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Abstract: In the present paper, we aim to study the long-time behavior of a stochastic semi-linear
degenerate parabolic equation on a bounded or unbounded domain and driven by a nonlinear noise.
Since the theory of pathwise random dynamical systems cannot be applied directly to the equation
with nonlinear noise, we first establish the existence of weak pullback mean random attractors for
the equation by applying the theory of mean-square random dynamical systems; then, we prove
the existence of (pathwise) pullback random attractors for the Wong–Zakai approximate system
of the equation. In addition, we establish the upper semicontinuity of pullback random attractors
for the Wong–Zakai approximate system of the equation under consideration driven by a linear
multiplicative noise.
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1. Introduction

We consider the following stochastic semi-linear degenerate parabolic equation:
∂u
∂t
− div(σ(x)∇u) + λu + f (x, u) = g(t, x) + h(t, x, u)

dW
dt

, t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(t, x)|∂O = 0, t > τ,

(1)

where O ⊆ RN(N ≥ 2) is an arbitrary (bounded or unbounded) domain, λ is a positive
constant, W is a two-sided Hilbert space valued cylindrical Wiener process or a two-side
real-valued Wiener process, the drift term f and diffusion term h are nonlinear functions
with respect to u, the given function g(t, x) ∈ L2

loc(R, L2(O)). In addition, the variable
non-negative coefficient σ(x) is allowed to have at most a finite number of (essential) zeros
at some points, which is understood the degeneracy of (1). As in [1,2], we assume that the
non-negative function σ(x) : O → R+ ∪ {0} satisfies the following hypotheses:

(Hα) σ ∈ L1
loc(O) and for some α ∈ (0, 1), lim inf

x→z
|x− z|−ασ(x) > 0 for every z ∈ O, when

the domain O is bounded;
(Hβ) σ satisfies condition (Hα) and lim inf

|x|→∞
|x|−βσ(x) > 0 for some β > 2, when the domain

O is unbounded.

The conditions (Hα) and (Hβ) indicate that the diffusion coefficient σ(x) is extremely
irregular.

One of the most important things in studying evolution partial differential equations
is to investigate the long-time behavior of solutions of the equations. In this process,
attractors are the ideal objects. At present, abundant results, both in an abstract context
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and concrete models, have been established for the deterministic infinite-dimensional
dynamical systems, see, e.g., monographs [3–5] and papers [1,6–10]. However, when one
considers the random influences on the systems under investigation, which are always
presented as stochastic partial differential equations, and tries to establish the existence
of attractors for them, the theory on deterministic infinite-dimensional systems cannot be
applied directly. On the one hand, the stochastic dynamical systems are non-autonomous,
and one cannot obtain a uniform (with regard to stochastic time symbol) absorbing set as
the deterministic case as in, e.g., [4]; on the other hand, owing to the influences of stochastic
driving systems, one cannot obtain the fixed invariant set for stochastic dynamical systems
in general.

In order to overcome these drawbacks, Flandoli et al. in [11,12] introduced the the-
ory of pathwise random dynamical systems and (pathwise) random attractors for the
autonomous stochastic equations, in which the random attractor is a family of compact sets
depending on random parameters and has some invariant properties under the action of
the random dynamical system. Recent theories in [13,14] are related to non-autonomous
pathwise random dynamical systems and pullback random attractors for non-autonomous
stochastic equations, where the pullback random attractor is a family of compact sets
depending on both random parameters and deterministic time symbols. Up to now, there
have been many results on the existence and uniqueness of random attractors, and one
can refer to [15–18] for the autonomous stochastic equations and [17,19–22] for the non-
autonomous stochastic equations. In addition, for the result about random attractors for
Equation (1) with linear noise, see, e.g., [15,17,18,23–25].

However, when one investigates the dynamics of stochastic evolution equations driven
by nonlinear noise, the existence of random attractors cannot be established directly, since
the serious challenge is that the existence of a random dynamical system is unknown
in general for these kinds of systems. As far as it is known, up to now, there are two
ways to overcome this difficulty in some sense. One method is to investigate the dynamic
behavior of the Wong–Zakai approximate system corresponding to the original equation.
For example, Lu and Wang in [26] revealed the existence of a pullback random attractor for
the Wong–Zakai approximate system of a stochastic reaction–diffusion equation with the
nonlinear noise in some bounded spatial domain, and later Wang et al. in [27] extended
the result of [26] to unbounded domains by using the method of tail estimates. Chen et al.
in [28] proved the existence of the pullback attractor for the fractional nonclassical diffusion
equations with delay driven by additive white noise on unbounded domains, and investi-
gated the approximations of those random attractors as the correlation time of the colored
noise approaches zero. Another method is established by Kloeden et al. in [29] and Wang
in [30], that is, they extended the concept of pathwise random attractors to mean context
and established the corresponding existence theory of mean random attractors for random
dynamical systems. Wang [31] proved the existence and uniqueness of weak pullback
mean random attractors of lattice plate equations on the entire integer set with nonlinear
damping driven by infinite-dimensional nonlinear noise. There are some relevant works,
see, e.g., [32,33].

The first purpose of this article is to establish the existence of weak pullback mean
random attractors for Equation (1) by using the theory of [30]. Toward this end, we first
need to confirm the existence and uniqueness of a solution for Equation (1). For the
existence of solutions to be a stochastic parabolic-type equation, e.g., a stochastic reaction–
diffusion reaction, one can refer to [30,32,34,35]. Unlike reference [30], the existence
of a solution for Equation (1) cannot be obtained directly by using the abstract result
(Theorem 4.2.4) in [36] since the drift term f (x, u) is allowed to be a polynomial growth of
arbitrary order with respect to u in this article. We aim to prove the existence and unique-
ness of the solution for Equation (1) by using the approach of [32], in which the author
proves existence of solutions for stochastic reaction–diffusion equations involving drift
term f (x, t, u) with polynomial growth of any order and nonlinear diffusion term σ(t, u),
and the embedding Hk(RN) ↪→ Lp(RN) for 2 ≤ p ≤ 2N

N−2k (N ≥ 2k) plays an essential
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role in this proof. Hence, we show the embedding result of the corresponding Sobolev
space with weight σ(x) in Section 2. In Section 3, we show that the solution generates a
mean random dynamical system and establish the existence of weak pullback random
attractors for Equation (1). We shall remark that since the mean random dynamical system
is defined on the Banach space Lp(Ω, X) consisting of all Bochner-integrable functions and
corresponding probability space (Ω,F , P) lacks some topological structure, we only obtain
the weakly compact property and weakly attracting property of mean random attractors
for (1) in L2(Ω, X).

The second goal is to investigate the dynamic behavior of the Wong–Zakai approximate
system for Equation (1). We prove the existence of a pullback random attractor for the
Wong–Zakai approximate system for Equation (1) with nonlinear diffusion term h(t, x, u),
which is allowed to be polynomial growth, and we also show that the pullback random
attractor of Wong–Zakai approximation for Equation (1) converges to the attractor of
Equation (1) as the size of approximation tends to zero, when h(t, x, u) is equal to u.
This work will be performed in Section 4. We remark that when we prove the pullback
asymptotic compactness, we use the method of weighted Sobolev spaces to overcome the
non-compactness of the usual Sobolev embeddings in the case of an unbounded domain,
which is different from that of [26].

In what follows in this article, the constant C represents some positive constant and
may change from line to line.

2. Preliminaries
2.1. Functional Setting

In this subsection, we introduce some function spaces and present some embedding
results, which will be used in our proof.

Throughout this article, we let (X, ‖ · ‖X) be a separable Banach space and Lp(Ω,F ; X)
(1 < p < ∞) be the Banach space consisting of all strongly measurable and Bochner-
integrable functions Ψ from Ω to X such that

‖Ψ‖Lp(Ω,F ;X) = (
∫

Ω
‖Ψ‖p

XdP)
1
p < +∞. (2)

Denote by (Ω,F , {Ft}t∈R, P) the complete filtered probability space satisfying the
usual condition, i.e., {Ft}t∈R is an increasing right continuous family of sub-σ-algebras ofF
that contains all P-null sets. We use Lp(Ω,Ft; X) to represent the subspace of Lp(Ω,F ; X),
which consists of all functions belonging to Lp(Ω,F ; X) and being strongly Ft-measurable.
For simplicity of notation, we denote by ‖ · ‖ the norm in L2(O) and L2(Ω,Ft; L2(O)).

