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Abstract: The concept of continuity in topological spaces has a very important place. For this reason,
a great deal of work has been done on continuity, and many generalizations of continuity have
been obtained. In this work, we seek to find a new approach to the study of soft continuity in soft
topological spaces in connection with an induced mapping based on soft sets. By defining the ∗-image
of a soft set, we define an induced soft mapping and present its related properties. To elaborate on
the obtained results and relationships, we furnish a number of illustrative examples.
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1. Introduction

Most empirical problems in technological areas such as engineering, computer science,
and social sciences which deal with unreliability and vagueness require solutions arrived
at via scientific methods rather than long-established approaches. To cope with such issues,
a new mathematical tool called soft set theory was put forward by Molodtsov in [1]. The
research and applications of this set theory have been growing exponentially in various
directions, resulting in great theoretical and technological successes [2–7].

Thereafter, Maji et al. [8] focused on abstract research of soft set operators with appli-
cations in decision-making problems. Later, the theory of soft topological spaces defined
over an initial universe with a predetermined set of parameters was proposed by Shabir
and Naz in [9]; their work centered on the theoretical studies of soft topological spaces.
Majumdar and Samanta [10] presented mappings on soft sets and their application in
medical diagnosis. Kharal and Ahmed [11] brought up the view of soft mapping with
properties; subsequently, soft continuity of soft mappings was instigated in [12]. Recently,
Al-shami [13] adopted a novel approach to define soft mappings using the idea of soft
points. He showed the advantages of this approach to simplify computations and move
classical concepts of crisp mappings to soft frames. Many works devoted to studying
soft continuity and its characterizations can be found in the literature reviews provided
in [14–30]).

Mappings in any mathematical discipline are known as structure-preserving oper-
ations. Because these concepts establish the relationship between two or more domains
under certain rules, they are useful tools to consider when developing models for many
problems. Different fields such as mathematics, computer science, chemistry, psychology,
and logic have shaped the concept of transformation according to their specific conditions
and characteristics.
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Induced mappings are transformations that help us to study the relationships between
different mathematical structures, including

• Any type of structure
• A constraint on a given transformation
• Reduction of an operator to a transformation.

Any of the above can lead to useful induced mappings. Kalinowski [31] explained
that an induced mapping is linear if and only if the matrices maintain their order, then
in [32] generalized the results in [31] by removing any constraints on the mapping. Liu and
Zhang [33] characterized the general form of all mappings f induced by fij while preserving
rank-1 matrices over a field. In particular, similarity-preserving nonlinear mappings were
studied by Du et al. [34]. Yang et al. [35] characterized induced mappings that preserve
similarity and the inverse of matrices. Kahn [36] considered Postnikov systems from
a geometric point of view. The main result is that Postnikov systems have an induced
mapping with a mapping of spaces f : X → Y. To develop the algebraic topology of
mappings between Hilbert spaces, Kato [37] presented an induced Hilbert Clifford algebra
and constructed an induced mapping between the K-theory of the Higson–Kasparov–Trout
Clifford algebra and the induced Clifford algebra. In his thesis, Nguyen [38] provided
Galois cohomological interpretations for induced mappings that occur naturally in short
exact sequences, which can be used to classify isomorphism classes of algebraic objects
over a field. Macías and Macías [39] studied induced mappings between n-fold pseudo-
hyperspace suspensions for a given mapping between a continual. For a continuous metric
X space, Gómez-Rueda et al. [40] presented the induced transform fn : Fn(X)→ Fn(X) for
a mapping f : X → X. Higuera and Illanes [41] studied the dynamical properties of fn
mappings. Kwietniak and Misiurewicz [42] studied chaotic systems of induced mappings
fn. Another type of induced mapping, denoted by ψ#, was provided by Arkhangel’skii and
Ponomarev [43].

