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Abstract: High-dimensional measurement error data are becoming more prevalent across various
fields. Research on measurement error regression models has gained momentum due to the risk
of drawing inaccurate conclusions if measurement errors are ignored. When the dimension p is
larger than the sample size n, it is challenging to develop statistical inference methods for high-
dimensional measurement error regression models due to the existence of bias, nonconvexity of the
objective function, high computational cost and many other difficulties. Over the past few years,
some works have overcome the aforementioned difficulties and proposed several novel statistical
inference methods. This paper mainly reviews the current development on estimation, hypothesis
testing and variable screening methods for high-dimensional measurement error regression models
and shows the theoretical results of these methods with some directions worthy of exploring in
future research.

Keywords: convex optimization; estimation; high-dimensional data; hypothesis testing; measurement
error; variable selection
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1. Introduction

Measurement error data inevitably exist in applications, causing significant concern
in various fields including biology, medicine, epidemiology, economics, finance and re-
mote sensing. So far, there have been a wealth of research achievements on classical
low-dimensional measurement error regression models under various assumptions. Nu-
merous studies focus on parameter estimation for low-dimensional measurement error
regression models, with the primary techniques listed below: (1) Corrected regression
estimation methods [1]; (2) Simulation–Extrapolation (SIMEX) estimation methods [2,3];
(3) Deconvolution methods [4]; (4) Corrected empirical likelihood methods [5,6]. For more
detailed discussions on other estimation and hypothesis testing methods for classical low-
dimensional measurement error models, please refer to the literature [7–29], as well as the
monographs [30–35].

As one of the most popular research fields in statistics, high-dimensional regression
has been widely used in various fields including genetics, economics, medical imaging,
meteorology and sensor networks. Over the past two decades, various high-dimensional
regression methods have been widely proposed such as Lasso [36], smoothly clipped
absolute deviation (SCAD) [37], Elastic Net [38], Adaptive Lasso [39], Dantzig Selector [40],
smooth integration of counting and absolute deviation (SICA) [41], and minimax concave
penalty (MCP) [42], among many others. These methods have been widely applied to
estimate regression coefficients while also achieving the goal of variable selection by adding
penalties to objective functions; please refer to the literature review [43–46] as well as the
monographs [47–49].
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For the variable screening methods of ultrahigh-dimensional regression models where
dimension p and sample size n satisfy log p = O(nκ), κ > 0, Fan and Lv [50] proposed
the sure independence screening (SIS) method, which is a pioneering method in this field.
For the estimation and variable selection of ultrahigh-dimensional regression models, it is
suggested to apply the SIS method for variable screening first. Then, based on the variables
screened in the first step, we can utilize regularization methods with penalties to estimate
the regression coefficients and identify the significant variables simultaneously. Due to
the operability and effectiveness of the SIS method in applications, numerous works have
extended the method; see [51–60].

However, most of the aforementioned theories and applications for high-dimensional
regression models focused on clean data. In the era of big data, researchers frequently
collect high-dimensional data with measurement errors. Typical instances include gene
expression data [61] and sensor network data [62]. The imprecise measurements are the
result of poorly managed and defective data collection processes as well as the imprecise
measuring instruments. It is well known that ignoring the influence of measurement errors
will result in biased estimators and erroneous conclusions. Therefore, developing statistical
inference methods for high-dimensional measurement error regression models has drawn
a lot of interest.

Based on the types of measurement errors, research on high-dimensional measurement
error regression models can be divided into the following three categories: covariates
containing measurement errors; response variables containing measurement errors; both
covariates and response variables containing measurement errors. In this paper, we mainly
focus on the category where covariates contain measurement errors. When the dimension
p is larger than the sample size n, parameter estimation can be challenging due to the
nonconvexity of the penalized objective function caused by correction for the bias. This
further makes it impossible to obtain the optimal solution of optimization problem. We
utilize the following linear regression model to illustrate this problem

y = Xβ + ε, (1)

where y = (y1, . . . , yn)T ∈ Rn is the n× 1 response vector, X = (X1, . . . , Xn)T ∈ Rn×p is the
n× p fixed design matrix with Xi = (xi1, . . . , xip)

T, β = (β1, . . . , βp)T ∈ Rp is the sparse
regression coefficient vector with only s nonzero components, and assume that model error
vector ε = (ε1, . . . , εn)T ∈ Rn is independent of X. In order to obtain a sparse estimator
of the true regression coefficient vector β0 = (β01, · · · , β0p)

T ∈ Rp, we can minimize the
following penalized least-square objective function

1
2n
‖y− Xβ‖2

2 + ‖pλ(β)‖1, (2)

which is equivalent to minimizing

1
2

βTΣβ− ρTβ + ‖pλ(β)‖1, (3)

where Σ = n−1XTX, ρ = n−1XTy, pλ(·) is a penalty function with regularization parameter
λ ≥ 0. If the covariates matrix X can be precisely measured, the penalized objective
functions (2) and (3) are convex. Thus, we can obtain a sparse estimator of β0 by minimizing
the penalized objective function (2) or (3).

However, it is common that the covariates matrix X cannot be accurately observed
in practice. Let W = (W1, . . . , Wn)T = (wij)n×p be the observed covariates matrix with
additive measurement errors satisfying W = X + U, where U = (U1, . . . , Un)T is the matrix
of measurement errors, Ui = (ui1, . . ., uip)

T follows a sub-Gaussian distribution with mean
zero and covariance matrix Σu, and it is assumed to be independent of (X, y). To reduce the
influence of measurement errors, Loh and Wainwright [63] proposed replacing Σ and ρ in
the penalized objective function (3) by their consistent estimators Σ̂ = n−1WTW− Σu and
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ρ̃ = n−1WTy, respectively. Then, we can obtain the sparse estimator of β0 by minimizing
the following penalized objective function

1
2

βTΣ̂β− ρ̃Tβ + ‖pλ(β)‖1. (4)

Note that when the dimension p is fixed or smaller than the sample size n, it can be
guaranteed that Σ̂ is a positive definite or semi positive-definite matrix. It further ensures
that the penalized objective function (4) remains convex. Thus, the global optimal solution
of β can be obtained by minimizing the penalized objective function (4).

However, for high-dimensional or ultrahigh-dimensional regression models, i.e., p > n
or p � n, there are two key problems: (i) the penalized objective function (4) is no
longer convex and unbounded from below because the corrected estimator Σ̂ of Σ is
no longer a semi-positive definite matrix. This further makes it impossible to obtain
the estimator of β0 by minimizing the penalty objective function (4). (ii) In order to
construct an objective function similar to that of standard Lasso and solve the corresponding
optimization problem using R package “glmnet” or “lars”, it is necessary to decompose
Σ̂ by Cholesky’s decomposition method and obtain the substitution of response vector
and covariates matrix. However, this process results in an error accumulation and makes
it challenging to guarantee valid theoretical results; please see the detailed discussions
in [64,65].