To investigate Equation (1), we introduce the weighted Sobolev space D1,2
0 (O, σ)

defined by the completion of C∞
0 (O) with norm ‖ · ‖D1,2

0 (O,σ),

‖u‖D1,2
0 (O,σ) := (

∫
O

σ(x)|∇u|2dx)
1
2 . (3)

And one can easily check that D1,2
0 (O, σ) is a Hilbert space with the inner product (·, ·)σ

(u, v)σ :=
∫
O

σ(x)∇u · ∇vdx. (4)

If condition (Hα) (or (Hβ) on an unbounded domain) holds, the operator A = −div
(σ(x)∇u) is positive and self-adjoint with a domain defined by

D(A) := {u ∈ D1,2
0 (O, σ) : Au ∈ L2(O)}.
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Furthermore, one can easily observe that if σ satisfies (Hα) and (Hβ), then there
exists a finite set A = {a1, a2, · · · , ak} ⊆ Ō and δ, r > 0 such that the balls Bi = Br(ai),
i = 1, 2, · · · , k, are disjoint and

σ(x) ≥ δ|x− ai|α for x ∈ Bi ∩Ω, i = 1, 2, · · · , k, (5)

σ(x) ≥ δ for x ∈ Ω\ ∪i Bi, (6)

and moreover, if Ω is unbounded, then there exists R > 0 such that

σ(x) ≥ δ|x|β for x ∈ Ω, |x| > R. (7)

The following spaces will also be needed:

• Dp(A) := {u ∈ D1,2
0 (O, σ) : Au ∈ Lp(O)};

• D−1
0 (O, σ):= the dual space of D1,2

0 (O, σ);
• Hm

0 (O, σ):= the closure of C∞
0 (O) with norm ‖ · ‖Hm(O,σ), defined by

‖u‖2
Hm(O,σ) := ∑

1≤|κ|≤m

∫
O

σ(x)|Dκu|2dx +
∫
O
|u|2dx, m ∈ N+,

where κ = (κ1, κ2, · · · , κN) is a multi-index of order |κ| = κ1 + κ2 + · · ·+ κN .

Lemma 1 ([37]). There exists a constant c1 such that the following inequality holds for all u ∈
C∞

0 (RN), ( ∫
RN
|u|2∗α dx

) 1
2∗α ≤ c1

(
∑
|κ|=m

∫
RN
|x|α|Dκu|2dx

) 1
2
,

where 2∗α = 2N
N+2α−2m with N − 2m ≥ 0.

Lemma 2. Let σ(x) satisfy assumption (Hα) (or (Hβ) on unbounded domain). Then, there exists
a constant c2 such that( ∫

O
|u|2∗α dx

) 1
2∗α ≤ c2

(
∑
|κ|=m

∫
O

σ(x)|Dκu|2dx
) 1

2
, for every u ∈ C∞

0 (O).

Proof of Lemma 2. By using Lemma 1, the Rellich–Kondrachov Theorem, and the General
Sobolev inequality, we can obtain the conclusion of Lemma 2 in a similar way as in the
proof of Proposition 2.5 in [2]. We omit the process here.

The following embedding results play an important role in our proof in Sections 3 and 4.

Lemma 3 ([2]). Let σ(x) satisfy assumption (Hα) (or (Hβ) on unbounded domain). Then, it holds
the compact embedding D1,2

0 (O, σ) ↪→↪→ L2(O).

Lemma 4. Let σ(x) satisfy assumption (Hα) (or (Hβ) on unbounded domain). Then, it holds the
continuous embedding

Hm
0 (O, σ) ↪→ Lp(O), for 2 ≤ p ≤ 2∗α.

Proof of Lemma 4. Note that 2∗α > 2 for α ∈ (0, 1). Then, we can find, by the interpolation
theorem and Lemma 2, that

‖u‖Lp(O) ≤ C‖u‖θ‖u‖1−θ

L2∗α (O)
≤ C‖u‖Hm(O,σ), for any u ∈ Hm

0 (O, σ),

where θ = 2(2∗α−p)
p(2∗α−2) . The proof is completed.
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2.2. Theory of Random Attractors

In this subsection, we introduce some definitions and known results about weak
pullback mean random attractors and pullback random attractors.

Definition 1. A family of mappings Φ = {Φ(t, τ) : t ∈ R+, τ ∈ R} is called a mean random
dynamical system on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P) if the following conditions hold for all
τ ∈ R and t, s ∈ R+:

(i) Φ(t, τ) maps Lp(Ω,Fτ ; X) to Lp(Ω,Ft+τ ; X);
(ii) Φ(0, τ) is the identity operator on Lp(Ω,Fτ ; X);
(iii) Φ(t + s, τ) = Φ(t, τ + s) ◦Φ(s, τ).

Let D = {D(τ) ⊆ Lp(Ω,Fτ ; X) : τ ∈ R} be a family of nonempty bounded sets and
D0 be a collection of such families satisfying some conditions. The collection D0 is said to
be inclusion-closed if D = {D(τ) : τ ∈ R} ∈ D0, then every family O = {O(τ) : O(τ) ⊆
D(τ), τ ∈ R} ∈ D0.

Definition 2. A family of sets K = {K(τ) : τ ∈ R} ∈ D0 is called a D0-pullback absorbing
set for Φ on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P) if for every τ ∈ R and D ∈ D0, there exists
T = T(τ,D) > 0 such that

Φ(t, τ − t)(D(τ − t)) ⊆ K(τ), ∀t ≥ T.

Moreover, if K(τ) is a weakly compact nonempty subset of Lp(Ω,Fτ ; X) for each τ ∈ R, then
K = {K(τ) : τ ∈ R} is said to be a weakly compact D0-pullback absorbing set for Φ.

Definition 3. A family of sets K = {K(τ) : τ ∈ R} ∈ D0 is said to be a D0-pullback
weakly attracting set of Φ on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P) if for each τ ∈ R,D ∈ D0
and every weak neighborhood N w(K(τ)) of K(τ) in Lp(Ω,Fτ ; X), there exists some T =
T(τ,D,N w(K(τ))) > 0 such that

Φ(t, τ − t)(D(τ − t)) ⊆ N w(K(τ)), ∀t ≥ T.

Definition 4. We say a family A = {A(τ) : τ ∈ R} ∈ D0 is a weak D0-pullback mean random
attractor for Φ on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P) if it satisfies the following properties:

• Weak compactness: for any τ ∈ R, A(τ) is a weakly compact subset of Lp(Ω,Fτ ; X).
• Pullback weak attraction: for any τ ∈ R, A(τ) is a D0-pullback weakly attracting set of Φ.
• Minimality: for any τ ∈ R, the family A is the minimal element of D0 in the sense that if

B = {B(τ) : τ ∈ R} ∈ D0 is another weakly compact D0-pullback weakly attracting set of
Φ, then A(τ) ⊆ B(τ).

The following result about the existence and uniqueness of weak D0-pullback mean
random attractors for Φ on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P) comes from [30].

Lemma 5. Suppose that D0 is an inclusion-closed collection of some families of nonempty bounded
subsets of Lp(Ω,F ; X) and Φ is a weak mean random dynamical system on Lp(Ω,F ; X) over
(Ω,F , {Ft}t∈R, P). If Φ possesses a weakly compact D0-pullback absorbing set K ∈ D0 on
Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P), then Φ possesses a unique weak D0-pullback mean random
attractor A ∈ D0 on Lp(Ω,F ; X) over (Ω,F , {Ft}t∈R, P), which is given by

A(τ) = Ωw(K, τ) =
⋂
r≥0

⋃
t≥r

Φ(t, τ − t, K(τ − t))
w

, ∀τ ∈ R,

where the closure is taken with respect to the weak topology of Lp(Ω,Fτ ; X).
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Denote by D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} a family of nonempty bounded subsets of
X and D1 a collection of such families satisfying some conditions. Let (Ω,F , P, {θt}t∈R) be
a metric dynamical system. We now introduce the pathwise random dynamical system as
in [11,14,38].

Definition 5. A mapping Ψ : R+ ×R×Ω× X 7→ X is said to be a continuous pathwise random
dynamical system (or a continuous cocycle) on X over (Ω,F , P, {θt}t∈R) if the following conditions
hold for all τ ∈ R, ω ∈ Ω and t, s ∈ R+,

(i) Ψ(·, τ, ·, ·) : R+ ×Ω× X 7→ X is (B(R+)×F ×B(X),B(X))-measurable;
(ii) Ψ(0, τ, ω, ·) is the identity operator on X;
(iii) Ψ(t + s, τ, ω, ·) = Ψ(t, τ + s, θsω, ·) ◦Ψ(s, τ, , ω, ·);
(iv) Ψ(t, τ, ω, ·) : X 7→ X is continuous.

Definition 6. A family K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 is said to be a D1-pullback
absorbing set for a cocycle Ψ if for every τ ∈ R, ω ∈ Ω and D ∈ D1, there exists some
T = T(τ,D, ω) > 0 such that

Ψ(t, τ − t, θ−tω, D(τ − t, θ−tω)) ⊆ K(τ, ω) for all t ≥ T.

Moreover, if for every τ ∈ R, and ω ∈ Ω, K(τ, ω) is a closed nonempty subset of X and is
measurable in ω with respect to F , then K is said to be a closed measurable D1-pullback absorbing
set for Ψ.

Definition 7. We say that cocycle Ψ isD1-pullback asymptotically compact in X if for every τ ∈ R
and ω ∈ Ω, the sequence

{Ψ(tn, τ − tn, θ−tn ω, xn)}∞
n=1 has a convergent subsequence in X,

as tn → +∞, and xn ∈ B(τ − tn, θ−tn ω) with {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1.