The above studies suggest that the induced mappings used in the literature are in-
sufficient for the study of induced mappings constructed on soft mappings. The present
study aims to fill these gaps in the literature through its methodological approach and the
obtained results.

In this study, we describe a new approach to studying soft continuous mappings using
an induced mapping based on soft sets. We pick up the idea of our proposed soft-induced
mapping from the mapping introduced by Arkhangel’skii and and Ponomarev in [43],
which is defined as ψ# : P(U) → P(V) given by ψ#(M) = {v ∈ V|ψ−1(v) ⊂ M} for any
subset M of U, where ψ is a mapping from U to V and P(U) and P(V) are the collections
of all subsets of U and V, respectively. We begin by introducing the definition of soft
fibers by using soft points which, makes it possible to define the ∗-image of a soft set.
Consequently, this gives rise to an induced mapping (ψ, g)∗ : S(U, E)→ S(V, F), where E
and F are the set of parameters and S(U, E) and S(V, F) are the collections of all soft sets
over U and V, respectively. Using this, we prove a number of new characterizations of soft
continuous mappings.

2. Preliminaries

In this section, we present definitions and results related to soft set theory which help
us to prove our results in the next section.

Definition 1 ([1]). Assume U and E are respectively the initial universal set and a set of parameters,
where P(U) is the power set of U. A soft set ME over U is a mapping provided by M : E→ P(U),
that is, a parameterized family of subsets of the universe U.

Definition 2 ([8]). A soft set ME over U is called:

1. A null soft set, symbolized by ΦE, if M(e) = ∅ for all e ∈ E;
2. An absolute soft set, symbolized by Ũ, if M(e) = U for all e ∈ E.
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Definition 3 ([8]). Let MA and NB be soft sets over the common universe U. Their (soft) union,
symbolized by MA ∪ NB, is a soft set HC, where C = A ∪ B and H is defined for all e ∈ C by

H(e) =


M(e), if e ∈ A− B,
N(e), if e ∈ B− A,

M(e) ∪ N(e), if e ∈ A ∩ B.

Definition 4 ([44]). The (soft) intersection of two soft sets MA and NB over a common universe
U, denoted MA ∩ NB, is a soft set HC, where C = A ∩ B 6= ∅ and H is defined for all e ∈ C by
H(e) = M(e) ∩ N(e).

Definition 5 ([8]). Let MA, NB ∈ S(U, E). We say that MA is a (soft) subset of NB (denoted by
MA ⊂ NB) if A ⊂ B and M(e) ⊂ N(e) for all e ∈ A.

For our main results, we will make use of the elementary concept of soft points
provided in [45].

Definition 6. A soft point is a soft set PE over X, denoted by Pu
e , provided by P(e) = {u} for an

element e ∈ E and P(e
′
) = ∅ for all e

′ 6= e.

A soft point Pu
e belongs to a soft set ME, denoted by Pu

e ∈̃ ME, if u ∈ M(e).
Two soft points Pu1

e1 , Pu2
e2 are said to be:

1. Equal if e1 = e2 and u1 = u2;
2. Not equal if e1 6= e2 or u1 6= u2.

The family of all soft points over U will be denoted by SP(U, E).
Every soft set can be written as the union of all soft points belonging to it, i.e.,

ME = ∪
Pu

e ∈̃ME

Pu
e .

Definition 7 ([9]). A soft topology on U is a subfamily τ ⊆ S(U, E) containing ΦE, Ũ and
satisfying the conditions that the union of the arbitrary and the intersection of a finite number of
soft sets of τ is part of τ.

The triplet (U, τ, E) is called a soft topological space over U where the members of τ are called
soft open sets. A soft closed set in (U, τ, E) is the soft complement [44] of a soft open set for which
the soft complement of a soft set ME, denoted as Mc

E, is defined by Mc(e) = U − M(e) for all
e ∈ E.

Definition 8 ([45]). Let ME be a soft set over U. Then, the soft closure of ME, denoted by ME, is
the smallest soft closed set containing ME and the soft interior of ME, denoted by M◦E, is the largest
soft open set that is contained in ME.

