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Abstract: Graph labeling allows for the representation of additional attributes or properties associated
with the vertices, edges, or both of graphs. This can provide a more comprehensive and detailed
representation of the system being modeled, allowing for a richer analysis and interpretation of the
graph. Graph labeling in ladder graphs has a wide range of applications in engineering, computer
science, physics, biology, and other fields. It can be applied to various problem domains, such as
image processing, wireless sensor networks, VLSI design, bioinformatics, social network analysis,
transportation networks, and many others. The versatility of ladder graphs and the ability to
apply graph labeling to them make them a powerful tool for modeling and analyzing diverse
systems. If a function Υ is an injective vertex assignment in {1, 2, . . . q + 1} and the inductive edge
assignment function Υ∗ in {1, 2, . . . q} is expressed as a graph with q edges, defined as Υ∗(uv) =⌊

2 [Υ(u)2+Υ(u)Υ(v)+Υ(v)2]
3 [Υ(u)+Υ(v)]

⌋
, then the function is referred to as F-centroidal mean labeling. This is

known as the F-centroidal mean criterion. Here, we have determined the F-centroidal mean criteria
of the graph ladder, slanting ladder, triangular ladder, TLn ◦ Sm, SLn ◦ Sm for m ≤ 2, double-sided
step ladder, D∗n, and diamond ladder.

Keywords: labeling; F-centroidal mean labeling; F-centroidal mean graph

MSC: 05C78; 05C12; 05C38; 05C90

1. Introduction

Ladder graphs can be used for image segmentation, where the task is to partition an
image into distinct regions based on their characteristics. Graph labeling can be employed
to assign labels to the vertices or edges of a ladder graph, representing the image pixels or
their relationships. Ladder graphs with labeled edges can model the adjacency of pixels
in an image, and the labels can represent attributes such as color, intensity, or texture.
Image segmentation using ladder graphs and graph labeling can have applications in
computer vision, medical imaging, and image analysis for engineering tasks such as object
recognition, image understanding, and pattern recognition. Graph labeling can be applied
to represent different characteristics of the sensor nodes or the links between them, such as
node locations, sensing capabilities, or communication strengths. Labeled ladder graphs
can help in designing efficient routing algorithms, optimizing network performance, and
managing sensor networks for various applications, including environmental monitoring,
smart grids, and industrial automation. Also, ladder graphs with graph labeling can be
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employed in VLSI design, where complex digital circuits are implemented on integrated
circuits. Graph labeling can represent the characteristics of circuit components, such as
gates, flip-flops, or interconnects, and their relationships in the circuit. Labeled ladder
graphs can be used for tasks such as circuit optimization, layout generation, and logic
synthesis, enabling engineers to design and optimize VLSI circuits for various applications,
including microprocessors, digital signal processing, and communication systems. Ladder
graphs with graph labeling can be utilized in bioinformatics, which is the application
of computational techniques to analyze biological data. Graph labeling can represent
biological entities, such as DNA sequences, protein interactions, or metabolic pathways,
and their relationships in a biological system. Labeled ladder graphs can be used for tasks
such as gene expression analysis, protein–protein interaction prediction, and metabolic
pathway reconstruction, helping researchers in understanding biological processes and
designing bio-informatics algorithms for biological data analysis. Moreover, it can be
employed in social network analysis, which involves studying the relationships between
individuals in a social network. Graph labeling can represent the attributes or characteristics
of individuals, such as age, gender, occupation, or interests, and the relationships between
them, such as friendships, collaborations, or influence. Labeled ladder graphs can be
used for tasks such as community detection, sentiment analysis, and information diffusion
analysis in social networks, enabling researchers to gain insights into social structures,
behaviors, and dynamics.