Definition 8. A family A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 is said to be a D1-pullback
random attractor for Ψ if the following properties hold for all τ ∈ R and ω ∈ Ω:

(i) Measurability and Compactness: A is measurable in ω with respect to F and A(τ, ω) is
compact in X;

(ii) Invariance: A is invariant in the sense that Ψ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀t ≥ 0;
(iii) Pullback attracting: A attracts D1 in the sense that for any D ∈ D1,

lim
t→+∞

distX(Ψ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0,

where distX is the Hausdorff semi-distance in X.

3. Mean Random Attractors for Stochastic Semi-linear Degenerate Parabolic Equation

Let U be a separable Hilbert space and L2(U, L2(O)) be the Hilbert space consisting of
all Hilbert–Schmidt operators from U to L2(O) with norm ‖ · ‖L2(U,L2(O)). We consider the
following non-autonomous stochastic semi-linear degenerate parabolic equation defined
on any bounded or unbounded domain O ⊆ RN :

∂u
∂t
− div(σ(x)∇u) + λu + f (x, u) = g(t, x) + h(t, u)

dW
dt

, t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(t, x)|∂O = 0, t > τ,

(8)

where W is a two-sided U-valued cylindrical Wiener process defined on the complete
filtered probability space (Ω,F , {Ft}t∈R, P), while σ(x), λ and g(t, x) are the same as
described in Section 1. In this section, the stochastic term in Equation (8) is understood in
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the sense of Itô integration. Since the Itô integral is martingale, it is convenient for us to
take the expectation and find the existence of a weak pullback mean random attractor.

Let O be a bounded domain (or an unbounded domain) and let the non-negative
function σ(x) satisfy (Hα) (or (Hβ)). We assume that f : O ×R 7→ R is a smooth nonlinear
function such that f (x, 0) = 0 and for all x ∈ O and s ∈ R,

f ′(x, s) ≥ −φ1(x), (9)

f (x, s)s ≥ a1|s|p − φ2(x), (10)

| f (x, s)| ≤ a2|s|p−1 + φ3(x), (11)

where a1, a2, a3, p > 2 are positive constants, and φ1(x) ∈ L∞(O) with φ1(x) ≥ 0, φ2(x) ∈
L1(O), φ3(x) ∈ Lp1(O) with 1

p + 1
p1

= 1, f ′(x, s) denotes the derivation with respect to the
second variable s. We also assume f (x, s) is locally Lipschitz continuous in u, i.e., for each
bounded interval I ⊆ R, there is aI > 0 such that

| f (x, s1)− f (x, s2)| ≤ aI |s1 − s2|, ∀x ∈ O, s1, s2 ∈ I. (12)

Assume h : R×Ω× L2(O) 7→ L2(U, L2(O)) satisfies the following conditions:

(A1) For any t ∈ R, ω ∈ Ω and s ∈ L2(O), there are positive constants a3 < 1
2 λ and L

such that

‖h(t, ω, s)‖2
L2(U,L2(O)) ≤ a3‖s‖2 + L. (13)

(A2) For each r > 0, there is a positive constant ar depending on r such that for every t ∈ R,
ω ∈ Ω, and s1, s2 ∈ L2(O) with ‖s1‖ ≤ r and ‖s2‖ ≤ r,

‖h(t, ω, s1)− h(t, ω, s2)‖2
L2(U,L2(O)) ≤ ar‖s1 − s2‖2. (14)

Moreover, we suppose that for each given s ∈ L2(O), σ(·, ·, s) : R×Ω 7→ L2(U, L2(O))
is progressively measurable.

We now show that the solution of Equation (8) can define a mean random dynamical
system. The definition of the solution for Equation (8) is given as follows in this case.

Definition 9. Let uτ ∈ L2(Ω,Fτ ; L2(O)) and T > τ. A L2(O)-valued Ft-adapted stochastic
process u is called a solution of (8) on [τ, T] with initial data uτ if

u ∈ L2(Ω, C([τ, T]; L2(O))) ∩ L2(Ω× [τ, T]; D1,2
0 (O, σ)) ∩ Lp(Ω× [τ, T]; Lp(O))

and P-a.s. satisfies

(u(t),ζ) +
∫ t

τ
(σ(x)∇u,∇ζ)ds + λ

∫ t

τ
(u, ζ)ds +

∫ t

τ

∫
O

f (u)ζdxds =
∫ t

τ
(g(s), ζ)ds

+
∫ t

τ
(h(s, u)dW(s), ζ), ∀t ∈ [τ, T], ζ ∈ D1,2

0 (O, σ) ∩ Lp(O).

Using Lemmas 3 and 4, we can obtain the following result in a similar way that has
been used in [32].

Lemma 6. Let T > τ and uτ ∈ L2(Ω,Fτ ; L2(O)). If conditions (9)–(14) hold, then there exists
a unique solution to Equation (8) in the sense of Definition 9. Additionally,

E( sup
t∈[τ,T]

‖u(t)‖2) < ∞. (15)
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Note that u ∈ L2(Ω, C([τ, T]; L2(O))) for all T > τ, which implies that u ∈ C([τ, ∞); L2(Ω,
L2(O))). Thus, we can define the mean random dynamical system Φ for Equation (8) on
L2(Ω,F ; L2(O)) by

Φ(t, τ, uτ) = u(t + τ, τ, uτ), t > 0, τ ∈ R,

where uτ ∈ L2(Ω,Fτ ; L2(O)) and u is the solution of system (8) with initial data uτ .
Let D = {D(τ) ⊆ L2(Ω,Fτ ; L2(O)) : τ ∈ R} be a family of nonempty bounded sets.

A family D is said to be tempered if for any ν > 0, there is

lim
τ→−∞

sup
u∈D(τ)

eντ‖u‖2 = 0. (16)

We denote by D0 the collection of all tempered families of nonempty bounded subsets
of L2(Ω,Fτ ; L2(O)), that is,

D0 = {D = {D(τ) ⊆ Lp(Ω,Fτ ; L2(O)) : D(τ) 6= ∅, bounded, τ ∈ R} : D satisfies (16)}.

From now on, we assume∫ τ

−∞
eλs‖g(s, ·)‖2ds < +∞, ∀τ ∈ R. (17)

To find the existence of tempered random attractors, we further assume

lim
τ→−∞

eντ
∫ 0

−∞
eλs‖g(s + τ, ·)‖2ds = 0, ∀ν > 0. (18)

To investigate the existence of weakD0-pullback mean random attractors for Equation (8),
we need the uniform estimate of solutions, and by the following result, we can construct a
weakly compact D0-pullback absorbing set for Φ.

We present a Gronwall-type lemma, which is a convenient tool for subsequential
discussions. The reader may refer to [39] for the detailed proof.

Lemma 7. Let g(t) be an integrable function, and f (t) be an absolutely continuous function that
satisfies the differential inequality

d
dt

f (t) ≤ k f (t) + g(t).

Then,

f (t) ≤ f (α)ek(t−α) +
∫ t

α
g(s)ek(t−s)ds. (19)

Lemma 8. Suppose (9)–(14) and (17) hold. Then, for every τ ∈ R and D ∈ D0, there exists some
T = T(τ,D) > 0 such that for all t ≥ T and uτ−t ∈ D(τ − t), the solution u to Equation (8)
satisfies

E(‖u(τ, τ − t, uτ−t)‖2) ≤ M + M
∫ 0

−∞
eλs‖g(s + τ)‖2ds, (20)

where M is a positive constant independent of τ and D.

Proof of Lemma 8 . By the Itô formula, we obtain from (8) that for each r ≥ τ − t,
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‖u(r, τ − t, uτ−t)‖2 + 2
∫ r

τ−t
‖u(s, τ − t, uτ−t)‖2

D1,2
0 (O,σ)

ds + 2λ
∫ r

τ−t
‖u(s, τ − t, uτ−t)‖2ds

+ 2
∫ r

τ−t

∫
O

f (x, u(s, τ − t, uτ−t))u(s, τ − t, uτ−t)dxds (21)

=‖uτ−t‖2 + 2
∫ r

τ−t
(g(s), u(s, τ − t, uτ−t))ds +

∫ r

τ−t
‖h(s, u(s, τ − t, uτ−t))‖2

L2(U,L2(O))ds

+ 2
∫ r

τ−t
(u(s, τ − t, uτ−t), h(s, u(s, τ − t, uτ−t))dW(s)),

Taking the expectation on both sides of (21), we find, for almost all r ≥ τ − t, that

E(‖u(r, τ − t, uτ−t)‖2) + 2
∫ r

τ−t
E(‖u(s, τ − t, uτ−t)‖2

D1,2
0 (O,σ)

)ds

+ 2λ
∫ r

τ−t
E(‖u(s, τ − t, uτ−t)‖2)ds

+ 2
∫ r

τ−t
E
( ∫
O

f (x, u(s, τ − t, uτ−t))u(s, τ − t, uτ−t)dx
)

ds (22)

=E(‖uτ−t‖2) + 2
∫ r

τ−t
E(g(s), u(s, τ − t, uτ−t))ds

+
∫ r

τ−t
E(‖h(s, u(s, τ − t, uτ−t))‖2

L2(U,L2(O)))ds.