For problem (i), Loh and Wainwright [63] changed the unconstrained optimization
problem into a constrained optimization problem by adding restrictions to β. They sug-
gested applying the projected gradient descent algorithm to solve the restricted opti-
mization problem and acquire the global optimal solution of true regression coefficient
vector β0. Nevertheless, the penalized objective function of the optimization problem
is still nonconvex. To address this issue, Datta and Zou [64] suggested substituting Σ̂

by its semi-positive definite projection matrix Σ̃, and they proposed convex conditioned
Lasso (CoCoLasso). Furthermore, Zheng et al. [65] introduced a balanced estimation that
prevented overfitting while maintaining the estimation accuracy by combining l1 and
concave penalty. Zhang et al. [66] further proposed an estimation method based on L0
regularization. Tao et al. [67] constructed a modified least-squares loss function using a
semi-positive definite projection matrix for the estimated covariance matrix and proposed
a calibrated zero-norm regularized least squares (CaZnRLS) estimation of regression coeffi-
cients. Rosenbaum and Tsybakov [68,69] proposed a matrix uncertainty (MU) selector and
its improved version compensated MU selector for high-dimensional linear models with
additive measurement errors in covariates. Sørensen et al. [70] extended the MU selector
to generalized linear models and developed the generalized matrix uncertainty (GMU)
selector. Sørensen et al. [71] showed the theoretical results of relevant variable selection
methods. Based on the MU selector, Belloni et al. [72] introduced an estimator that can
achieve the minimax efficiency bound. They proved that the corresponding optimization
problem can be converted into a second-order cone programming problem, which can be
solved in polynomial time. Romeo and Thoresen [73] evaluated the performance of the MU
selector in [68], nonconvex Lasso in [63], and CoCoLasso in [64] using simulation studies.
Brown et al. [74] proposed a path-following iterative algorithm called Measurement Error
Boosting (MEBoost), which is a computationally effective method for variable selection
in high-dimensional measurement error regression models. Nghiem and Potgieter [75]
introduced a new estimation method called simulation–selection–extrapolation (SIMSE-
LEX), which used Lasso in the simulation step and group Lasso in the selection step. Li and
Wu [76] established minimax convergence rates for the estimation of regression coefficients
under a more general situation. Bai et al. [77] proposed a variable selection method for
ultrahigh-dimensional linear quantile regression models with measurement errors. Jiang
and Ma [78] drew on the idea of nonconvex Lasso in [63] and proposed an estimator of
the regression coefficients for high-dimensional Poisson models with measurement errors.
Byrd and McGee [79] developed an iterative estimation method for high-dimensional
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generalized linear models with additive measurement errors based on the imputation-
regularized optimization (IRO) algorithm in [80]. However, the error accumulation issue
mentioned in problem (ii) has not been addressed in the literature.

The aforementioned works place more emphasis on estimation and variable selection
problems rather than hypothesis testing. For high-dimensional regression models with
clean data, research on hypothesis testing problems has made significant progress under var-
ious settings in [81–88]. For high-dimensional measurement error models, the hypothesis
testing methods are equally crucial. However, the bias and instability caused by measure-
ment errors make hypothesis testing extremely difficult. Recently, some progress has been
achieved in statistical inference methods. Based on a multiplier bootstrap, Belloni [89] con-
structed simultaneous confidence intervals for the target parameters in high-dimensional
linear measurement error models. Focused on the case where a fixed number of covariates
contain measurement errors, Li et al. [90] proposed a corrected decorrelated score test for
parameters corresponding to the error-prone covariates and created asymptotic confidence
intervals for them. Huang et al. [91] proposed a new variable selection method based on
debiased CoCoLasso and proved that it can achieve false discovery rate (FDR) control.
Jiang et al. [92] developed Wald and score tests for high-dimensional Poisson measurement
error models.

Compared to the above estimation and hypothesis testing methods, there are rel-
atively few screening techniques for ultrahigh-dimensional measurement error mod-
els. Nghiem et al. [93] introduced two screening methods named corrected penalized
marginal screening (PMSc) and corrected sure independence screening (SISc) for ultrahigh-
dimensional linear measurement error models.

This paper gives an overview of the estimation and hypothesis testing methods for
high-dimensional measurement error regression models as well as the variable screening
methods for ultrahigh-dimensional measurement error models. The rest of this paper
is organized as follows. In Section 2, we review some estimation methods for linear
models. We survey the estimation methods for generalized linear models in Section 3.
Section 4 presents the recent advances in hypothesis testing methods for high-dimensional
measurement error models. Section 5 introduces the variable screening techniques for
ultrahigh-dimensional linear measurement error models. We conclude the paper with some
discussions in Section 6.

Notation 1. Let Sp be the set of all p × p real symmetric matrices and Sp
+ be the subset of Sp

containing all positive semi-definite matrix in Sp. We use |A| to denote the cardinality of set
A. Let S = {j : β0j 6= 0, j = 1, . . . , p} be the index set of nonzero parameters. For a vector
a = (a1, . . . , am) ∈ Rm, let ‖a‖q = (∑m

`=1 |a`|q)1/q, 1 ≤ q < ∞ denote its lq norm, and write
‖a‖∞ = max1≤`≤m |a`|. Denote by aA ∈ R|A| the subvector of a with index setA ⊂ {1, . . . , m}.
Denote by e the vector of all ones. For a matrix B = (bij), let ‖B‖1 = maxj ∑i

∣∣bij
∣∣, ‖B‖max =

maxi,j
∣∣bij
∣∣ and ‖B‖∞ = maxi ∑j

∣∣bij
∣∣. For constants a and b, define a ∨ b = max{a, b}. We use

c and C to denote positive constants that may vary throughout the paper. Finally, let d→ denote
convergence in distribution.

2. Estimation Methods for Linear Models

This section mainly focuses on the linear model (1) with high-dimensional settings
where the dimension p is larger than the sample size n. When the data can be observed
precisely, we can estimate the true regression coefficient vector β0 by minimizing the
penalized objective function (2) or (3). However, we frequently come across cases where the
measured covariates contain measurement errors. There are various types of measurement
error data, and we primarily focus on the two categories below.

(1) Covariates with additive errors. The observed error-prone covariate Wi = Xi + Ui,
where the measurement error Ui is independent of Xi and independently generated from a
distribution with mean zero and known covariance matrix Σu.
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(2) Covariates with multiplicative errors. The observed error-prone covariates Wi = Xi �Mi,
where � denotes the Hadamard product, and the measurement error Mi is independent of
Xi and follows from a distribution with mean µM and known covariance matrix ΣM.

Our main goal is to obtain the sparse estimator β̂ of true regression coefficient vector β0
in the presence of measurement errors. As we introduced in Section 1, we will run into the
issue of the penalized objective function being nonconvex and unbounded from below after
correcting the bias caused by measurement errors. This prevents us solving the optimization
problem. Several works focused on this issue and proposed some estimation methods.