Theorem 1 ([27]). In a soft topological space (U, τ, E), (ME)
c = ((ME)

c)o; thus, (ME)c =
((ME)

o)c for any soft subset ME of Ũ.

We now discuss the important concept of soft mappings between the families S(U, E)
and S(V, F) of soft sets over U and V, respectively.

Definition 9 ([11]). 1. A mapping (ψ, g) : S(U, E)→ S(V, F) corresponding to the mappings
ψ : U → V and g : E → F is a soft mapping if the soft image of a soft set ME, denoted by
(ψ, g)(ME), is a soft set over V, which is provided by a mapping (ψ, g)(ME) : F → P(V)
defined as

(ψ, g)(ME)( f ) =

{
∪

e∈g−1( f )
ψ(M(e)), i f g−1( f ) 6= ∅.

∅, i f g−1( f ) = ∅.
for all f ∈ F.
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2. For a soft set NF in S(V, F), the soft inverse image of NF (denoted by (ψ, g)−1(NF)) is a soft
set over U provided by a mapping (ψ, g)−1(NF) : E→ P(U) defined as (ψ, g)−1(NF)(e) =
ψ−1(N(g((e))) for all e in E.

A soft mapping (ψ, g) is surjective (injective) [45] if and only if both ψ and g are
surjective (injective).

Proposition 1 ([45]). Let (ψ, g) : S(U, E) → S(V, F) be a soft mapping. Then, for all soft sets
(ME, OE) in U and (NF, PF) in V it holds that:

1. ME ⊂ OE implies (ψ, g)(ME) ⊂ (ψ, g)(OE);
2. NF ⊂ PF implies (ψ, g)−1(NF) ⊂ (ψ, g)−1(PF);
3. (ψ, g)(ψ, g)−1(NF) ⊂ NF equality holds if (ψ, g) is surjective;
4. (ψ, g)−1(ψ, g)(ME) ⊂ ME equality holds if (ψ, g) is injective.

Definition 10 ([12]). Let (U, τ1, E) and (V, τ2, F) be two soft topological spaces. A soft mapping
(ψ, g) : S(U, E)→ S(V, F) is soft continuous if and only if (ψ, g)−1(NF) is a soft closed set in U
for every soft closed set NF in V or (ψ, g)−1(GF) is a soft open set in U for every soft open set GF
in V.

Theorem 2 ([21]). A soft mapping (ψ, g) : S(U, E) → S(V, F) is said to be soft continuous if
and only if (ψ, g)(ME) ⊂ (ψ, g)(ME) for every soft set ME in Ũ.

Throughout this paper, U refers to a universal set and E is a set of parameters. More-
over, (U, τ1, E) and (V, τ2, F) stand for soft topological spaces and (ψ, g) : S(U, E) →
S(V, F) stands for a soft mapping corresponding to the (classical) mappings ψ : U → V
and g : E→ F.

3. Soft Induced Mappings

In this section, we begin by introducing the concept of fibers in connection with soft
sets with the following example.

Definition 11. Let (ψ, g) : S(U, E)→ S(V, F) be a soft mapping and let Pv
f be any soft point in

V. A soft fiber (ψ, g)−1(Pv
f ) is a soft set in U defined by

(ψ, g)−1(Pv
f )(e) = ψ−1(P(g(e))

=

{
ψ−1(v) if g(e) = f
∅ if g(e) 6= f

Example 1. Take the following sets U = {u1, u2}, V = {v1, v2}, E = {e1, e2}, and F = { f1, f2}.
Let (ψ, g) be a soft mapping where ψ : U → V and g : E → F are the mappings defined by
ψ(u1) = ψ(u2) = v1, g(e1) = f1 and g(e2) = f2. Take Pv1

f1
as a soft point in V; then, the

soft fiber (ψ, g)−1(Pv1
f1
) is provided by a soft set defined as (ψ, g)−1(Pv1

f1
)(e1) = {u1, u2} and

(ψ, g)−1(Pv1
f1
)(e2) = ∅.