Thus, for almost all r ≥ τ − t, we have

d
dr

E(‖u(r, τ − t, uτ−t)‖2) + 2E(‖u(r, τ − t, uτ−t)‖2
D1,2

0 (O,σ)
)

+2λE(‖u(r, τ − t, uτ−t)‖2) + 2E
( ∫
O

f (x, u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx
)

(23)

= 2E(g(r), u(r, τ − t, uτ−t))

+E(‖h(r, u(r, τ − t, uτ−t))‖2
L2(U,L2(O))).

Now, we estimate each item on the right-hand side of (23). By (10), we find that∫
O

f (u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx

≥a1

∫
O
|u(r, τ − t, uτ−t)|pdx− ‖φ2‖L1(O), (24)

which implies

2E
( ∫
O

f (u(r, τ − t, uτ−t))u(r, τ − t, uτ−t)dx
)

≥2a1E(‖u(r, τ − t, uτ−t)‖p
Lp(O))− 2‖φ2‖L1(O). (25)

Note that

(g(r), u(r, τ − t, uτ−t))

≤λ

4
‖u(r, τ − t, uτ−t)‖2 +

1
λ
‖g(r)‖2, (26)

which implies that

2E(g(r), u(r, τ − t, uτ−t))

≤λ

2
E(‖u(r, τ − t, uτ−t)‖2) +

2
λ
‖g(r)‖2. (27)
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We deduce from (13) and (23)–(27) that, for almost all r ≥ τ − t,

d
dr

E(‖u(r, τ − t, uτ−t)‖2) + λE(‖u(r, τ − t, uτ−t)‖2)

≤ 2
λ
‖g(r)‖2 + 2‖φ2‖L1(O) + L. (28)

Applying Gronwall’s inequality to (28), we obtain

E(‖u(r, τ − t, uτ−t)‖2)

≤eλ(τ−t−r)E(‖uτ−t)‖2) +
1
λ
(2‖φ2‖L1(O) + L) + e−λr

∫ r

τ−t
eλs 2

λ
‖g(s)‖2ds. (29)

Then, we find that

E(‖u(τ, τ − t, uτ−t)‖2)

≤e−λtE(‖uτ−t‖2) +
1
λ
(2‖φ2‖L1(O) + L) + e−λτ 2

λ

∫ τ

−∞
eλs‖g(s)‖2ds. (30)

Since uτ−t ∈ D(τ − t) and D = {D(τ) : τ ∈ R} ∈ D0, we obtain

e−λτeλ(τ−t)E(‖uτ−t‖2)→ 0 as t→ +∞.

Therefore, there exists T = T(τ,D) > 0 such that for all t ≥ T,

e−λtE(‖uτ−t‖2) ≤ 1. (31)

By (30) and (31), we find, for all t ≥ T, that there exists some positive constant M
independent of τ and D such that

E(‖u(τ, τ − t, uτ−t)‖2) ≤ M + M
∫ 0

−∞
eλs‖g(s + τ)‖2ds.

This completes the proof.

Corollary 1. Let (9)–(14), (17) and (18) hold. Then, the mean random dynamical system Φ for
Equation (8) possesses a weakly compact D0-pullback absorbing set K0 = {K0(τ) : τ ∈ R} ∈ D0,
which is given by

K0(τ) = {u ∈ L2(Ω,Fτ ; L2(O)) : E(‖u‖2) ≤ R0(τ)}, (32)

where

R0(τ) := M + M
∫ 0

−∞
eλs‖g(s + τ)‖2ds (33)

with M being the same constant as in Lemma 8.

Proof of Corollary 1. We know that for each τ ∈ R, K0(τ) in (32) is a bounded and closed
convex subset of L2(Ω,Fτ ; L2(O)), and therefore it is weakly compact in L2(Ω,Fτ ; L2(O)).
Lemma 8 indicates that for every τ ∈ R andD ∈ D0, there exists T = T(τ, D) > 0 such that

Φ(t, τ − t, D(τ − t)) ⊆ K0(τ), ∀t ≥ T. (34)

In addition, from (18) and (33), we obtain for any ν > 0

lim
τ→−∞

sup
u∈K0(τ)

eντ‖u‖ = 0,

that is K0 ∈ D0. Hence, K0 is a weakly compact D0-pullback absorbing set for Φ.
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Theorem 1. Suppose (9)–(14), (17) and (18) hold. Then, the mean random dynamical system Φ
for problem (8) possesses a unique weak D0-pullback mean random attractor Ā0 = {Ā0(τ) : τ ∈
R} ∈ D0 in L2(Ω,F ; L2(O)) over (Ω,F , {Ft}t∈R, P).

Proof of Theorem 1. From Lemma 5 and Corollary 1, we can easily find the existence and
uniqueness of weakD0-pullback mean random attractor Ā0 ∈ D0 of Φ for Equation (8).

4. Wong–Zakai Approximations of Stochastic Semi-Linear Degenerate
Parabolic Equation

In this section, we consider the following stochastic semi-linear degenerate parabolic
equation:

∂u
∂t
− div(σ(x)∇u) + λu + f (x, u) = g(t, x) + h(t, x, u) ◦ dW

dt
, t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(x, t)|∂O = 0, t > τ.

(35)

Here, W = ω(t) is a two-sided real-valued Wiener process on a probability space and
the other terms are the same as described in Section 1. The symbol “ ◦ ” indicates that the
stochastic term in Equation (35) is understood in the sense of Stratonovich’s integration.

We remark that, in this section, we consider the stochastic term of Equation (35) in
the sense of Stratonovich’s integration because the Stratonovich’s interpretation is more
appropriate than Itô’s when we consider the pathwise dynamical behavior (fixed any
ω ∈ Ω) of the Wong–Zakai approximate system corresponding to the equation (see [40]
for details).

4.1. Random Dynamical Systems for Wong–Zakai Approximations

In this subsection, we first define a continuous cocycle Ψ for Wong–Zakai approximate
system of Equation (35), and then prove that there exists a unique pullback random attractor
for the cocycle Ψ.

Let O be a bounded domain (or an unbounded domain) and let the non-negative
function σ(x) satisfy (Hα) (or (Hβ)). In what follows, we assume that f : O ×R 7→ R is a
smooth nonlinear function such that for all x ∈ O and s ∈ R,

f (x, s)s ≥ α1|s|p − β1(x), (36)

| f (x, s)| ≤ α2|s|p−1 + β2(x), (37)

f ′(x, s) ≥ α3|s|p−2 − β3(x), (38)

where p > 2, α1, α2, α3 are positive numbers, β1(x) ∈ L1(O), β2(x) ∈ Lp1(O) with
1
p1

+ 1
p = 1, β3(x) ∈ L∞(O). Let h be a continuous function and for all t, s ∈ R, x ∈ O,

satisfy
|h(t, x, s)| ≤ ψ1(t, x)|s|q−1 + ψ2(t, x), (39)

| ∂

∂s
h(t, x, s)| ≤ ψ3(t, x)|s|q−2 + ψ4(t, x), (40)

where 2 ≤ q < p, ψ1 ∈ L
p

p−q
loc (R; L

p
p−q
loc (O)) and ψ2 ∈ Lp1

loc(R; Lp1(O)), and ψ3, ψ4 ∈
L∞(R; L∞(O)).

In the sequel, let (Ω,F , P) be the classical Wiener probability space, where

Ω = C0(R,R) := {ω ∈ C(R,R) : ω(0) = 0} (41)
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with the open compact topology. The Brownian motion has the form W(t, ω) = ω(t).
Consider the Wiener shift θt on the probability space (Ω,F , P) defined by

θtω(·) = ω(t + ·)−ω(t). (42)

Then, from [41], we find that (Ω,F , P, {θt}t∈R) is a metric dynamical system and there
exists a {θt}t∈R-invariant subset Ω̃ ⊆ Ω of full P measure such that for each ω ∈ Ω̃,

ω(t)
t
→ 0 as t→ ±∞. (43)

For brevity, we identify the space Ω̃ with Ω. For any given δ 6= 0, define the random
variable Gδ by

Gδ(ω) =
ω(δ)

δ
, ∀ω ∈ Ω. (44)

We obtain from (42) and (44) that

Gδ(θtω) =
ω(t + δ)−ω(t)

δ
and

∫ t

0
Gδ(θsω)ds =

∫ t+δ

t

ω(s)
δ

ds +
∫ 0

δ

ω(s)
δ

ds. (45)

By the continuity of ω and (45), the following result has been proved in [26].