2.1. Nonconvex Lasso

In order to resolve the issue of the objective function being unbounded from below
and unsolvable in the presence of measurement errors, Loh and Wainwright [63] added
restrictions to regression coefficients β and adopted an l1 penalty. Then, the estimator of β0
can be obtained by the following l1-constrained quadratic program

β̂NCL ∈ arg min
‖β‖1≤c0

√
s

{
1
2

βTΣ̂β− ρ̃Tβ + λ‖β‖1

}
=: arg min

‖β‖1≤c0
√

s

{
L(β) + λ‖β‖1

}
, (5)

where c0 > 0 is a constant, s = |S| denotes the number of nonzero components of β0,
L(β) = 2−1βTΣ̂β − ρ̃Tβ is the loss function, Σ̂ and ρ̃ are the consistent estimators of
covariance matrix Σ of Xi and marginal correlation coefficient vector ρ of (Xi, yi), and
they may differ in terms of various kinds of measurement error data. Under the additive
error setting,

Σ̂add = n−1WTW− Σu, ρ̃add = n−1WTy. (6)

Under the multiplicative error setting,

Σ̂mul = n−1WTW� (Σm + µmµT
m), ρ̃mul = n−1WTy� µm, (7)

where � denotes the elementwise division operator, and let Σ̂ = Σ̂add or Σ̂mul throughout
the sequel. The reason for using “∈” rather than “=” in (5) is that several local minima
might exist in the objective function. Note that this method still relies on a nonconvex
objective function to obtain the estimator of β0. Thus, we refer to it as “nonconvex Lasso”.
It can be implemented by the R package “hdme” [94] at https://cran.r-project.org/web/
packages/hdme/vignettes/hdme.html (accessed on 13 June 2023).

The nonconvexity of the penalized objective function makes it challenging to obtain the
global minimum of the optimization problem (5). To solve the optimization problem (5), Loh
and Wainwright [63] applied the projected gradient descent algorithm and demonstrated
that even if the penalized objective function is nonconvex, the solution produced by this
algorithm can reach the global minimum with high probability. The algorithm finds the
global minimum in an iterative way as follows. At the (k + 1)th iteration,

β
(k+1)
NCL = arg min

‖β‖1≤c0
√

s

{
L(β

(k)
NCL) +∇L(β

(k)
NCL)

T(β− β
(k)
NCL) +

η

2
‖β− β

(k)
NCL‖

2
2 + λ‖β‖1

}
, (8)

where ∇L(β) = Σ̂β− ρ̃ is the gradient of loss function L(β), η > 0 denotes the step-size
parameter. For details of this algorithm, please see [63,95–97]. Loh and Wainwright [63]
proved that the solution obtained by iteration (8) is quite near to the global minimum in
both l1-norm and l2-norm under some conditions. Specifically, for all t ≥ 0,

‖β(k)
NCL − β̂NCL‖2

2 ≤ γk‖β(0)
NCL − β̂NCL‖2

2 + C1
log p

n
‖β̂NCL − β0‖2

1 + C2‖β̂NCL − β0‖2
2,

‖β(k)
NCL − β̂NCL‖1 ≤ 2

√
k‖β(k)

NCL − β̂NCL‖2 + 2
√

k‖β̂NCL − β0‖2 + 2‖β̂NCL − β0‖1,

where C1 and C2 are positive constants, and γ ∈ (0, 1) is a contraction coefficient inde-
pendent of (n, p, k). For the estimator β̂NCL of the true regression coefficient vector β0,

https://cran.r-project.org/web/packages/hdme/vignettes/hdme.html
https://cran.r-project.org/web/packages/hdme/vignettes/hdme.html
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Loh and Wainwright [63] showed that with any c0 ≥ ‖β0‖2 and λ = O(
√

log p/n), the
lq-estimation error of β̂NCL satisfies the bounds

‖β̂NCL − β0‖q = O

(
s1/q

√
log p

n

)
, q = 1, 2.

When q = 1, the l1-estimation error can reach the convergence rate s
√

log p/n; when q = 2,
the l2-estimation error can reach the convergence rate

√
s log p/n. However, Loh and

Wainwright [63] did not establish the variable selection consistency and oracle inequality
for the prediction error of the nonconvex Lasso estimator.

2.2. Convex Conditioned Lasso

The nonconvex Lasso [63] overcomes the problem of unsolvability caused by the
nonconvex objective function in the presence of measurement errors. However, there
are some drawbacks to this method. First, the nonconvex Lasso solves the problem by
adding constraints to β, but the penalized objective function remains nonconvex. It is well
recognized that the convexity of the penalized objective function will be incredibly useful
for theoretical analysis and computation. Second, two important unknown parameters c0
and s are included in the optimization problem (5). These two parameters have a direct
impact on the estimation results, but we are not sure about their magnitudes in applications.
Third, Loh and Wainwright [63] have not established the variable selection results of the
nonconvex Lasso estimator. To remedy these issues, Datta and Zou [64] proposed Convex
Conditioned Lasso (CoCoLasso) based on a convex objective function, which possesses
computational and theoretical superiority brought by convexity.

In order to construct the convex objective function, Datta and Zou [64] introduced a
nearest positive semi-definite matrix projection operator for the square matrix, which is
defined as

(A)+ = arg min
A1≥0
‖A−A1‖max, (9)

where A is a square matrix. Let Σ̃ = (Σ̂)+, and the alternating direction method of multipli-
ers (ADMM) algorithm [98] can be utilized to derive Σ̃ from Σ̂. Based on Σ̃, the following
convex objective function can be constructed, and it yields the CoCoLasso estimator

β̂coco = arg min
β

{
1
2

βTΣ̃β− ρ̃Tβ + λ‖β‖1

}
. (10)

When the covariates contain additive measurement errors,

Σ̃add = (Σ̂add)+, ρ̃add = n−1WTy, Σ̂add = n−1WTW− Σu. (11)

When the covariates contain multiplicative measurement errors,

Σ̃mul = (Σ̂mul)+, ρ̃mul = n−1WTy� µm, Σ̂mul = n−1WTW� (Σm + µmµT
m). (12)

Note that Σ̃ not only contributes to the construction of the convex objective function but
also possesses the same level of estimation accuracy as Σ̂ in [63]. It can be guaranteed by
the following equation

‖Σ̃− Σ‖max ≤ ‖Σ̃− Σ̂‖max + ‖Σ̂− Σ‖max ≤ 2‖Σ̂− Σ‖max.

Since Σ̃ is semi-positive definite, we can perform Cholesky decomposition on Σ̃. Then, the
Cholesky factor of Σ̃ can be used to simplify computations by rewriting (10) as

β̂coco = arg min
β

1
2n
‖ỹ− W̃β‖2

2 + λ‖β‖1, (13)
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where W̃ denotes the Cholesky factor of Σ̃ satisfying n−1W̃TW̃ = Σ̃, and ỹ is the vector
satisfying n−1W̃Tỹ = ρ̃. The penalized objective function in (13) is similar to that of
the standard Lasso. Thus, we can utilize the coordinate descent algorithm to obtain the
CoCoLasso estimator; please see the details in [64,99,100]. Theoretically, Datta and Zou [64]
established the lq-estimation (q = 1, 2) and prediction error bounds of the CoCoLasso
estimator. Suppose that

ψ = min
δ 6=0,‖δSc‖1≤3‖δS‖1

δTΣδ

‖δ‖2
2
> 0.

