-pseudo-metric on LX. Thirdly, we characterize an equivalent form of the L-metric
in terms of a class of mapping clusters and acquire a desired result. Finally, based on the
L-metric, we assert that a Yang–Shi metric topology is Q− CI , but, in general, an Erceg
metric topology is not.

In future work, we will continue to investigate the Chen metric on LX and study this
kind of topological space whose topology has a σ-locally finite base. Beyond that, we also
intend to inquire into some questions on the fuzzifying metric topology.
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