Next, we introduce the concept of the ∗-image of a soft set, which is used to define
a soft induced mapping (ψ, g)∗ : S(U, E) → S(V, F) corresponding to the mappings
ψ : U → V and g : E→ F.

To do this, let ME be a soft set in U with a parameter set E. Then, the ∗-image of
ME will be a soft set in V defined as the collection of all soft points Pv

f in V, which has
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an inverse image under the soft mapping (ψ, g) contained in ME; in other words, it is a
collection of all soft points Pv

f in V such that

(ψ, g)−1(Pv
f ) ⊂ ME

i.e., (ψ, g)−1(Pv
f )(e) ⊂ M(e), for every e in E.

i.e.,

{
ψ−1(v) ⊂ M(e) i f g(e) = f
V i f g(e) 6= f

Now, we are in a position to show how the ∗-image of a soft set is calculated by the
following definition.

Definition 12. Let ψ : U → V and g : E → F be two mappings. Then, the ∗-image of a soft set
ME, denoted by (ψ, g)∗(ME), is a soft set in V, where (ψ, g)∗(ME) : F → P(V) is defined by

(ψ, g)∗(ME)( f ) =

{
{v|ψ−1(v) ⊂ M(e)} if e ∈ g−1( f ) 6= ∅
V if g−1( f ) = ∅

.

In the next example, we illustrate the above definition of soft induced mapping.

Example 2. Consider U = {u1, u2}, V = {v1, v2}, E = {e1, e2}, and F = { f1, f2}. Let (ψ, g)
be a soft mapping where ψ : U → V and g : E → F are mappings defined by ψ(u1) = v2,
ψ(u2) = v1, g(e1) = f1, and g(e2) = f2. Assume that ME = {(e1, {u1}), (e2, {u2})} is a soft
set in S(U, E); then, the ∗-image of ME is a soft set provided by (ψ, g)∗(ME)( f1) = {v|ψ−1(v) ⊂
M(e1)} = {v|ψ−1(v) ⊂ u1} = v2. Similarly, (ψ, g)∗(ME)( f2) = v1. Therefore,

(ψ, g)∗(ME) = {( f1, {v2}), ( f2, {v1})}.

Remark 1. For the surjective mapping (ψ, g), we have (ψ, g)∗(ME) ⊂ (ψ, g)(ME) for any soft
set ME in U. It is clear to see that for any f ∈ F and e ∈ g−1( f ),

{v|ψ−1(v) ⊂ M(e)} ⊂
⋃

e∈g−1( f )

ψ(M(e)) if ψ is on

y ∈ {v|ψ−1(v) ⊂ M(e)} =⇒ ψ−1(y) ⊂ M(e)

=⇒ y ∈ ψ(M(e)) if ψ is on

=⇒ y ∈ ∪ψ(M(e))


The next example supports this remark.

Example 3. Consider the soft mapping (ψ, g) in Example 2; for a soft set ME = {(e1, {u1}),
(e2, {u1})} in S(U, E), we have

(ψ, g)(ME) = {( f1, {v1}), ( f2, {v1})} and

(ψ, g)∗(ME) = {( f1, {v2}), ( f2, {v2})}.

That is, (ψ, g)(ME) is not a soft subset of (ψ, g)∗(ME) and (ψ, g)∗(ME) is not a soft subset
of (ψ, g)(ME).

Next, we present several properties satisfied by the soft mapping (ψ, g)∗ that we will
need for our next results.