For s
√

ζ log p/n < λ ≤ min{ε0, 12ε0‖β0S‖∞}, where ζ = max{σ4
ε , σ4

U , 1}, ε0 = σ2
U , σ2

ε and
σ2

U are sub-Gaussian parameters of model error and measurement error, respectively, the
CoCoLasso estimator β̂coco satisfies that with probability at least 1− C exp(−c log p),

‖β̂coco − β0‖q =O

(
λs1/q

ψ

)
, q = 1, 2, (14)

n−1/2‖X(β̂coco − β0)‖2 =O
(

λ

√
s
ψ

)
. (15)

The fomulas (14) and (15) show the oracle inequalities for the lq-estimation error with
q = 1, 2 and prediction error. Furthermore, Datta and Zou [64] established the sign
consistency of the CoCoLasso estimator under an additional irrepresentable condition and
minimum signal strength condition. Meanwhile, there was no variable selection result
provided for the nonconvex Lasso estimator β̂NCL in [63]. Thus, the CoCoLasso estimation
method not only enjoys the computational convenience of convexity but also possesses
excellent theoretical results. However, when the dimension of covariates p is large, the
computation of Σ̃ is expensive. To improve the computational efficiency, Escribe et al. [101]
applied a two-step block descent algorithm and proposed a block coordinate descent convex
conditioned Lasso (BDCoCoLasso), which is designed for the case in which the covariate
matrix is only partially corrupted. CoCoLasso and BDCoCoLasso are now available in
R package “BDcocolasso” at https://github.com/celiaescribe/BDcocolasso (accessed on
13 June 2023).

2.3. Balanced Estimation

CoCoLasso is effective in the parameter estimation of high-dimensional measurement
error models, but it suffers from overfitting. To overcome this drawback, Zheng et al. [65]
replaced the Lasso penalty in CoCoLasso with the combined l1 and concave penalty and
developed the balanced estimator, which can be obtained by

β̂bal = arg min
β

{
1
2

βTΣ̃β− ρ̃Tβ + λ0‖β‖1 + ‖pλ(β)‖1

}
, (16)

where λ0 = c1
√

log p/n is the regularization parameter for the l1 penalty with c1 being a
positive constant, pλ(β) = [pλ(|β1|), . . . , pλ(|βp|)]T, and pλ(u), u ∈ [0,+∞) is a concave
penalty function with the tuning parameter λ ≥ 0. The definitions of Σ̃ and ρ̃ are the same
as those in (11) and (12) with the two kinds of measurement error data. In contrast to the
CoCoLasso estimator, the balanced estimator strikes a perfect balance between prediction
and variable selection. Surprisingly, excellent variable selection results promote the esti-
mation and prediction accuracy of the balanced estimator. The simulation studies in [65]
demonstrate the estimation and prediction accuracy as well as the better variable selection

https://github.com/celiaescribe/BDcocolasso
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results of the balanced estimator. As for the asymptotic properties of β̂bal, Zheng et al. [65]
established the oracle inequalities for the lq-estimation and prediction error,

‖β̂bal − β0‖q =Op

(
λ0s1/q

φ2

)
, q = 1, 2, (17)

n−1/2‖X(β̂bal − β0)‖2 =Op

(
λ0
√

s
φ

)
, (18)

where

φ = min
δ 6=0,‖δSc‖1≤7‖δS‖1

n−1/2‖Xδ‖2

‖δS‖2 ∨ ‖δ∗S c‖2
> 0,

and δ∗S c ∈ Rs contains the s largest absolute vaules of δS c . It can be seen from (17) and (18)
that the bounds of lq-estimation (q = 1, 2) and prediction error are free of regularization
parameter λ for the concave penalty. Also, the upper bound of falsely discovered signs is
provided in [65]. Denote FS(β̂) = |{1 ≤ j ≤ p : sgn(β̂ j) 6= sgn(β0,j)}|; then

FS(β̂) = Op

(
λ2

0s
λ2φ4

)
. (19)

From (19), we can see that if minj∈S |β0j| �
√

s log p/n such that λ2 � λ2
0s, a balanced

estimator can achieve sign consistency, which is stronger than the variable selection con-
sistency. Compared with the balanced estimator, the CoCoLasso estimator requires an
additional irrepresentable condition to achieve this property.

2.4. Calibrated Zero-Norm Regularized Least Square Estimation

The nearest positive semi-definite matrix projection operator defined in [64] solves the
problem that the penalized objective function is nonconvex in high-dimensional measure-
ment error models. However, with the constraint of the positive semi-definite matrix, the
computation cost of Σ̃ is high. Tao et al. [67] demonstrated that as the dimension p increases,
the time required to calculate Σ̃ using the ADMM algorithm will increase significantly.
Thus, Tao et al. [67] suggested replacing Σ̃ with an approximation of Σ̂ that is easy to obtain
but less precise. To achieve this purpose, consider the eigendecomposition of Σ̂ as follows

Σ̂ = Vdiag(θ1, . . . , θp)VT,

where diag(θ1, . . . , θp) is a diagonal matrix containing the eigenvalues of Σ̂ with θ1 ≥
θ2 ≥ · · · ≥ θp, and V ∈ Rp×p is an orthonormal matrix consisting of the corresponding
eigenvectors. Then, Tao et al. [67] substituted the Frobenius norm for the elementwise
maximum norm in (9) and obtained a positive definite approximation of Σ̂ as follows

Σ̃F = arg min
W≥ξI

‖Σ̂−W‖F for some ξ > 0. (20)

Note that the optimal solution of (20) is the same as that of the problem

min
W≥ξI

‖Σ̂−W‖2
F. (21)

Thus, we have

Σ̃F = ξI + ΠSp
+
(Σ̂− ξI) = Vdiag[max(θ1, ξ), . . . , max(θp, ξ)]VT, (22)
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where ΠSp
+
(·) denotes the projection of a matrix on Sp

+. Similar to Σ̃, we have Σ̃F =

n−1W̃T
FW̃F, where n−1/2W̃F is the Cholesky factor of Σ̃F. Let ỹF be the vector satisfying

n−1W̃T
FỹF = ρ̃. By some simple calculation, we can obtain that

W̃F =
√

nV diag
(√

max(θ1, ξ), . . . ,
√

max
(
θp, ξ

))
VT,

ỹF =
√

nV diag

 1√
max(θ1, ξ)

, . . . ,
1√

max
(
θp, ξ

)
VTρ̃.

(23)

Based on Equation (22), Σ̃F can be obtained easily. This implies that computing Σ̃F
requires substantially less time than computing Σ̃. However, the approximation accuracy
of Σ̃F to Σ̂ is not as good as that of Σ̃ because minimizing the Frobenius norm may yield
larger components compared with the elementwise maximum norm. To obtain an excellent
estimator of β0, it is reasonable to find a more effective regression method to replace Lasso.
Tao et al. [67] considered the zero norm penalty and defined the following calibrated
zero-norm regularized least squares (CaZnRLS) estimator

β̂zn ∈ arg min
β∈Rp

{
1

2nλ
‖W̃Fβ− ỹF‖2

2 + ‖β‖0

}
. (24)

However, it is difficult to solve (24) directly. Thus, to give an equivalent form for (24)
that can be solved, Tao et al. [67] defined

φ(u) :=
a− 1
a + 1

u2 +
2

a + 1
u (a > 1), u ∈ R.