Lemma 9. Let τ ∈ R, T > 0, and ω ∈ Ω. Then, for each ε > 0, there is a constant δ′ =
δ′(ε, τ, ω, T) > 0 such that for every 0 < |δ| < δ′ and t ∈ [τ, τ + T],

|
∫ t

0
Gδ(θsω)ds−ω(t)| < ε. (46)

Let us consider the Wong–Zakai approximate system of Equation (35):
∂u
∂t

+ (−div(σ(x)∇u)) + λu + f (x, u) = g(t, x) + h(t, x, u)Gδ(θtω), t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(x, t)|∂O = 0, t > τ.

(47)

Notice that system (47) can be viewed as a deterministic equation parameterized by
ω ∈ Ω. Let assumptions (36)–(40) hold, and then by the Galerkin method similar to [1],
we can prove that for any ω ∈ Ω, τ ∈ R and uτ ∈ L2(O), Equation (47) possesses a
unique solution

u(·, τ, ω, uτ) ∈ C([τ, ∞); L2(O)) ∩ L2
loc((0, ∞); D1,2

0 (O, σ)) ∩ Lp
loc((0, ∞); Lp(O)). (48)

In addition, the solution u(·, τ, ω, uτ) is continuous in uτ ∈ L2(O) and is
(
F ,B(L2(O))

)
-

measurable in ω ∈ Ω. Hence, we can define a continuous cocycle Ψ : R+×R×Ω× L2(O) 7→
L2(O) by

Ψ(t, τ, ω, uτ) = u(t + τ, τ, θ−τω, uτ), ∀ τ ∈ R, t > 0, ω ∈ Ω, uτ ∈ L2(O). (49)

Let D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets of
L2(O). A family D1 is said to be tempered if for any ν > 0, τ ∈ R and ω ∈ Ω, there is

lim
t→−∞

sup
u∈D(τ+t,θtω)

eνt‖u‖ = 0.

We denote by D1 the class of all tempered families of nonempty bounded subsets of
L2(O).

Now, we commit to proving the existence of D1-pullback random attractors for the
cocycle Ψ corresponding to Equation (47) in L2(O).
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Lemma 10. Suppose (17), (18) and (36)–(40) hold. Then, the continuous cocycle Ψ of problem (47)
possesses a closed measurable D1-pullback absorbing set K1 = {K1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1,
which is given by

K1(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ R(τ, ω)}, (50)

where

R(τ, ω) = M1 + M1

∫ 0

−∞
eλs(‖g(s + τ)‖2 + |Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds (51)

with M1 is a positive constant independent of τ, ω and D1.

Proof of Lemma 10. We first prove that, for any given τ ∈ R and ω ∈ Ω, K1(τ, ω)
given by (50) is a pullback absorbing set for the cocycle Ψ. Taking the inner product of
Equation (47) with u in L2(O), we obtain

1
2

d
dt
‖u‖2 + ‖u‖2

D1,2
0 (O,σ)

+ λ‖u‖2 +
∫
O

f (x, u)udx

=(g, u) + Gδ(θtω)
∫
O

h(t, x, u)udx. (52)

By (36), we find that∫
O

f (x, u)udx ≥ α1

∫
O
|u|pdx− ‖β1‖L1(O). (53)

By (39) and Young’s inequality, we obtain

Gδ(θtω)
∫
O

h(t, x, u)udx

≤|Gδ(θtω)|
∫
O
(|ψ1(t, x)||u|q + |ψ2(t, x)||u|)dx

≤α1

2

∫
O
|u|pdx + C

∫
O
|ψ1(t, x)Gδ(θtω)|

p
p−q dx + C

∫
O
|ψ2(t, x)Gδ(θtω)|p1 dx (54)

≤α1

2

∫
O
|u|pdx + C|Gδ(θtω)|

p
p−q ‖ψ1(t)‖

p
p−q

L
p

p−q
+ C|Gδ(θtω)|p1‖ψ2(t)‖

p1
Lp1

≤α1

2

∫
O
|u|pdx + C|Gδ(θtω)|

p
p−q + C|Gδ(θtω)|p1 .

From Cauchy’s inequality, we have

(g(t, x), u) ≤ λ

2
‖u‖2 +

1
2λ
‖g‖2. (55)

Therefore, it follows easily from (52)–(55) that

d
ds
‖u‖2 + 2‖u‖2

D1,2
0 (O,σ)

+ λ‖u‖2 + α1‖u‖
p
Lp(O) (56)

≤2‖β1‖L1(O) +
1
λ
‖g‖2 + C|Gδ(θsω)|

p
p−q + C|Gδ(θsω)|p1 .

Multiplying (56) by eλs, replacing ω by θ−τω and then integrating with respect to s
over (τ − t, τ) with t ≥ 0, we find that
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‖u(τ, τ − t, θ−τω, uτ−t)‖2 + 2
∫ τ

τ−t
eλ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2

D1,2
0 (O,σ)

ds

+ α1

∫ τ

τ−t
eλ(s−τ)‖u‖p

Lp ds

≤e−λt‖uτ−t‖2 +
2‖β1‖L1(O)

λ
+

1
λ

∫ τ

τ−t
eλ(s−τ)‖g(s)‖2ds (57)

+ C
∫ τ

τ−t
eλ(s−τ)(|Gδ(θs−τω)|

p
p−q + |Gδ(θs−τω)|p1)ds

≤e−λt‖uτ−t‖2 +
2‖β1‖L1(O)

λ
+

1
λ

∫ 0

−∞
eλs‖g(s + τ)‖2ds

+ C
∫ 0

−∞
eλs(|Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds.

The last two integrals in (57) are well-defined due to (17), (43), (45) and the continuity
of ω. For every uτ−t ∈ D1(τ − t, θ−tω) and D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1,
we have

lim sup
t→+∞

e−λt‖uτ−t‖2 = 0. (58)

Hence, there exists some T1 = T1(σ, τ, ω, D1) > 0 such that for all t ≥ T1,

‖u(τ, τ − t, θ−τω, uτ−t)‖2 + 2
∫ τ

τ−t
eλ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2

D1,2
0 (O,σ)

ds

+ α1

∫ τ

τ−t
eλ(s−τ)‖u‖p

Lp ds (59)

≤1 +
2‖β1‖L1(O)

λ
+

1
λ

∫ 0

−∞
eλs‖g(s + τ)‖2ds + C

∫ 0

−∞
eλs(|Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds

≤M1 + M1

∫ 0

−∞
eλs(‖g(s + τ)‖2 + |Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds,

where M1 is a positive constant independent of τ, ω and D1. Then, by (59), we find that,
for every τ ∈ R, ω ∈ Ω and every D1 ∈ D1, K1(τ, ω) given by (50) satisfies

Ψ(t, τ − t, θ−tω, D1(τ − t, θ−tω)) ⊆ K1(τ, ω).

We next prove that K1 ∈ D1. Let ν be an arbitrary positive constant. Then, for each
τ ∈ R and ω ∈ Ω, we can find from (51) that

eνt‖K1(τ + t, θtω)‖2 ≤ eνtR(τ + t, θtω)

=M1eνt + M1eνt
∫ 0

−∞
eλs
(
‖g(s + t + τ)‖2 + |Gδ(θs+tω)|

p
p−q + |Gδ(θs+tω)|p1

)
ds. (60)

First, we can find from (18) that

lim
t→−∞

eνt
∫ 0

−∞
eλs‖g(s + τ + t)‖2ds (61)

= lim
t→−∞

e−λτeνt
∫ τ

−∞
eλs‖g(s + t)‖2ds = 0.
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Let ν̃ = min{λ, ν}, and then we can find from (43) and (45) that for any t ≤ 0,

eνt
∫ 0

−∞
eλs(|Gδ(θs+tω)|

p
p−q + |Gδ(θs+tω)|p1)ds

≤
∫ t

−∞
eν̃s(|Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds. (62)

Note that ∫ 0

−∞
eν̃s(|Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds < +∞,

which implies that∫ t

−∞
eν̃s(|Gδ(θsω)|

p
p−q + |Gδ(θsω)|p1)ds→ 0 as t→ −∞. (63)

It follows from (60)–(63) that K1 is tempered, i.e., K1 ∈ D1. Moreover, since for
each τ ∈ R, R(τ, ·) : Ω 7→ R is (F ,B(R))-measurable, then K1(τ, ·) is also measurable.
Hence, K1 ∈ D1 is a closed measurable D1-pullback absorbing set for Ψ. The proof is
completed.

Lemma 11. Let (36)–(40) hold. Then, for each τ ∈ R, t > τ, ω ∈ Ω and for each bounded se-
quence {u0,n}∞

n=1 ⊆ L2(O), the sequence {u(t, τ, ω, u0,n)}∞
n=1 possesses a convergent subsequence

in L2(O).