We adhere to the notations and terminology in [1,2]. The ladder graph Ln is defined
with Ln = Pn × K2, where Pn is a path containing n nodes and K2 is a two-vertex complete
graph. The slanting ladder SLn is a graph created by combining the paths u1, u2, . . . un
and v1, v2, . . . vn with uα+1, 1 ≤ α ≤ n − 1. The triangular ladder TLn, for n ≥ 2 is a
graph formed by merging two pathways using u1, u2, . . . un and v1, v2, . . . vn by combining
the edges uαvα, 1 ≤ α ≤ n and uαvα+1, 1 ≤ α ≤ n− 1. We include [3] for an in-depth
investigation of graph labeling. The authors discussed the FRSM for the line graphs of
[Pn; S1] and S(Pn ◦ S1) in [4]. Cexp average assignments and (1, 1, 1) face labelings for
generalised prism are described in [5,6], respectively. In [7,8], Alanazi et al. talked about the
classical meanness of the double-sided step graph. The super (a, d)-edge-anti magic total
characteristics of graphs have been highlighted by Dafik Slamin et al. in [9]. In [10], Moussa
and Badr demonstrated the odd gracefulness of ladder graphs. The authors of [11,12]
stressed the importance of the edge even graceful labeling. Deb and Limaye talked about
the elegant labelings of triangular snakes in [13], and Diefenderfer et al. examined the
prime vertex labelings of various graph families in [14]. We highlighted some results in
ladder graphs according to the F-centroidal meanness property, which was inspired by
such remarkable investigation into the subject of F-centroidal mean graph assignments
in [15,16]. If a function Υ is an injective vertex assignment in {1, 2, . . . q + 1} and inductive
edge assignment function Υ∗ in {1, 2, . . . q} is expressed as a graph with q edges, defined as

Υ∗(uv) =
⌊

2 [Υ(u)2 + Υ(u)Υ(v) + Υ(v)2]

3 [Υ(u) + Υ(v)]

⌋
,

then the function is referred to as F-centroidal mean labeling. This is known as the F-
centroidal mean criterion. With regard to our criteria, Figure 1 highlights the F-centroidal
mean labeling of cycle C4. The node and link assignment sets of C4 are {1, 2, 4, 5} and
{1, 2, 3, 4}. After the assignments of C4, it obeys the conditions for F-centroidal
mean requirements.
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Figure 1. An assignment of nodes and links of C4 based on the F-centroidal mean criterion.

2. Main Results

Based on the definition of the F-centroidal mean requirement, the injective node as-
signment is {1, 2, 3, . . . , q + 1} and the generated bijective link assignment is {1, 2, 3, . . . , q};
we will discuss the F-centroidal meanness of the graphs ladder, slanting ladder, triangular
ladder, TLn ◦ Sm, SLn ◦ Sm for m ≤ 2, double-sided step ladder, D∗n, and diamond ladder.

Theorem 1. The ladder graph Ln permits the F-centroidal mean requirement for n ≥ 1.

Proof. Let u1, u2, . . . , un and v1, v2, . . . , vn be the vertices of the ladder graph Ln.
Then, the following description of Υ : V(Ln)→ {1, 2, 3, . . . , 3n− 1} is provided.

Υ(uα) = 3α− 1, for 1 ≤ α ≤ n and

Υ(vα) = 3α− 2, for 1 ≤ α ≤ n.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) = 3α, for n− 1 ≥ α ≥ 1,

Υ∗(vαvα+1) = −1 + 3α, for n− 1 ≥ α ≥ 1 and

Υ∗(uαvα) = 3α− 2, for 1 ≤ α ≤ n.

As a result, the graph permits the F-centroidal mean requirement.

Theorem 2. The slanting ladder graph SLn permits the F-centroidal mean requirement for n ≥ 2.

Proof. Let the vertex set of SLn be {u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn} and the edge set of
SLn.

Then, the following description of Υ : V(SLn)→ {1, 2, 3, . . . , 3n− 2} is provided.

Υ(uα) = −4 + 3α, for n ≥ α ≥ 2,

Υ(vα) = 3α, for n− 1 ≥ α ≥ 1 and

Υ(vn) = −2 + 3n.