It is easy to verify that for any β ∈ Rp,

‖β‖0 = min
w∈Rp

{
p

∑
i=1

φ(wi) : (e−w)T|β| = 0, 0 ≤ w ≤ e

}
, (25)

where |β| = (|β1|, . . . , |βp|)T. The Formula (25) implies that the optimization problem
(24) can be rewritten as the following mathematical program with equilibrium constraints
(MPEC)

min
β,w∈Rp

{
1

2nλ
‖W̃Fβ− ỹF‖2

2 +
p

∑
i=1

φ(wi) : (e−w)T|β| = 0, 0 ≤ w ≤ e

}
. (26)

Note that if the optimal solution of optimization problem (24) is β̂∗, then the corresponding
optimal solution of optimization problem (26) is (β̂∗, sign(|β̂∗|)).

However, it can be seen that the annoying nonconvexity is introduced by the restriction
(e−w)T|β| = 0 in (26), and it is the cause of the difficulty in obtaining the estimator β̂zn.
Accordingly, Tao et al. [67] considered the following penalized version of optimization
problem (26)

min
β,w∈Rp

{
1

2nλ
‖W̃Fβ− ỹF‖2

2 +
p

∑
i=1

φ(wi) + ρ(e−w)T|β|, 0 ≤ w ≤ e

}
, (27)

where ρ > 0 is the penalty parameter. Tao et al. [67] proved that the global optimal
solution of optimization problem (27) with ρ ≥ ρ := (4aL f )[(a + 1)λ]−1 is the same
as that of optimization problem (26), where L f is the Lipschitz constant of the function
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f (β) := (2n)−1‖W̃Fβ− ỹF‖2
2 on the ball {β ∈ Rp : ‖β‖2 ≤ R}, and R is a constant. Thus,

β̂zn can be obtained by solving the following optimization problem with ρ ≥ ρ

β̂zn ∈ arg min
β∈Rp ,w∈[0,e]

{
1

2n
‖W̃Fβ− ỹF‖2

2 +
p

∑
i=1

λ
[
φ(wi) + ρ(1− wi)|βi|

]}
. (28)

Tao et al. [67] recommended using the multi-stage convex relaxation approach (GEP–
MSCRA) to obtain β̂zn. This approach solves (28) in an iterative way with the main steps
summarized as follows.

Step 1. Initialize the algorithm with w(0) ∈ [0, 2−1e], ρ(0) = 1, λ > 0, k = 1.
Step 2. Solve the following optimization problem and obtain β̂

(k)
zn

β̂
(k)
zn = arg min

β∈Rp

{
1

2n
‖W̃Fβ− ỹF‖2

2 + λ
p

∑
i=1

(1− w(k−1)
i )|βi|

}
.

Step 3. If k = 1, choose an appropriate ρ(1) > ρ(0) using the information from ‖β̂(1)
zn ‖∞;

if 1 < k ≤ 3, choose ρ(k) satisfying ρ(k) > ρ(k−1); if k > 3, let ρ(k) = ρ(k−1).
Step 4. Obtain w(k)

i (i = 1, . . . , p) through the following optimization problem

w(k)
i = arg min

0≤wi≤1

{
φ(wi)− ρ(k)wi|β̂

(k)
zn,i|

}
.

Step 5. Let k← k + 1 and repeat Steps 2–4 until the stopping conditions are satisfied.

Note that the initial w(0) in Step 1 is an arbitrary vector from the interval [0, 2−1e]
rather than the feasible set [0, e] in (28). The reason is to obtain a better initial estimator β̂

(1)
zn .

In addition, w(k)
i in Step 4 has the following closed form based on the convexity of φ

w(k)
i = min

[
1, max

(
(a + 1)ρ(k)|β(k)

i | − 2
2(a + 1)

, 0

)]
, i = 1, . . . , p.

Consequently, the primary calculation in each iteration is to solve a weighted l1-norm
regularized least square problem. Under some regularity conditions, β̂

(k)
zn satisfies

‖β̂(k)
zn − β0‖2 = Op(λ

√
s) ∀k ∈ N+. (29)

It can be seen from (29) that the l2-estimation error bound of CaZnRLS estimator possesses
the same order as those of nonconvex Lasso and CoCoLasso estimators. Tao et al. [67]
further showed that the error bound of β̂

(k+1)
zn is better than that of β̂

(k)
zn for all k ∈ N+.

Furthermore, Tao et al. [67] demonstrated that GEP-MSCRA will produce a β̂
(k)
zn such that

supp(β̂
(k)
zn ) = supp(β0) in a finite number of iterations if the minimum nonzero value of

the smallest nonzero entries of β0 is not too small.

2.5. Linear and Conic Programming Estimation

In addition to the approaches mentioned above, another class of methods is based on
the idea of the Dantzig selector to acquire an estimator of true regression coefficients β0.
Rosenbaum and Tsybakov [68] proposed the following matrix uncertainty (MU) selector

β̂MU = arg min
β

{
‖β‖1 : ‖n−1WT(y−Wβ)‖∞ ≤ δ‖β‖1 + λ

}
, (30)

where δ ≥ 0 and λ ≥ 0 are tuning parameters depending on the level of measurement error
U and model error ε, respectively. The MU selector is available in R package “hdme” [94].
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However, the n−1WTW is included in (30) rather than n−1XTX due to the unobserv-
ability of X. Obviously, the matrix n−1WTW contains bias caused by measurement errors.
To address this issue, Rosenbaum and Tsybakov [69] proposed an improved version of
the MU selector called the compensated MU selector. It is applicable to the case that the
entries of measurement error Ui are independent such that σ2

U,j = n−1 ∑n
i=1 E(U2

ij) is finite
for j = 1, . . . , p. The compensated MU selector is defined as

β̂CMU = arg min
β

{
‖β‖1 : ‖n−1WT(y−Wβ) + D̂β‖∞ ≤ δ‖β‖1 + λ

}
, (31)

where D̂ is a diagonal matrix consisting of σ̂2
U,j, j = 1, . . . , p, and constants δ and λ are the

same as those in (30). Rosenbaum and Tsybakov [69] showed that the lq-estimation error of
the estimator β̂CMU satisfies

‖β̂CMU − β0‖q = Op

(
s1/q(‖β0‖1 + 1)

√
log p

n

)
, 1 ≤ q ≤ ∞.

The MU selector and compensated MU selector provide two alternative estima-
tion methods for high-dimensional measurement error models, but there remains an
issue. The optimization problem in (31) may be nonconvex, and Rosenbaum and Tsy-
bakov [69] did not offer a suitable algorithm to the general case. To remedy this issue,
Belloni et al. [72] proposed the conic-programming-based estimator β̂cp. Consider the
following optimization problem

min
β,t

{
‖β‖1 + κt

}
,

s.t. ‖n−1WT(y−Wβ) + D̂β‖∞ ≤ δt + λ, ‖β‖2 ≤ t, t ∈ R+,
(32)

where κ, δ and λ are positive tuning parameters. Suppose that the solution of (32) is (β̂cp; t̂),
then, β̂cp is defined as the conic-programming-based estimator of true regression coeffi-
cients β0. It is easy to verify that the optimization problem (32) can be solved efficiently in a
polynomial time as it is a second-order cone programming problem. To analyze the asymp-
totic properties of β̂cp, assume that κ ∈ [2−1, 2], δ = O(

√
log p/n), and λ = O(

√
log p/n).