Proof of Lemma 11. Taking T > t, and integrating (56) over [τ, T], we can find that

{u(·, τ, ω, u0,n)}∞
n=1 is bounded in Lp((τ, T); Lp(O)

)
∩ L2((τ, T); D1,2

0 (O, σ)
)
. (64)

We can also infer from (37), (39) and (64) that, for s ∈ [τ, T],

{ f (·, u(·, τ, ω, u0,n))}∞
n=1 and {h(·, ·, u(·, τ, ω, u0,n))Gδ(θsω)}∞

n=1

are bounded in Lp1((τ, T); Lp1(O)). (65)

Then, it follows from (64), (65), and Equation (47), that

{ ∂

∂t
u(·, τ, ω, u0,n)}∞

n=1 is bounded in L2((τ, T); D−1,2
0 (O, σ)

)
+ Lp1

(
(τ, T); Lp1(O)

)
. (66)

By Lemma 3, we note that the embedding D1,2
0 (O, σ) ↪→ L2(O) is compact (in both

cases of bounded and unbounded domain). Then, we can find from (64), (66) and the Aubin–
Lions compactness lemma that there exist some w ∈ L2((τ, T); L2(O)) and a subsequence
of {u(s, τ, ω, u0,n)}∞

n=1 such that

u(·, τ, ω, u0,nk )→ w in L2((τ, T); L2(O)). (67)

By choosing a further subsequence (re-labeled the same), we infer from (67) that

u(s, τ, ω, u0,nk )→ w(s) in L2(O), a.e. s ∈ [τ, T]. (68)

Finally, since t ∈ (τ, T), we can by the continuity of solutions on initial data in L2(O)
and (68) obtain

u(t, τ, ω, u0,nk ) = u(t, s, ω, u(s, τ, ω, u0,nk ))→ u(t, s, ω, w(s)),

i.e., u(t, τ, ω, u0,n) possesses a convergent subsequence in L2(O). We complete the proof.
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Lemma 12. Suppose (17) and (36)–(40) hold. Then, the continuous cocycle Ψ for Equation (47) is
D1-pullback asymptotically compact in L2(O).

Proof of Lemma 12. For any τ ∈ R, ω ∈ Ω, D1 = {D1(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1,
tn → +∞ as n → ∞ and u0,n ∈ D1(τ − tn, θ−tn ω), we shall prove the sequence Ψ(tn, τ −
tn, θ−tn ω, u0,n) has a convergent subsequence in L2(O). Note that tn → +∞ as n→ ∞ and
u0,n ∈ D1(τ− tn, θ−tn ω). We can find from Lemma 10 that there exist N1 = N1(τ, ω, D1) >
0 such that for all n ≥ N1 that

‖u(τ, τ − tn, θ−τω, u0,n)‖ ≤ C(τ, ω), (69)

which implies that

{u(τ, τ − tn, θ−τω, u0,n)}∞
n=1 is bounded in L2(O). (70)

It follows from (70) and Lemma 11 that the sequence

{u(τ, τ − tn, θ−τω, u0,n)}∞
n=1 is precompact in L2(O),

which along with Ψ(tn, τ − tn, θ−tn ω, u0,n) = u(τ, τ − tn, θ−τω, u0,n), it implies the result.

Theorem 2. Suppose (17), (18) and (36)–(40) hold. Then, the continuous cocycle Ψ associated
with system (47) possesses a unique D1-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D1 in L2(O).

Proof of Theorem 2. From Lemmas 10 and 12 as well as ([27], Proposition 2.1), the ex-
istence of unique D1-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1
follows.

4.2. Stochastic Semi-Linear Degenerate Parabolic Equation Driven by linear Multiplicative Noise

In this subsection, we discuss the following stochastic semi-linear degenerate parabolic
equation: 

∂u
∂t
− div(σ(x)∇u) + λu + f (x, u) = g(t, x) + u ◦ dW

dt
, t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(x, t)|∂O = 0, t > τ,

(71)

and consider the following Wong–Zakai approximate system for Equation (71):
∂uδ

∂t
− div(σ(x)∇uδ) + λuδ + f (x, uδ) = g(t, x) + uδGδ(θtω), t > τ,

uδ(τ, x) = uδ,τ(x), τ ∈ R,
uδ(x, t)|∂O = 0, t > τ.

(72)

We will investigate the relations between the solutions of Equations (71) and (72). To
this end, we need to transform the stochastic Equation (71) into a pathwise deterministic
one. Let

v(t, τ, ω) = e−ω(t)u(t, τ, ω), (73)

with
vτ = e−ω(τ)uτ .
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Then, by (71) and (73), we obtain
∂v
∂t

+ Av + λv + e−ω(t) f (x, u) = e−ω(t)g(t, x), t > τ,

u(τ, x) = uτ(x), τ ∈ R,
u(x, t)|∂O = 0, t > τ,

(74)

where Av = −div(σ(x)∇v). We also introduce a similar transform for Equation (72) as we
did for Equation (71). Let

vδ(t, τ, ω, vδ,τ) = e−
∫ t

0 Gδ(θrω)druδ(t, τ, ω, uδ,τ) (75)

with
vδ,τ = e−

∫ τ
0 Gδ(θrω)druδ,τ .

Then, we have
∂vδ

∂t
+ Avδ + λvδ + e−

∫ t
0 Gδ(θrω)dr f (x, uδ) = e−

∫ t
0 Gδ(θrω)drg(t, x), t > τ,

v(τ, x) = vδ,τ(x), τ ∈ R,
v(x, t)|∂O = 0, t > τ.

(76)

For any ω ∈ Ω, τ ∈ R and vτ ∈ L2(O), let (36)–(38) hold. Then, by the classic
Galerkin method, we can obtain the existence and uniqueness of solution v(·, τ, ω, υτ) ∈
C([τ, ∞), L2(O)) for system (74). In addition v(·, τ, ω, υτ) is continuous in vτ ∈ L2(O)
and is (F ,B(L2(O)))-measurable in ω ∈ Ω. Thus, we can define a continuous cocycle
Ψ̃0 : R+ ×R×Ω× L2(O) 7→ L2(O) for system (71) by

Ψ̃0(t, τ, ω, uτ) = u(t + τ, τ, θ−τω, uτ) = eω(t)−ω(−τ)v(t + τ, τ, θ−τω, vτ). (77)

Similarly, we can also define a continuous cocycle Ψ̃δ(t, τ, ω, uδ,τ) for system (72).

Lemma 13. Assume (17), (18) and (36)–(38) hold. Then, the continuous cocycle Ψ̃0 for system (71)
possesses a closed measurable D1-pullback absorbing set B̃0 = {B̃0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1,
which is given by

B̃0(τ, ω) = {u ∈ L2(O) : ‖u‖2 ≤ R̃0(τ, ω)}, (78)

where

R̃0(τ, ω) = 4
∫ 0

−∞
e

3
2 λs−2ω(s)(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds. (79)

Proof of Lemma 13. Taking the inner product of Equation (74) with v(t, τ, ω) =
e−ω(t)u(t, τ, ω), we have

1
2

d
dt
‖v‖2 + ‖v‖2

D1,2
0 (O,σ)

+ λ‖v‖2 + e−ω(t)
∫
O

f (x, u)vdx = e−ω(t)(g, v). (80)

It follows from (36) and (73) that

e−ω(t)
∫
O

f (x, u)vdx > α1e−2ω(t)‖u‖p
Lp(O) − ‖β1‖L1(O)e

−2ω(t). (81)

By Cauchy’s inequality, we obtain

e−ω(t)(g, v) 6
λ

4
‖v‖2 +

1
λ

e−2ω(t)‖g‖2. (82)
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Then, combining (80)–(82), we have

d
ds
‖v‖2 + 2‖v‖2

D1,2
0 (O,σ)

+
3
2

λ‖v‖2 + 2α1e−2ω(s)‖u‖p
Lp(O) (83)

62‖β1‖L1(O)e
−2ω(s) +

2
λ

e−2ω(s)‖g‖2.

Multiplying e
3
2 λs on both sides of (83) and then integrating with respect to s over

[τ − t, τ] with t > 0, we obtain

‖v(τ,τ − t, ω, vτ−t‖2 + 2
∫ τ

τ−t
e

3
2 λ(s−τ)‖v‖2

D1,2
0 (O,σ)

ds + 2α1

∫ τ

τ−t
e

3
2 λ(s−τ)−2ω(s)‖u‖p

Lp(O)ds

≤2‖β1‖L1(O)

∫ τ

τ−t
e

3
2 λ(s−τ)−2ω(s)ds +

2
λ

∫ τ

τ−t
e

3
2 λ(s−τ)−2ω(s)‖g(s)‖2ds + ‖vτ−t‖2e−

3
2 λt. (84)

Replacing ω in (84) by θ−τω and using

u(s, τ − t, θ−τω, uτ−t) = e(ω(−τ+s)−ω(−τ))v(s, τ − t, θ−τω, uτ−t), (85)

we find that

‖u(τ, τ − t, θ−τω, uτ−t)‖2e2ω(−τ) + 2α1

∫ τ

τ−t
e

3
2 λ(s−τ)−2(ω(−τ+s)−ω(−τ))‖u‖p

Lp(O)ds

+ 2
∫ τ

τ−t
e

3
2 λ(s−τ)e−2ω(s−τ)+2ω(−τ)‖u‖2

D1,2
0 (O,σ)

ds (86)

≤2‖β1‖L1(O)

∫ τ

τ−t
e

3
2 λ(s−τ)−2(ω(−τ+s)−ω(−τ))ds + e2ω(−τ)−2ω(−t)‖uτ−t‖2e−

3
2 λt

+
2
λ

∫ τ

τ−t
e

3
2 λ(s−τ)−2(ω(−τ+s)−ω(−τ))‖g(s)‖2ds.