Υ(u1) = 1.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(vαvα+1) = 1 + 3α, for n− 2 ≥ α ≥ 1,

Υ∗(vn−1vn) = −3 + 3n and

Υ∗(vαuα+1) = −1 + 3α, for n− 1 ≥ α ≥ 1,

Υ∗(uαuα+1) =

{
1, α = 1
−3 + 3α, n− 1 ≥ α ≥ 2.

As a result, the graph permits the F-centroidal mean requirement.
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Theorem 3. The triangular ladder graph TLn permits the F-centroidal mean requirement for
n ≥ 2.

Proof. Let {u1, u2, u3, . . . , un, v1, v2, v3, . . . , vn} be the vertex set of TLn.
Then, the following description of Υ : V(TLn)→ {1, 2, 3, . . . , 4n− 2} is provided.

Υ(vα) = 4α− 4, for 2 ≤ α ≤ n,

Υ(v1) = 1 and

Υ(uα) = 4α− 2, for 1 ≤ α ≤ n.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) = 4α, for 1 ≤ α ≤ n− 1,

Υ∗(uαvα) = 4α− 3, for 1 ≤ α ≤ n,

Υ∗(uαvα+1) = 4α− 1, for 1 ≤ α ≤ n and

Υ∗(vαvα+1) = 4α− 2, for 1 ≤ α ≤ n− 1.

As a result, the graph permits the F-centroidal mean requirement.

Theorem 4. The graph TLn ◦ Sm permits the F-centroidal mean requirement for n ≥ 2 and m ≤ 2.

Proof. Let u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn be the vertices of the triangular ladder
TLn. Let m represent the number of nodes in the graph Sm. Let u(α)

1 , u(α)
2 , u(α)

3 , . . . , u(α)
m and

v(α)1 , v(α)2 , v(α)3 , . . . , v(α)m be the pendant vertices attached at each uα and vα, respectively, for
1 ≤ α ≤ n.

Case i. m = 1

Assume that n ≥ 3.
Then, the following description of Υ : V(TLn ◦ S1) −→ {1, 2, 3, . . . , 6n− 2} is provided.

Υ(uα) = 6α− 3, for 1 ≤ α ≤ n,

Υ(vα) =


5, α = 2
−4 + 6α, α is odd and n ≥ α ≥ 1,
−5 + 6α, α is even and n ≥ α ≥ 4,

Υ(u(α)
1 ) =

{
7, α = 1
6α− 2, 2 ≤ α ≤ n and

Υ(v(α)1 ) =


11, α = 2
−5 + 6α, α is odd and n ≥ α ≥ 1,
−4 + 6α, α is even and n ≥ α ≥ 4.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) = 6α, for 1 ≤ α ≤ n− 1,

Υ∗(uαvα) =

{
5α− 3, 1 ≤ α ≤ 2
6α− 4, 3 ≤ α ≤ n,

Υ∗(uαu(α)
1 ) =

{
5, α = 1
6α− 3, 2 ≤ α ≤ n ,

Υ∗(vαv(α)1 ) =

{
7α− 6, 1 ≤ α ≤ 2
−5 + 6α, 3 ≤ α ≤ n

Υ∗(uαvα+1) =

{
4, α = 1
6α− 1, 2 ≤ α ≤ n− 1 and



Mathematics 2023, 11, 3205 5 of 10

Υ∗(vαvα+1) =

{
3, α = 1
−2 + 6α, 2 ≤ α ≤ n− 1.

Case ii. m = 2

Then, the following description of Υ : V(TLn ◦ S2) −→ {1, 2, 3, . . . , 8n− 2} is provided.