Then, Belloni et al. [72] showed that the lq-estimation (1 ≤ q ≤ ∞) and prediction error of
β̂cp satisfy

‖β̂cp − β0‖q = Op

(
s1/q(‖β0‖2 + 1)

√
log p

n

)
, 1 ≤ q ≤ ∞, (33)

n1/2‖X(β̂cp − β0)‖2 = Op

(
s1/2(‖β0‖2 + 1)

√
log p

n

)
. (34)

In contrast to nonconvex Lasso in [63], the conic-programming-based estimator β̂cp can
achieve the convergence rate in (33) and (34) without any information of the parame-
ters ‖β0‖1, ‖β0‖2 or s. Compared with the compensated MU selector in [69], the conic-
programming based estimator β̂cp can be obtained in the general case without the compu-
tational difficulty of nonconvexity.

3. Estimation Methods for Generalized Linear Models

The above methods are mainly for linear models. This section introduces the estima-
tion methods for high-dimensional generalized linear models with measurement errors.

3.1. Estimation Method for Poisson Models

Count data are commonly encountered in various fields including finance, economics
and social sciences. In order to analyze count data, Poisson regression models are a popular
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choice in practice. Jiang and Ma [78] studied the high-dimensional Poisson regression
models with additive measurement errors and proposed a novel optimization algorithm to
obtain the estimator of true regression coefficient vector β0. Suppose that Yi is the response
variable following a Poisson distribution satisfying E(Yi|Xi) = exp(XT

i β), where Xi ∈ Rp

is an unobservable covariate. Its error-prone surrogate Wi = Xi +Ui, and the measurement
error Ui follows from a sub-Gaussian distribution with known covariance matrix Σu. It is
easy to verify that

E
{

YiWT
i β− exp

(
βTWi − βTΣuβ/2

)
| Xi, Yi

}
= YiXT

i β− exp
(

βTXi

)
. (35)

From (35), Jiang and Ma [78] imposed a restriction on β similar to it in [63] and estimated β
by solving the following optimization problem

β̂p = arg min
‖β‖1≤cp

√
s,‖β‖2≤cp

{L(β) + λ‖β‖1}, (36)

where

L(β) = − 1
n

n

∑
i=1

{
YiWT

i β− exp
(

βTWi − βTΣuβ/2
)}

. (37)

The estimator β̂p can be obtained by the composite gradient descent algorithm. Specif-
ically, at the (k + 1)th iteration, first solve the following optimization problem without any
restrictions on β

β̃
(k+1)
p = arg min

β

{
∂L(β

(k)
p )/∂βT(β− β(k)) + η/2‖β− β(k)‖2

2 + λ‖β‖1

}
,

where η > 0 is a stepsize parameter. Next, apply the projection method in [95] to
project β̃

(k+1)
p onto the l1 ball with radius cp

√
s and produce β̆

(k+1)
p . If ‖β̆(k+1)

p ‖2 > cp,

let β̂
(k+1)
p = β̆

(k+1)
p cp/‖β̆(k+1)

p ‖2; otherwise, let β̂
(k+1)
p = β̆

(k+1)
p . Repeat the above steps

until the stopping condition is satisfied. Jiang and Ma [78] proved the convergence of
this algorithm. Under some regularity conditions, they further showed that the global
minimum β̂p of (36) satisfies

‖β̂p − β0‖q = O(s1/qλ). (38)

There is an usual requirement that λ > 2‖∂L(β)/∂β‖∞ in Poisson models, and the term
‖∂L(β)/∂β‖∞ = O(

√
n/ log p). Thus, the convergence rate of β̂p is slower than those of

nonconvex Lasso, CoCoLasso and balanced estimators in linear models.

3.2. Generalized Matrix Uncertainty Selector

The method in [78] is only designed for high-dimensional Poisson models with mea-
surement errors. To develop a method that is applicable to generalized linear models,
Sørensen et al. [70] drew on the idea of the MU selector and proposed the generalized
matrix uncertainty (GMU) selector for high-dimensional generalized linear models with
additive measurement errors.

Consider a generalized linear model with response variable Y distributed according to

fY(y; θ, φ) = exp
{

yθ − b(θ)
a(φ)

+ c(y, φ)

}
,

where θ = XTβ0, X ∈ Rp are the covariates. The expected response is given by the mean
function µ(θ) = b′(θ), and the Taylor expansion of the mean function µ(XT

i β0) at point
WT

i β0 is

µ(XT
i β0) =

∞

∑
`=0

µ(`)
(
WT

i β0
)

`!
(−UT

i β0)
`, (39)
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where µ(`)(·) is the `th derivative of function µ(·). With the Taylor expansion (39) of the
mean function, the generalized matrix uncertainty selector can be defined as

β̂L
GMU = arg min

β

{
‖β‖1 : β ∈ ΘL

}
,

ΘL =

{
β ∈ Rp : max

1≤j≤p

∣∣∣∣ 1n wij[Yi − µ(WT
i β)]

∣∣∣∣ ≤ λ +
L

∑
`=1

δ`

`!
√

n
‖β‖`1‖µ(`)(Wβ)‖2

}
,

(40)

where δ is the positive parameter satisfying

‖U‖∞ ≤ δ, µ(`)(Wβ) = [µ(`)(WT
1 β), . . . , µ(`)(WT

n β)]T.

In practice, Sørensen et al. [70] recommended using L = 1 for computational convenience
and demonstrated that the first-order approximation produces satisfactory results.

To solve the optimation problem (40) and obtain the estimator β̂L
GMU, we can utilize

the iterative reweighing algorithm. The main iteration step of the algorithm is stated as
follows

β̂
(k+1)
GMU = arg min

β

{
‖β‖1 :

1
n

∥∥∥W̃(k)T
g (z̃(k) − W̃(k)

g β)
∥∥∥

∞
≤ λ +

L

∑
`=1

δ`

`!
√

n
‖β‖`1‖V (`,k)‖2

}
, (41)

where W̃g ∈ Rn×p is a matrix of the weighted error-prone surrogate of covariates with

elements w̃(k)
g,ij = wij

√
V(1,k)

i , z̃(k) ∈ Rn is a vector with the elements z̃(k)i = z(k)i

√
V(1,k)

i ,

z(k)i = WT
i β̂

(k)
GMU +

[
Yi − µ

{
WT

i β̂
(k)
GMU

}]
µ′
{

WT
i β̂

(k)
GMU

}−1
, i = 1, . . . , n,

and

V (`,k) =
[
µ(`)

{
WT

1 β̂
(k)
GMU

}
, . . . , µ(`)

{
WT

n β̂
(k)
GMU

}]T
=
(

V(`,k)
1 , . . . , V(`,k)

n

)T
, ` = 1, . . . , L

is the weight vector in Taylor expansion with L terms. When L = 1 is applied, it is
easy to verify that (41) is a linear program. For more details about the algorithm, please
see [70,102]. The GMU selector can be implemented by R package “hdme” [94]. However,
Sørensen et al. [70] did not establish any asymptotic properties of the GMU selector.

4. Hypothesis Testing Methods

The aforementioned works on high-dimensional measurement error models mainly
investigate estimation problems and numerical algorithms of optimization problems as
well as the theoretical properties of estimators. Recently, some works have studied the
hypothesis testing problems for high-dimensional measurement error regression models,
which will be introduced in this section.