Then, from (86), we obtain

‖u(τ, τ − t, θ−τω, uτ−t)‖2 + 2α1

∫ 0

−∞
e

3
2 λs−2ω(s)‖u‖p

Lp(O)ds

+ 2
∫ 0

−∞
e

3
2 λse−2ω(s)‖u‖2

D1,2
0 (O,σ)

ds (87)

≤2‖β1‖L1(O)

∫ 0

−∞
e

3
2 λs−2ω(s)ds +

2
λ

∫ 0

−∞
e

3
2 λs−2ω(s)‖g(s + τ)‖2ds

+ e−2ω(−t)e−
3
2 λt‖uτ−t‖2.

By (17) and (43), we have

2
∫ 0

−∞
e

3
2 λs−2ω(s)(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds < ∞. (88)

Note that if uτ−t ∈ D1(τ − t, θ−tω) and D1 ∈ D1, then by (43) we have

lim sup
t→+∞

e−2ω(−t)e−
3
2 λt‖uτ−t‖2 = 0. (89)

Then, there exists some T4 = T4(τ, ω, D1) > 0 such that for all t ≥ T4,

e−2ω(−t)e−
3
2 λt‖uτ−t‖2 ≤ 2

∫ 0

−∞
e

3
2 λs−2ω(s)(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds, (90)

which along with (77) implies that

Ψ̃0(t, τ − t, θ−tω, D(τ − t, θ−tω)) ⊆ B̃0(τ, ω), ∀t ≥ T4,
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where B̃0(τ, ω) is given by (78). In addition, by (18), (43) and the continuity of ω(t), we
can easily find that B̃0 is tempered, that is, B̃0 ∈ D1. Hence, B̃0 ∈ D1 is a closed measurable
D1-pullback absorbing set for Ψ̃0. The proof is completed.

Theorem 3. Suppose (17), (18) and (36)–(38) hold. Then, the continuous cocycle Ψ̃0 for system (71)
is D1-pullback asymptotically compact and possesses a unique D1-pullback random attractor
Ã0 = {Ã0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O).

Proof of Theorem 3. The proof of D1-pullback asymptotical compactness of cocycle Ψ0 in
L2(O) is similar to that of Lemma 12. And then by ([27], Proposition 2.1) and Lemma 13,
we can easily find that the cocycle Ψ0 possesses a unique D1-pullback random attractor
A0.

Lemma 14. Suppose (17), (18) and (36)–(38) hold. Then, the continuous cocycle Ψ̃δ for Equation (72)
possesses a closed measurable D1-pullback absorbing set B̃δ = {B̃δ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1,

B̃δ(τ, ω) = {uδ ∈ L2(O) : ‖uδ‖2 ≤ R̃δ(τ, ω)}, (91)

where

R̃δ(τ, ω) = 4
∫ 0

−∞
e

3
2 λse2

∫ 0
s Gδ(θrω)dr(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds. (92)

In addition, we have for every τ ∈ R and ω ∈ Ω

lim
δ→0

R̃δ(τ, ω) = R̃0(τ, ω), (93)

where R̃0(τ, ω) is given by (79).

Proof of Lemma 14. By (76), we obtain

1
2

d
dt
‖vδ‖2 + ‖vδ‖2

D1,2
0 (O,σ)

+ λ‖vδ‖2 +
∫
O

e−
∫ t

0 Gδ(θrω)dr f (x, uδ)vδdx

= e−
∫ t

0 Gδ(θrω)dr(g, vδ). (94)

By (36) and (75), we obtain

−
∫
O

e−
∫ t

0 Gδ(θrω)dr f (x, uδ)vδdx

≤− α1e−2
∫ t

0 Gδ(θrω)dr‖uδ‖
p
Lp(O) + ‖β1‖L1(O)e

−2
∫ t

0 Gδ(θrω)dr. (95)

By Cauchy’s inequality, we obtain

e−
∫ t

0 Gδ(θrω)dr(g, vδ) ≤
λ

4
‖vδ‖2 +

1
λ

e−2
∫ t

0 Gδ(θrω)dr‖g‖2. (96)

Then, it follows from (94)–(96) that

d
ds
‖vδ‖2 + 2‖vδ‖2

D1,2
0 (O,σ)

+
3
2

λ‖vδ‖2 + 2α1e−2
∫ s

0 Gδ(θrω)dr‖uδ‖
p
Lp(O) (97)

≤ 2e−2
∫ s

0 Gδ(θrω)dr(
1
λ
‖g‖2 + ‖β1‖L1(O)).

For all τ ∈ R, t ∈ R+ and ω ∈ Ω, multiplying e
3
2 λs and then integrating with respect

to s from τ − t to τ, we have
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‖vδ(τ, τ − t, ω, vδ,τ−t)‖2 + 2
∫ τ

τ−t
e

3
2 λ(s−τ)‖vδ‖2

D1,2
0 (O,σ)

ds

+ 2α1

∫ τ

τ−t
e

3
2 λ(s−τ)e−2

∫ s
0 Gδ(θrω)dr‖uδ‖

p
Lp(O)ds (98)

≤e−
3
2 λt‖vδ,τ−t‖2 + 2

∫ τ

τ−t
e

3
2 λ(s−τ)e−2

∫ s
0 Gδ(θrω)dr(

1
λ
‖g(s)‖2 + ‖β1‖L1(O))ds.

Replacing ω in (98) by θ−τω, we obtain

‖vδ(τ,τ − t, θ−τω, vδ,τ−t)‖2 + 2
∫ τ

τ−t
e

3
2 λ(s−τ)‖vδ‖2

D1,2
0 (O,σ)

ds

+ 2α1

∫ τ

τ−t
e

3
2 λ(s−τ)e−2

∫ s
0 Gδ(θr−τω)dr‖uδ‖

p
Lp(O)ds (99)

≤e−
3
2 λt‖vδ,τ−t‖2 + 2

∫ τ

τ−t
e

3
2 λ(s−τ)e−2

∫ s
0 Gδ(θr−τω)dr(

1
λ
‖g(s)‖2 + ‖β1‖L1(O))ds.

By (75) and (99) we obtain

‖uδ(τ, τ − t, θ−τω, uδ,τ−t)‖2

≤e−
3
2 λte2

∫ τ
τ−t Gδ(θr−τω)dr‖uδ,τ−t‖2

+ 2
∫ τ

τ−t
e

3
2 λ(s−τ)e2

∫ τ
s Gδ(θr−τω)dr(

1
λ
‖g(s)‖2 + ‖β1‖L1(O))ds (100)

≤e−
3
2 λte2

∫ 0
−t Gδ(θrω)dr‖uδ,τ−t‖2

+ 2
∫ 0

−∞
e

3
2 λs+2

∫ 0
s Gδ(θrω)dr(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds.

By (17), (43) and (45) and the continuity of ω(t), we obtain

2
∫ 0

−∞
e

3
2 λs+2

∫ 0
s Gδ(θrω)dr(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds < ∞. (101)

Note that if uδ,τ−t ∈ D1(τ− t, θ−tω) and D1 ∈ D1, then by (43), (45) and the continuity
of ω(t), we obtain

lim sup
t→+∞

e−
3
2 λte2

∫ 0
−t Gδ(θrω)dr‖uδ,τ−t‖2 = 0, (102)

which implies that there exists T5 = T5(τ, ω, D1, δ) > 0 such that for all t ≥ T5,

e−
3
2 λte2

∫ 0
−t Gδ(θrω)dr‖uδ,τ−t‖2 (103)

≤2
∫ 0

−∞
e

3
2 λs+2

∫ 0
s Gδ(θrω)dr(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds.

By (100)–(103), we obtain

‖uδ(τ, τ − t, θ−τω, uδ,τ−t)‖2 ≤ 4
∫ 0

−∞
e

3
2 λs+2

∫ 0
s Gδ(θrω)dr(

1
λ
‖g(s + τ)‖2 + ‖β1‖L1(O))ds. (104)

In other words, we obtain for all t ≥ T5,

uδ(τ, τ − t, θ−τω, D(τ − t, θ−tω)) ⊆ B̃δ(τ, ω), (105)

where B̃δ(τ, ω) is given by (91). In addition, B̃δ is tempered due to (18), (43) and (45).
Therefore, B̃δ is a closed measurable D1-pullback absorbing set of Ψδ. The proof of (93) is
similar to that of ([26], Lemma 3.7) and the details are omitted here.
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Theorem 4. Suppose (17), (18) and (36)–(38) hold. Then, the cotinuous cocycle Ψ̃δ for Equation (72)
is D1-pullback asymptotically compact and possesses a unique D1-pullback random attractor
Ãδ = {Ãδ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1 in L2(O).