Υ(uα) = 8α− 3, for 1 ≤ α ≤ n,

Υ(vα) =

{
7α− 5, 1 ≤ α ≤ 2
8α− 6, 3 ≤ α ≤ n

Υ
(

u(α)
1

)
= 8α− 4, for 1 ≤ α ≤ n,

Υ
(

u(α)
2

)
= 8α− 2, for 1 ≤ α ≤ n,

Υ(v(α)1 ) =

{
7α− 6, α = 2
8α− 10, 3 ≤ α ≤ n and

Υ∗
(

v(α)2

)
= 8α− 5, for 1 ≤ α ≤ n.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) = 8α + 1, for 1 ≤ α ≤ n− 1,

Υ∗(vαvα+1) = 8α− 2, for 1 ≤ α ≤ n,

Υ∗
(

uαu(α)
1

)
= 8α− 4, for 1 ≤ α ≤ n,

Υ∗
(

uαu(α)
2

)
= 8α− 3, for 1 ≤ α ≤ n,

Υ∗(vαv(α)1 ) =

{
1, α = 1
8α− 8, 2 ≤ α ≤ n,

Υ∗
(

vαv(α)2

)
= 8α− 6, for 1 ≤ α ≤ n,

Υ∗(uαvα) = 8α− 5, for 1 ≤ α ≤ n and

Υ∗(uαvα+1) = 8α− 1, for 1 ≤ α ≤ n− 1.

As a result, the graph permits the F-centroidal mean requirement.
Figure 2 demonstrates the assignment of nodes and links of TL2 ◦ S1 based on the

F-centroidal mean criterion.
An F-centroidal mean labeling of TL2 ◦ S1 for n = 2 is thus obtained.

t
t t

t

t

t

3 2

8 7

t t��
�
��
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4 1

3
2

1

7 5 4

9 68

Figure 2. An assignment of nodes and links of TL2 ◦ S1 based on the F-centroidal mean criterion.
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Theorem 5. The graph SLn ◦ Sm permits the F-centroidal mean requirement for n ≥ 2 and m ≤ 2.

Proof. Let u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn be the vertices of the slanting ladder SLn.

Case i. m = 1

Then, the following description of Υ : V(SLn ◦ S1) −→ {1, 2, 3, . . . , 5n− 2} is provided.

Υ(uα) =

{
α + 1, 1 ≤ α ≤ 2
5α− 6, 3 ≤ α ≤ n,

Υ(vα) =

{
5α, n− 1 ≥ α ≥ 1
−2 + 5α, n = α,

Υ(u(α)
1 ) =

{
−2 + 3α, 1 ≤ α ≤ 2
−7 + 5α, 3 ≤ α ≤ n and

Υ(v(α)1 ) =

{
1 + 5α, n− 1 ≥ α ≥ 1
−3 + 5α, n = α.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) =

{
2, 1 = α
−4 + 5α, n− 1 ≥ α ≥ 2,

Υ∗(vαvα+1) =

{
2 + 5α, n− 2 ≤ α ≤ 1
1 + 5α, n− 1 = α,

Υ∗(uαu(α)
1 ) =

{
1, α = 1
5α− 7, 2 ≤ α ≤ n,

Υ∗(uαuα−1) = −6 + 5α, for 2 ≤ α ≤ n,

Υ∗(vαv(α)1 ) =

{
5α, 1 ≤ α ≤ n− 1
5α− 3, α = n and

Case ii. m = 2

Then, the following description of Υ : V(SLn ◦ S2) −→ {1, 2, 3, . . . , 7n− 2} is provided.

Υ(uα) =


2, α = 1
5, α = 2
7α− 6, 3 ≤ α ≤ n,

Υ(vα) =

{
7, α = 1
7α− 2, 2 ≤ α ≤ n,

Υ(u(α)
1 ) =

{
3α− 2, 1 ≤ α ≤ 2
7α− 7, 3 ≤ α ≤ n,

Υ(u(α)
2 ) =

{
3α, 1 ≤ α ≤ 2
7α− 4, 3 ≤ α ≤ n,

Υ(v(α)1 ) =

{
3α + 5, 1 ≤ α ≤ 2
7α− 5, 3 ≤ α ≤ n and

Υ(v(α)2 ) =


10, 1 = α
−1 + 7α, n− 1 ≥ α ≥ 2
−3 + 7α, n = α.
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After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uαuα+1) =