Proposition 2. Let (ψ, g) : S(U, E)→ S(V, F) be a soft mapping, let ME, NE be soft sets in U,
and let GF be a soft set in V. Then:
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1. (ψ, g)∗(ME) ⊂ (ψ, g)∗(NE) if ME ⊂ NE;
2. For any soft set ME in U, (ψ, g)−1((ψ, g)∗(ME)) ⊂ ME equality holds if (ψ, g) is injective;
3. For any soft set GF in V, GF ⊂ ((ψ, g)∗((ψ, g)−1(GF))) equality holds if (ψ, g) is surjective;
4. (ψ, g)∗(∅E) = ((ψ, g)(UE))

c.

Proof. 1. Let g−1( f ) 6= ∅; then, for every e ∈ g−1( f ),

(ψ, g)∗(ME)( f ) = {v|ψ−1(v) ⊂ M(e)}
⊆ {v|ψ−1(v) ⊂ N(e)}
= (ψ, g)∗(NE)( f )

and the result obviously holds for g−1( f ) = ∅.
2. For each e ∈ E,

(ψ, g)−1((ψ, g)∗(ME)(e)) = ψ−1((ψ, g)∗(ME)(g(e)))

= ψ−1({v|ψ−1(v) ⊂ M(e)})
⊂ M(e)

which is proved.
3. Let g−1( f ) 6= ∅; then,

(ψ, g)∗((ψ, g)−1(GF))( f ) = {v|ψ−1(v) ⊂ ψ−1(G(g(e)))} for every e ∈ g−1( f )

= {v|ψ−1(v) ⊂ ψ−1(G( f ))}
⊃ G( f ) = GF( f )

For g−1( f ) = ∅, (ψ, g)∗((ψ, g)−1(GF))( f ) = V and
Hence, GF ⊂ (ψ, g)∗((ψ, g)−1(GF)).

4. Let g−1( f ) 6= ∅; then.

((ψ, g)(UE))
c(g) = V − (ψ, g)(UE)(g)

= V −
⋃

e∈g−1( f )

ψ(U(e))

= V − ψ(U)

= {v|ψ−1(v) = ∅}
= {v|ψ−1(v) ⊂ ∅(e)}
= (ψ, g)∗(∅E)( f )

which is obvious for g−1( f ) = ∅.

The following lemma provides another very useful property of the soft mapping
(ψ, g)∗ in terms of the complement and the intersection of soft sets.

Lemma 1. Let (ψ, g) be a soft mapping and let ME, NE be soft sets in U. Then,

(a) (ψ, g)∗(Mc
E) = ((ψ, g)(ME))

c

(b) (ψ, g)∗(ME ∩ NE) = (ψ, g)∗(ME) ∩ (ψ, g)∗(NE).

Proof. (a) Assume g−1( f ) 6= ∅,
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then,

(ψ, g)∗(Mc
E)( f ) = {v|ψ−1(v) ⊂ Mc(e)}

= {v|ψ−1(v) ⊂ U −M(e)} = A (say)

for all e ∈ g−1( f )

((ψ, g)(ME))
c( f ) = V − (ψ, g)(ME)( f )

= V −
⋃

e∈g−1( f )

ψ(M(e)) = B (say)

Which is enough to prove A = B.
Let y ∈ A = {v|ψ−1(v) ⊂ U − M(e)}; then, ψ−1(y) ⊂ U − M(e) and y ∈ ψ(U)

with y 6∈ ψ(M(e)) for every e ∈ g−1( f ), which further implies y ∈ V −⋃
e∈g−1( f ) ψ(M(e)).

Hence, y ∈ B.
Now, assume y ∈ B; then, y ∈ V − ⋃

e∈g−1( f ) ψ(M(e)), which implies y ∈ V and
y 6∈ ψ(M(e)) for all e ∈ g−1( f ).

Now, if y ∈ V, then ψ−1(y) ⊂ ψ−1(V) = U; on the other hand, ψ−1(y) 6⊂ M(e), as for
z ∈ ψ−1(y) we have ψ(z) = y 6∈ ψ(M(e)), which implies z 6∈ M(e). Therefore, ψ−1(y) 6⊂
M(e), which provides ψ−1(y) ⊂ U −M(e); thus, y ∈ {v|ψ−1(v) ⊂ U −M(e)} = A.