4.1. Corrected Decorrelated Score Test

The above methods are proposed under the setting that all covariates are corrupted. In
practice, it is common that not all covariates are measured with errors. Thus, Li et al. [90]
investigated high-dimensional measurement error models where a fixed number of co-
variates contain measurement errors and proposed statistical inference methods for the
regression coefficients corresponding to these covariates.

Consider the following high-dimensional linear model with one of the covariates
containing additive errors {

yi = β0Xi + γT
0 Zi + εi,

Wi = Xi + Ui, i = 1, . . . , n,
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where Xi ∈ R is an unobservable covariate, Wi is its error-prone surrogate, and Zi ∈ Rp−1

is an observed covariate precisely. The measurement error Ui follows from sub-Gaussian
distribution with mean zero and variance σ2

U , and Ui is independent of (Xi, Zi, εi). Denote
y = (y1, . . . , yn)T, X = (X1, . . . , Xn)T, W = (W1, . . . , Wn)T and Z = (Z1, . . . , Zn)T. This
subsection aims to test the hypothesis:

H0 : β0 = β∗ ←→ H1 : β0 6= β∗(β∗ ∈ R),

and construct a confidence interval for β0 under high-dimensional settings.
Since we are only concerned with the inference of the parameter β, then the parameter

γ is regarded as a nuisance. Following the idea in [85], Li et al. [90] defined the corrected
score function as

Sθ(θ) = Σ̂θ− ρ̂ =
1
n

n

∑
i=1

Siθ(θ) =

(
Sβ(β, γ)
Sγ(β, γ)

)
=

(
Σ̂11β + Σ̂12γ− ρ̂1
Σ̂21β + Σ̂22γ− ρ̂2

)
,

where θ = (β, γT)T,

Σ̂ =

(
Σ̂11 Σ̂12
Σ̂21 Σ̂22

)
=

(
WTW/n− σ2

U WTZ/n
ZTW/n ZTZ/n

)
and ρ̂ =

(
ρ̂1
ρ̂2

)
=

(
WTy/n
ZTy/n

)
are consistent estimators of Σ = (X, Z)T(X, Z)/n and ρ = (X, Z)Ty/n, respectively. The
corrected score covariance matrix is defined as

I(θ) = E
{

Siθ(θ)Siθ(θ)
T
}
=

(
Iββ Iβγ

Iγβ Iγγ

)
.

To conduct statistical inference on the target parameter β, it is crucial to eliminate the
influence of nuisance parameter γ. Thus, Li et al. [90] developed the corrected decorrelated
score function for the target parameter β as

S(β, γ) = Sβ(β, γ)−ωTSγ(β, γ),

where ωT = IβγI−1
γγ = E(XiZT

i )E(ZiZT
i )
−1. It easy to verify that E[S(β0, γ0)Sγ(β0, γ0)] = 0,

which indicates that S(β, γ) and nuisance score function Sγ(β, γ) are uncorrelated. Obviously,
we can obtain that Var[S(β, γ)] = Iββ − IβγI−1

γγ Iγβ =: σ2
β|γ. Then, Li et al. [90] constructed

the test statistic and the confidence interval for β0 based on the estimated decorrelated
score function. This statistical inference procedure is summarized as follows.

Step 1. Apply the CoCoLasso estimation method in [64] to calculate initial estimator
θ̃ = (β̃, γ̃T)T, and utilize the following Dantzig-type estimator to estimate ω

ω̂ = arg min
ω
‖ω‖1, s.t. ‖Σ̂12 −ωTΣ̂22‖∞ ≤ λ′,

where λ′ = O(
√

log p/n).
Step 2. Estimate the decorrelated score function by

Ŝ(β, γ̃) = Sβ(β, γ̃)− ω̂TSγ(β, γ̃),

and calculate the test statistic T̂ =
√

nŜ(β∗, γ̃)(σ̂2
β|γ,H0

)−1/2, where

σ̂2
β|γ,H0

=
{

Îββ − ω̂T Îγβ

}∣∣∣
β=β∗

= (σ̂2
ε,H0

+ β∗2σ2
U)(1− ω̂TΣ̂21) + β∗2E(U4

i ) + σ̂2
ε,H0

σ2
U − β∗2σ4

U .
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Step 3. Estimate β as

β̂ = β̃− Ŝ(θ̃)/(Σ̂11 − ω̂TΣ̂21),

and construct the (1− α)100% confidence interval for β0 as[
β̂− u1−α/2

√
σ̂2

β/n, β̂ + u1−α/2

√
σ̂2

β/n
]
,

where u1−α/2 is the (1− α/2) quantile of standard normal distribution,

σ̂2
β = (1− ω̂TΣ̂21)

−2
{
(σ̂2

ε + β̂2σ2
U)(1− ω̂TΣ̂21) + β̂2E(U4

i ) + σ̂2
ε σ2

U − β̂2σ4
U

}
is the estimator of the asymptotic variance σ2

β of β̂, and σ̂2
ε = n−1 ∑n

i=1(yi − β̂Wi − γ̃TZi)
2−

β̂2σ2
U is the estimator of the variance σ2

ε of εi.
Note that the methods used to estimate θ and ω in Step 1 can be varying, as long as the

corresponding estimators are consistent; please see more discussions in [90]. Li et al. [90]
showed that under some regularity conditions,

√
nŜ(β∗, γ̃)(σ̂2

β|γ,H0
)−1/2 d→ N (0, 1) as n→ ∞.

Furthermore, the asymptotic normality of the test statistic T̂n at local alternatives was also
established in [90] without any additional condition. Li et al. [90] also constructed the
asymptotic confidence interval for target parameter β in Step 3 based on the asymptotic
normality of β̂, which is given as follows

√
n(β̂− β0) = −

[
E
{

∂S(β, γ0)

∂β

∣∣∣∣
β=β0

}]−1√
nS(β0, γ0) + oP(1)

d→ N (0, σ2
β) as n→ ∞,

where σ2
β =

{
E
(
X2

i
)
−ωTE(XiZi)

}−2
σ2

β|γ,0, and

σ2
β|γ,0 = (σ2

ε + β2
0σ2

U)
{

1−ωTE(XiZi)
}
+ β2

0E(U4
i ) + σ2

ε σ2
U − β2

0σ4
U .

4.2. Wald and Score Tests for Poisson Models

In addition to linear models, researchers have made some progress on hypothesis-
testing problems for Poisson models. Jiang et al. [92] studied hypothesis-testing problems
for high-dimensional Poisson measurement error models, and they proposed Wald and
score tests for the linear function of regression coefficients.