{
7α− 4, 1 ≤ α ≤ 2
7α− 3, 3 ≤ α ≤ n− 1,

Υ∗(vαvα+1) =

{
9, α = 1
7α + 1, 2 ≤ α ≤ n− 1,

Υ∗(uαu(α)
1 ) =

{
3α− 2, 1 ≤ α ≤ 2
7α− 7, 3 ≤ α ≤ n,

Υ∗(uαu(α)
2 ) =

{
3α− 1, 1 ≤ α ≤ 2
7α− 5, 3 ≤ α ≤ n,

Υ∗(vαv(α)1 ) =

{
3 + 4α, 2 ≥ α ≥ 1
−4 + 7α, n ≥ α ≥ 3,

Υ∗(vαv(α)2 ) =


8, 1 = α
−2 + 7α, n− 1 ≥ α ≥ 2,
−3 + 7α, n = α and

Υ∗(uαvα−1) = 7α− 8, for 2 ≤ α ≤ n.

As a result, the graph permits the F-centroidal mean requirement.

Theorem 6. The double-sided step ladder graph 2ST2n permits the F-centroidal mean requirement
for n ≥ 1.

Proof. Let u1,1, u1,2, u1,3, . . . , u1,2n, u2,1, u2,2, u2,3, . . . , u2,2n, u3,1, u3,2, u3,3, . . . , u3,2n−2, u4,1,
u4,2, u4,3, . . . , u4,2n−4, . . . , un+1,1, un+1,2 be the vertices of the double-sided step ladder graph
2ST2n.

Assume that n ≥ 2.
Then, the following description of Υ : V(2ST2n) −→ {1, 2, 3, . . . 2n2 + 3n} is provided.

Υ(uα,β) =


α + β2 − 1, 1 ≤ α ≤ 2 and

1 ≤ β ≤ n + 1
α + (n + 1)2 − (n + 1− β)(3n + 2− β)− 1, 1 ≤ α ≤ 2 and

n + 2 ≤ β ≤ 2n,

Υ
(
uα,j
)
= Υ(uα−1,β+1) + 1, for 3 ≤ α ≤ n and 1 ≤ β ≤ 2n− (2α− 4) and

Υ
(
un+1,β

)
= Υ(un,β+1) + 1, for 1 ≤ α ≤ 2.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(uα,βuα,β+1) =


α + β2 + β− 1, 1 ≤ α ≤ 2 and

1 ≤ β ≤ n
α + (n + 1)2−
(n− β)(3n + 2− β)− (n + 1)− 1, 1 ≤ α ≤ 2 and

n + 1 ≤ β ≤ 2n− 1,
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For 3 ≤ α ≤ n,

Υ∗
(
uα,βuα,β+1

)
= Υ∗(uα−1,β+1uα−1,β+2) + 1, for 1 ≤ β ≤ 2n− (2α− 3).

Υ∗(un+1,1un+1,2) = Υ∗(un,2un,3) + 1,

Υ∗(uα,1uα+1,1) =

{
β2, 1 ≤ β ≤ n + 1
(n + 1)2 − (n + 1− j)(3n + 2− β), n + 2 ≤ β ≤ 2n,

Υ∗(u2,βu3,β−1) =

{
β2 + 1, 2 ≤ β ≤ n + 1
(n + 1)2 − (n + 1− β)(3n + 2− β) + 1, n + 2 ≤ β ≤ 2n− 1,

For 3 ≤ α ≤ n− 1,

Υ∗
(
uα,β uα+1,β−1

)
= Υ∗(uα−1,β+1 uα,β) + 1, f or 2 ≤ β ≤ 2n− (2α− 3) and

Υ∗
(
un,βun+1,β−1

)
= Υ∗(un−1,β+1un−1,β) + 1, for 1 ≤ β ≤ 2.

For n = 1, the graph 2ST2n is a cycle C4 and its F-centroidal meanness is shown in
Figure 1.

As a result, the graph permits the F-centroidal mean requirement.

Theorem 7. The graph D∗n permits the F-centroidal mean requirement for n ≥ 2.