Hence, for g−1( f ) 6= ψ we have

(ψ, g)∗(Mc
E) = ((ψ, g)(ME))

c

Now, if g−1( f ) = ψ, then

(ψ, g)∗(Mc
E)( f ) = V = ((ψ, g)(ME))

c( f )

.
(b) Assume g−1( f ) 6= ψ. Then,

(ψ, g)∗(ME ∩ NE)( f ) = {v|ψ−1(v) ⊂ M(e) ∩ N(e)} for all e ∈ g−1( f )

= {v|ψ−1(v) ⊂ M(e)} ∩ {v|ψ−1(v) ⊂ N(e)}
= (ψ, g)∗(ME)( f ) ∩ (ψ, g)∗(NE)( f )

The result is obvious if g−1( f ) = ψ.

The following example shows that (ψ, g)∗(ME ∪NE) need not be equal to (ψ, g)∗(ME)∪
(ψ, g)∗(NE), that is, the union need not be preserved by (ψ, g)∗.

Example 4. Take U = {u1, u2}, V = {v1, v2}, E = {e1, e2}, and F = { f1, f2}. Let ψ : U → V
and g : E → F be mappings defined by ψ(u1) = ψ(u2) = v1, g(e1) = f1 and g(e2) = f2.
For a soft set ME = {(e1, {u1}), (e2, {u1})} in S(U, E) and NE = {(e1, {u2}), (e2, {u2})} in
S(U, E), we have

(ψ, g)∗(ME) = (ψ, g)∗(NE) = {( f1, {v2}), ( f2, {v2})}.

On the other hand, ME ∪ NE = {(e1, {u1, u2}), (e2, {u1, u2})}, which gives

(ψ, g)∗(ME ∪ NE) = {( f1, {v1, v2}), ( f2, {v1, v2})},

whereas (ψ, g)∗(ME) ∪ (ψ, g)∗(NE) = {( f1, {v2}), ( f2, {v2})}.
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The next result provides another relation between the ∗-image of the soft mapping
(ψ, g) and the inverse image of (ψ, g), which will be useful in our next result.

Proposition 3. For a soft set ME in U and GF in V, (ψ, g)−1(GF) ⊂ ME if and only if GF ⊂
(ψ, g)∗(ME).

Proof. Let (ψ, g)−1(GF) ⊂ ME; then, per Part 3 of Proposition 2,

GF ⊂ (ψ, g)∗(ψ, g)−1(GF) ⊂ (ψ, g)∗(ME).

Now, let GF ⊂ (ψ, g)∗(ME); then, per Part 2 of Proposition 2, (ψ, g)−1(ψ, g)∗(ME) ⊂
ME which implies (ψ, g)−1(GF) ⊂ (ψ, g)−1(ψ, g)∗(ME) ⊂ ME.

The following theorem provides a representation of a soft continuous mapping in connection
with the interior of soft sets.

Theorem 3. Let (ψ, g) : S(U, E)→ S(V, F) be a soft mapping; then, (ψ, g) is soft continuous if
and only if for every soft set ME in U we have ((ψ, g)∗(ME))

◦ ⊂ ((ψ, g)∗(M◦E)).

Proof. To prove this result, it is enough to prove that the soft continuity of (ψ, g) is equiva-
lent to ((ψ, g)∗(Mc

E))
◦ ⊂ ((ψ, g)∗(Mc

E)
◦) for any soft set ME in U.