Proof of Theorem 4. As similar to Lemma 12, one can prove that the cocycle Ψ̃δ in L2(O)
is D1-pullback asymptotical compactness. And then by Lemma 14, we find the cocycle
Ψ̃δ satisfies all conditions of ([27], Proposition 2.1), so the cocycle Ψ̃δ possesses a unique
D1-pullback random attractor Ãδ.

Now, we show that the solution of Equation (72) converges to the solution of Equation
(71) as δ→ 0. Toward this end, we further assume the following assumption holds: there
exists some α4 > 0 such that for all x ∈ O, s ∈ R,

| f ′(x, s)| ≤ α4(1 + |s|p−2). (106)

Lemma 15. Suppose (17), (18) and (36)–(38) hold. Let u and uδ be the solutions of Equation (71)
and Equation (72), respectively, with initial data uτ and uδ,τ . If uδ,τ → uτ in L2(O) as δ → 0,
then for every τ ∈ R, ω ∈ Ω and T > 0, there exists some δ̃0 = δ̃0(τ, ω, T) > 0 such that for any
0 < |δ| < δ̃0 and t ∈ [τ, τ + T], uδ(t, τ, ω, uδ,τ)→ u(t, τ, ω, uτ) in L2(O).

Proof of Lemma 15. Let ξ = vδ − v and then we have

1
2

d
dt
‖ξ‖2 + ‖ξ‖2

D1,2
0 (O,σ)

+ λ‖ξ‖2

=
∫
O
(e−ω(t) f (x, u)− e−

∫ t
0 Gδ(θrω)dr f (x, uδ))ξdx + (e−

∫ t
0 Gδ(θrω)dr − e−ω(t))(g(t), ξ). (107)

By using (37)–(38) and (106), we have

(e−ω(t) f (x, u)− e−
∫ t

0 Gδ(θrω)dr f (x, uδ))ξ

=
(
e−ω(t) f (x, eω(t)v)− e−ω(t) f (x, vδeω(t))

)
ξ +

(
e−ω(t) f (x, vδeω(t))− e−

∫ t
0 Gδ(θrω)dr f (x, vδeω(t))

)
ξ

+
(
e−
∫ t

0 Gδ(θrω)dr f (x, vδeω(t))− e−
∫ t

0 Gδ(θrω)dr f (x, vδe
∫ t

0 Gδ(θrω)dr)
)
ξ

= f ′(x, eω(t)v + θ1eω(t)vδ)(e−ω(t)(veω(t) − vδeω(t)))ξ + f (x, vδeω(t))(e−ω(t) − e−
∫ t

0 Gδ(θrω)dr)ξ (108)

+ e−
∫ t

0 Gδ(θrω)drvδ(eω(t) − e
∫ t

0 Gδ(θrω)dr) f ′(x, eω(t)vδ + θ2vδe
∫ t

0 Gδ(θrω)dr)ξ

=− f ′(x, eω(t)v + θ1eω(t)vδ)ξ
2 + f (x, vδeω(t))ξ(e−ω(t) − e−

∫ t
0 Gδ(θrω)dr)

+ vδ(eω(t)−
∫ t

0 Gδ(θrω)dr − 1) f ′(x, eω(t)vδ + θ2vδe
∫ t

0 Gδ(θrω)dr)ξ

≤ | β3 | |ξ|2 +
(
α2e(p−1)ω(t)|vδ|p−1|ξ|+ |β2||ξ|

)∣∣e−ω(t) − e−
∫ t

0 Gδ(θrω)dr∣∣
+ α4

∣∣∣1− eω(t)−
∫ t

0 Gδ(θrω)dr
∣∣∣(|vδ|p−1

∣∣∣eω(t) + e
∫ t

0 Gδ(θrω)dr
∣∣∣p−2
|ξ|+ |vδ||ξ|

)
,

where θ1, θ2 ∈ (0, 1). From Lemma 9, we find that for any ε > 0, there exists some
δ̃1 = δ̃1(ε, τ, ω, T) > 0 such that

|1− eω(t)−
∫ t

0 Gδ(θrω)dr| < ε, |e−ω(t) − e−
∫ t

0 Gδ(θrω)dr| < ε, ∀0 < |δ| < δ̃1, t ∈ [τ, τ + T]. (109)

It follows from (108) and (109) that

∫
O
(e−ω(t) f (x, u)− e−

∫ t
0 Gδ(θrω)dr f (x, uδ))ξdx ≤ C‖ξ‖2 + Cε(‖vδ‖

p
Lp(O) + ‖v‖

p
Lp(O) + 1). (110)
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By Cauchy’s inequality, we have

(e
∫ t

0 Gδ(θrω)dr − e−ω(t))(g(t), ξ) ≤
∣∣e∫ t

0 Gδ(θrω)dr − e−ω(t)∣∣(1
2
‖g‖2 +

1
2
‖ξ‖2). (111)

Combing (107)–(111), we obtain

d
dt
‖ξ‖2 ≤ C‖ξ‖2 + Cε(‖vδ‖

p
Lp(O) + ‖v‖

p
Lp(O) + ‖g‖

2 + 1). (112)

Applying Gronwall’s inequality to (112), we find for all 0 < |δ| < δ̃1 and t ∈ [τ, τ + T],

‖ξ(t)‖2 ≤eC(t−τ)‖ξ(τ)‖2 + CεeC(t−τ)
∫ t

τ

(
1 + ‖vδ(s, τ, ω, vδ,τ)‖

p
Lp(O) (113)

+ ‖v(s, τ, ω, vτ)‖p
Lp(O) + ‖g(s)‖

2
)

ds.

By (73), (75), (84), (98) and (113), we find that there exists some δ̃2 ∈ (0, δ̃1) and
c̃1 = c̃1(τ, T, ω) > 0 such that for all 0 < |δ| < δ̃2 and t ∈ [τ, τ + T],

‖vδ(t, τ, ω, vδ,τ)− v(t, τ, ω, vτ)‖2 (114)

≤ec̃1(t−τ)‖vδ,τ − vτ‖2 + c̃1εec̃1(t−τ)
(

1 + ‖vτ‖2 + ‖vδ,τ‖2 +
∫ t

τ
‖g(s)‖2ds

)
.

Using (73) and (75) again, we obtain

‖uδ(t, τ, ω, uδ,τ)− u(t, τ, ω, uτ)‖ (115)

≤‖vδ(t, τ, ω, vδ,τ)− v(t, τ, ω, vτ)‖
∣∣∣e∫ t

0 Gδ(θrω)dr
∣∣∣+ ∣∣∣e∫ t

0 Gδ(θrω)dr − eω(t)
∣∣∣‖v(t, τ, ω, vτ)‖.

Note that uδ,τ = vδ,τe
∫ τ

0 Gδ(θrω)dr and uτ = vτeω(τ). Then by the continuity of ω(t),
(46), (84), (114) and (115), we can obtain the desired convergence.

Lemma 16. Suppose (17), (18) and (36)–(38) hold. For any given τ ∈ R, T > 0 and ω ∈ Ω,
if δn → 0 and un ∈ Ãδn(τ, ω), then the sequence {un}∞

n=1 has a convergent subsequence in
L2(O).

Proof of Lemma 16. By using Lemma 3 and a similar method as that of Lemma 3.10 in [26],
we can obtain the result.

Theorem 5. Suppose (17), (18), (36) and (37) hold. Then, for any given τ ∈ R and ω ∈ Ω,
the following relationship holds:

lim
δ→0

dL2(O)(Ãδ(τ, ω), Ã0(τ, ω)) = 0.

Proof of Theorem 5. By Lemmas 13 and 14, we find that, for any τ ∈ R and ω ∈ Ω,

lim
δ→0
‖B̃δ(τ, ω)‖2 = ‖B̃0(τ, ω)‖2 ≤ B̃0(τ, ω),

where B̃0(τ, ω) is given by (79) and B̃0 = {B̃0(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D1. Let δ→ 0 and
uδ → uτ , and then from Lemma 15, we find, for every τ ∈ R, t ∈ R+, and ω ∈ Ω, that
Ψδ(τ, t, ω, uδ,τ) → Ψ0(τ, t, ω, uτ) in L2(O). Then, by Lemma 16 and Theorem 3.1 in [21],
we can obtain the result.

5. Conclusions

In this paper, the long-term dynamical behavior of a class of random semilinear degen-
erate parabolic equations driven by nonlinear noise over bounded or unbounded regions is
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studied. Using the theory established by Kloeden et al. and Wang, we prove the existence
and uniqueness of the weak pullback mean random attractor of this equation, and prove
the existence and uniqueness of the pullback random attractor of the Wong–Zakai approx-
imation system. In addition, the upper semicontinuity of the pullback random attractor
of the Wong–Zakai approximation system of the equation driven by linear multiplicative
noise is established. In the future, we will investigate how to discretize the system for
numerical simulation while the discretized system still retains the dynamics of the original
system so that it can be applied to practical problems.
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