Proof. Let V(D∗n) = {aα,β : 1 ≤ α ≤ n, β = 1, 2, 3, 4} and E(D∗n) = {aα,1aα+1,1, aα,3aα+1,3 :
1 ≤ α ≤ n− 1} ∪ {aα,1aα,2, aα,2aα,3, aα,3aα,4, aα,4aα,1 : 1 ≤ α ≤ n} be the vertex set and edge
set of the graph D∗n.

Then, the following description of Υ : V(D∗n)→ {1, 2, 3, . . . , 6n− 1} is provided.
For 1 ≤ α ≤ n,

Υ(aα,1) = 6α− 4,

Υ(aα,2) = 6α− 5,

Υ(aα,3) = 6α− 3 and

Υ(aα,4) = 6α− 1.

After that, the generated line assignment Υ∗ is accomplished.
For 1 ≤ α ≤ n− 1,

Υ∗(aα,1aα+1,1) = 6α− 1 and

Υ∗(aα,3aα+1,3) = 6α.

For 1 ≤ α ≤ n,

Υ∗(aα,1aα,2) = 6α− 5,

Υ∗(aα,2aα,3) = 6α− 4,

Υ∗(aα,3aα,4) = 6α− 2 and

Υ∗(aα,4aα,1) = 6α− 3.

As a result, the graph permits the F-centroidal mean requirement.

Theorem 8. The diamond ladder graph Dln permits the F-centroidal mean requirement for any
n ≥ 1.

Proof. Let V(Dln) = {xα, yα : 1 ≤ α ≤ n} ∪ {zα : 1 ≤ α ≤ 2n} and E(Dln) =
{xαxα+1, yαyα+1 : 1 ≤ α ≤ n− 1} ∪ {xαyα : 1 ≤ α ≤ n} ∪ {xαz2α−1, xαz2α, yαz2α−1, yαz2α :
1 ≤ α ≤ n} ∪ {z2αz2α+1 : 1 ≤ α ≤ n− 1}.
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Then, the following description of Υ : V(Dln)→ {1, 2, 3, . . . , 8n− 2} is provided.

Υ(xα) = 8α− 6, for 1 ≤ α ≤ n,

Υ(yα) = 8α− 4, for 1 ≤ α ≤ n,

Υ(zα) =


1, α = 1
4α− 2, 2 ≤ α ≤ 2n and α is even
4α− 4, 2 ≤ α ≤ 2n and α is odd.

After that, the generated line assignment Υ∗ is accomplished.

Υ∗(xαxα+1) = 8α− 2, for 1 ≤ α ≤ n− 1,

Υ∗(yαyα+1) = 8α, for 1 ≤ α ≤ n− 1,

Υ∗(xαyα) = 8α− 5, for 1 ≤ α ≤ n,

Υ∗(z2αz2α+1) = 8α− 1, for 1 ≤ α ≤ n− 1,

Υ∗(xαz2α−1) = 8α− 7, for 1 ≤ α ≤ n,

Υ∗(xαz2i) = 8α− 4, for 1 ≤ α ≤ n,

Υ∗(yαz2α−1) = 8α− 6, for 1 ≤ α ≤ n and

Υ∗(yαz2α) = 8α− 3, for 1 ≤ α ≤ n.

As a result, the graph permits the F-centroidal mean requirement.

3. Conclusions

In general, graph labeling has many practical applications in various fields of science
and technology, and its versatility and power make it an important tool for analyzing and
understanding complex systems. The ladder graphs with graph labeling can be applied in
various engineering applications, including image processing, wireless sensor networks,
VLSI design, bioinformatics, and social network analysis, to model, analyze, and optimize
complex systems based on labeled graph representations. An F-centroidal meanness of
various ladder graphs is discussed in detailed. Using alternative graph operations, similar
results can be found for a variety of cyclic ladder, wheel, butterfly, and various step ladder
graphs. In future work, we will study the necessary and sufficient conditions for some
ladder-related graph to be an F-centroidal mean graph.
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