Consider the following hypothesis test

H0 : Cβ0M = b←→ H1 : Cβ0M = b + hn for some hn ∈ Rr,

where C ∈ Rr×m is a matrix with r ≤ m, and β0M ∈ Rm×1 is a subvector of the true
regression coefficient vector β0 = (β01, . . . , β0p)

T formed by β0j(j ∈ M). To construct a
valid test statistic, Jiang et al. [92] drew on the idea of the estimation method in [78] and
suggested estimating regression coefficients under the null hypothesis by

β̂pn = arg min
‖β‖16R1,‖β‖26R2

{
L(β) + pλ(βMc)

}
, s.t. CβM = b, (42)

where pλ(·) is a penalty function, and L(β) is defined in (37). Similarly, the following
estimator of β0 can be considered without assuming the null hypothesis

β̂pw = arg min
‖β‖16R1,‖β‖26R2

{
L(β) + pλ(βMc)

}
. (43)
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The estimators β̂pn and β̂pw can be obtained by the ADMM algorithm; for more details,
please see [92]. It can be seen that optimization problems (42) and (43) can be distinguished
from the method in (36) because we do not impose penalties on the components of the target
parameter βM to avoid forcing them to be zeros. Then, based on the above estimators of
β0, Jiang et al. [92] proposed the following score statistic and Wald statistic to test whether
Cβ0M = b or not

TS = n

{
∂L(β̂)

∂βT

}
M∪S

ATΨ−1(Σ̂r, Q̂, β̂)A

{
∂L(β̂)

∂β

}
M∪S

,

TW = n(Cβ̂pw,M − b)TΨ(Σ̂r, Q̂, β̂pw)
−1(Cβ̂pw,M − b),

where A = C[Im×m, 0m×k]Q̂
−1
M∪S ,M∪S (β̂),

Ψ(Σ, Q, β) ≡ C[Im×m, 0m×k]Q
−1
M∪S ,M∪S (β)ΣM∪S ,M∪S (β)Q−1

M∪S ,M∪S (β)[Im×m, 0m×k]
TCT,

Σ̂r(β) and Q̂(β) are estimators of Σr(β) and Q(β) = E
{

exp
(

βTX
)
XXT}, respectively, and

Σr(β) = E
[{

YiWi − exp(βTWi − βTΣuβ/2)(Wi − Σuβ)
}⊗2

]
is the covariance of the residuals.

Jiang et al. [92] established the consistency of β̂pn and β̂pw with λ larger than
O({log p/n}1/4), m = o({log p/n}1/2) and s = o({log p/n}1/2). Furthermore, the asymp-
totic distributions of the two test statistics are established; specifically, as n→ ∞, we have

TS
d→ χ2

(
r, nhT

nΨ−1(Σ, Q, βt)hn

)
, TW

d→ χ2
(

r, nhT
nΨ−1(Σ, Q, βt)hn

)
.

Thus, we reject the null hypothesis if TS > χ2
1−α(r) for the score test with the nominal

significance level α > 0, and we reject the null hypothesis if TW > χ2
1−α(r) for the Wald

test, where χ2
1−α(r) is the (1− α) quantile of the chi-square distribution χ2(r).

5. Screening Methods

As the dimensions of data become higher and higher, we often encounter ultrahigh-
dimensional data. For the ultrahigh-dimensional models, we frequently reduce the dimen-
sions using variable screening techniques and then apply other estimation or hypothesis-
testing methods. The variable screening technique SIS [50] designed for
ultrahigh-dimensional clean data has achieved great success and has been extended to
various settings. SIS screens the variables according to the magnitudes of their marginal
correlations with the response variable. Nghiem et al. [93] drew inspiration from the ideas
of SIS in [50] and marginal bridge estimation in [103], and they proposed the corrected sure
independence screening (SISc) method and corrected penalized marginal screening method
(PMSc). Consider the following optimization problem

β̃sc = arg min
β

L(β) = arg min
β

{
p

∑
j=1

Lj(β j)

}

= arg min
β

{
1
n

p

∑
j=1

[
n

∑
i=1

(
yi − wijβ j

)2 − σ2
j β2

j + pλ

(∣∣β j
∣∣)]},

(44)
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where pλ(·) is a penalty function, and the bridge penalty is adopted in [93]. Based on (44),
Nghiem et al. [93] proposed PMSc and SISc methods. For the PMSc method, it suggested
taking the selected submodel as

ŜPMSc =
{

j : β̃sc,j 6= 0
}

.

Under some regularity conditions, Nghiem et al. [93] showed that P(S ⊂ ŜPMSc)→ 1.
Furthermore, when λ = 0, we can obtain that

β̃sc,j =
∑n

i=1 wijyi

∑n
i=1 w2

ij − nσ2
u,j

, j = 1, . . . , p,

which measures the marginal correlation between the jth variable and the response variable.
The SISc selects the variable according to the magnitude of β̃sc,j. The corresponding selected
set is

ŜSISc =
{

1 ≤ j ≤ p : |β̃ j| is among the d largest of all
}

.

Nghiem et al. [93] proved that P(S ⊂ ŜSISc) = 1−O{p exp(−Cn)} for some constant
C > 0 under some regularity conditions.

6. Conclusions

With the advent of the big data era, high-dimensional measurement error data have
proliferated in various fields. Over the past few years, many statistical inference methods
for high-dimensional measurement error regression models have been developed to over-
come the difficulties in scientific research and provide effective approaches for tackling
problems in applications. This paper reviews the research advances in estimation and
hypothesis testing methods for high-dimensional measurement error models as well as
variable screening methods for ultrahigh-dimensional measurement error models. The
aforementioned estimation methods can be classified into the following three categories:
(i) methods based on a nonconvex objective function with restrictions on the regression
coefficients, such as the nonconvex Lasso and the estimation method for Poisson models
in [78]; (ii) methods with a convex objective function including CoCoLasso, the balanced
estimation method and the CaZnRLS estimation method; (iii) methods that draw on the
idea of a Dantzig selector, such as the MU selector, compensated MU selector, GMU selector,
and conic-programming-based estimation method. Many methods are now available in
R packages “hdme” and “BDcocolasso”. Thus, we can apply these methods to analyze
high-dimensional measurement error data. For the use of estimation methods, it is rec-
ommended to use CoCoLasso and balanced estimation methods due to their operability.
If a higher computational efficiency is required, the CaZnRLS estimation method can be
considered. If covariates are only partially corrupted by measurement errors, it is better to
apply BDCoCoLasso.

Due to the prevalence of high-dimensional measurement error data in daily life and the
growing demand for the statistical inference methods of measurement error regression mod-
els in applications, the related research is still one of the crucial aspects in statistical research.
At present, the statistical inference methods and the theoretical system of high-dimensional
measurement error models are far from complete. To the best of our knowledge, the study
of high-dimensional measurement error regression models is currently limited to linear
models and generalized linear models. However, it is common that covariates and response
variables show a complicated relationship rather than a simple linear relationship in prac-
tice. Therefore, in order to meet the urgent needs of applications, it is necessary to develop
more general statistical inference methods for high-dimensional nonlinear measurement
error models. Further research in this area includes the following aspects.
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1. Existing estimation methods for high-dimensional measurement error regression
models are mainly for linear or generalized linear models. Therefore, it is urgent to de-
velop estimation methods for nonlinear models with high-dimensional measurement
error data such as nonparametric and semiparametric models.

2. Existing works mainly focus on independent and identically distributed data. It is
worthwhile to extend the estimation and hypothesis-testing methods to measurement
error models with complex data such as panel data and functional data.

3. In most studies of high-dimensional measurement error models, it is assumed that the
covariance structure of the measurement errors is specific or the covariance matrix of
measurement errors is known. Thus, it is a challenging problem to develop estimation
and hypothesis-testing methods in the case that the covariance matrix of measurement
errors is completely unknown.
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