Let (ψ, g) be a soft continuous mapping and let ME be a soft set in U; then,

((ψ, g)∗(Mc
E))
◦ = ((ψ, g)∗(Mc

E))
cc

per Theorem 1;

= ((ψ, g)(ME))c)cc
per Lemma 1;

= (ψ, g)(ME)
c
;

⊂ [(ψ, g)(ME)]
c due to the soft continuity of(ψ, g), Theorem 2;

= (ψ, g)∗(ME
c
) per Lemma 1;

= (ψ, g)∗((Mc
E)
◦) per Theorem 1

which is true for the arbitrary soft set ME of U. Hence, (ψ, g) is soft continuous if and only
if (ψ, g)∗(ME))

◦ ⊂ (ψ, g)∗(ME)
◦) for every soft set ME in U.

Next, we define a soft set M∗E induced by the soft set ME in U, which is defined as the
inverse image of the ∗-image of the soft set ME.

Definition 13. Let (ψ, g) : S(U, E) → S(V, F) be a soft mapping. Define a soft set M∗E =
(ψ, g)−1(ψ, g)∗(ME) in U, which is defined by

M∗E(e) = (ψ, g)−1(ψ, g)∗(ME)(e) = ψ−1((ψ, g)∗(ME))(g(e)) = ψ−1{v|ψ−1(v) ⊂ M(e)}

for every e ∈ E and e ∈ g−1(g(e)).
From Part 2 of Proposition 2, it is clear that M∗E ⊂ ME.

The following example illustrates the above definition.

Example 5. Taking the soft set ME = {(e1, {u1, u2}), (e2, {u2})} in Example 2, the soft set
M∗E is provided by M∗E(e1) = ψ−1{v|ψ−1(v) ⊂ M(e1)} = ψ−1{v|ψ−1(v) ⊂ {u1, u2}} =
ψ−1{v1, v2} = {u1, u2} and M∗E(e2) = ψ−1{v|ψ−1(v) ⊂ M(e2)} = ψ−1{v|ψ−1(v) ⊂
{u2}} = ψ−1{v2} = ∅. Therefore, M∗E = {(e1, {u1, u2}), (e2, ∅)}.

Several properties of the soft set M∗E are presented in the next proposition.

Proposition 4. For a soft mapping (ψ, g) : S(U, E)→ S(V, F):

1. Ũ∗ = Ũ and ΦE
∗ = ΦE
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2. (ψ, g)∗(M∗E) = (ψ, g)∗(ME) for every soft set ME in U.

Proof. 1. The proof is obvious.
2. Assume e ∈ g−1( f ) 6= ∅; then, (ψ, g)∗(M∗E)( f ) = {v|ψ−1(v) ⊂ M∗(e)} = {v|ψ−1(v)

⊂ ψ−1{v|ψ−1(v) ⊂ M(e)}} = {v|ψ−1(v) ⊂ M(e)} = (ψ, g)∗(ME).

To demonstrate Part 2 of the above proposition, we continue with Example 7.

Example 6. In the above Example 7, we have ME = {(e1, {u1, u2}), (e2, {u2})} and M∗E =
{(e1, {u1, u2}), (e2, ∅)}. It can be easily seen that (ψ, g)∗(M∗E) = (ψ, g)∗(ME) = {( f1, {v1, v2}),
( f2, {v2})}.

Remark 2. For the surjective mapping (ψ, g) we have (ψ, g)∗(ME) = (ψ, g)(M∗E) for any
soft set ME in U. It is clear from definition of M∗E and Part 3 of by Proposition 2 that
(ψ, g)(M∗E) = (ψ, g)(ψ, g)−1(ψ, g)∗(ME) = (ψ, g)∗(ME).

In the next theorem, we present another characterization of a soft continuous mapping
with respect to the previously defined soft set M∗E.

Theorem 4. Let (ψ, g) : S(U, E) → S(V, F) be a surjective soft mapping; then, (ψ, g) is soft
continuous if and only if M∗E is soft open in U whenever (ψ, g)(M∗E) is soft open in V for every soft
set ME in U.

Proof. Let (ψ, g) be a soft continuous mapping and let (ψ, g)(M∗E) be a soft open set
in V for a soft set ME in U. Then, according to the soft continuity of (ψ, g) we can
find that (ψ, g)−1(ψ, g)(M∗E) is soft open in U. Using the definition of M∗E, we have
(ψ, g)−1(ψ, g)(M∗E) = (ψ, g)−1 (ψ, g)(ψ, g)−1(ψ, g)∗(ME). Now, because (ψ, g)−1(ψ, g)
(ψ, g)−1 = (ψ, g)−1, we have

(ψ, g)−1(ψ, g)(M∗E) = (ψ, g)−1(ψ, g)(ψ, g)−1(ψ, g)∗(ME) = (ψ, g)−1(ψ, g)∗(ME) = M∗E.

It is clear that M∗E is soft open in U, as (ψ, g)−1(ψ, g)(M∗E) is soft open in U. Hence,
the proof is completed.

Conversely, let NF be soft open in V and assume that (ψ, g)−1(NF) = ME.
Now, because (ψ, g) is surjective, NF = (ψ, g)∗(ψ, g)−1(NF), where NF is soft open.

Therefore, (ψ, g)∗(ψ, g)−1(NF) is soft open in V; thus, (ψ, g)−1(NF) is soft open per our
hypothesis. Hence, (ψ, g) is soft continuous.

As an instance of the above theorem, we have the following.

Example 7. Consider the sets U = V = {u1, u2, u3}, E = F = {0, 1}. Let (ψ, g) : S(U, E) →
S(V, F) be a soft mapping where ψ : U → V is a mapping defined by ψ(u1) = u1, ψ(u2) =
u3, ψ(u3) = u2 and g : E → F is an identity mapping. Assume that τ = {ΦE, Ũ, M1E =
{(0, {u1}), (1, {u3})}, M2E = {(0, {u2}), (1, {u1})}, M3E = {(0, {u3}), (1, {u2})}, M4E =
{(0, {u1, u2}), (1, {u1, u3})}, M5E = {(0, {u1, u3}), (1, {u2, u3})}, M6E = {(0, {u2, u3}), (1,
{u1, u2})}} and τ∗ = {ΦF, Ṽ, N1F = {(0, {u1}), (1, ∅)}, N2F = {(0, {u2}), (1, ∅)}, N3F =
{(0, {u3}), (1, ∅)}, N4F = {(0, {u1, u2}), (1, ∅)}, N5F = {(0, {u1, u3}), (1, ∅)}, N6F = {(0,
{u2, u3}), (1, ∅)}, N7F = {(0, {u1, u2, u3}), (1, ∅)}} are soft topological spaces of S(U, E) and
S(V, F), respectively. Clearly, (ψ, g) is not soft continuous. Taking a soft set ME = {(0, {u1, u2}),
(1, ∅)} in U, we have M∗E = {(0, {u1, u2}), (1, ∅)} and (ψ, g)(M∗E) = {(0, {u1, u3}), (1, ∅)}.
It is easy to see that (ψ, g)(M∗E) is soft open in V and that M∗E is not soft open in U.

4. Conclusions

Soft set theory as a general mathematical tool for dealing with uncertainty was first
introduced in 1999 by Molodtsov [1]. While many scientists have worked on the properties
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and applications of soft set theory, the concept of induced mappings on this set has not yet
been studied. Mappings are known as structure-preserving concepts in any mathematical
discipline. Therefore, in this manuscript we have presented the concept of an induced
mapping defined on a soft set, and have discussed its main properties. In addition, we
have elucidated the interrelationships between induced soft mappings and soft mappings
as well as applied to characterize soft continuity.

This work represents a beginning point for soft-induced mathematical notions and
constructions that are based on induced map-theoretic operations. Furthermore, this soft-
induced mapping enables us to prove new representations of soft continuous mapping,
contributing to the understanding of the algebraic structure of soft sets. Hence, we think
that in the future soft-induced mapping structures will be actively studied.
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