Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives
Abstract
:1. Introduction
2. Preliminary Results
3. Fractional Calculus of Variations
- 1.
- is convex in and for all ;
- 2.
- is concave in and for all ,
- 1.
- If is free, then
- 2.
- If is free, then
- 3.
- If is also free, then
4. Optimization Problems Subject to Constraints
5. Optimization Problems with Arbitrary Fractional Orders
6. Conclusions and Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelfand, I.M.; Fomin, S.V. Calculus of Variations (Revised English Edition. Transl. from Russian); Silverman, R.A., Ed.; Prentice-Hall: Hoboken, NJ, USA, 1963. [Google Scholar]
- Ioffe, A.D.; Tihomirov, V.M. Theory of Extremal Problems (Transl. from Russian); Elsevier: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Mesterton-Gibbons, M. A Primer on the Calculus of Variations and Optimal Control Theory; American Mathematical Society: Providence, RI, USA, 2009; Volume 50. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives (Translated from the 1987 Russian Original); Gordon and Breach: New York, NY, USA, 1993. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Osler, T.J. Leibniz Rule for Fractional Derivatives and an Application to Infinite Series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, D. Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Math. 2020, 5, 7359–7371. [Google Scholar] [CrossRef]
- Seemab, A.; Rehman, M.; Alzabut, J.; Adjabi, Y.; Abdo, M.S. Langevin equation with nonlocal boundary conditions involving a ψ-Caputo fractional operators of different orders. AIMS Math. 2021, 6, 6749–6780. [Google Scholar] [CrossRef]
- Agrawal, O.P. Fractional variational calculus and the transversality conditions. J. Phys. A 2006, 39, 10375. [Google Scholar] [CrossRef]
- Almeida, R.; Torres, D.F.M. Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 2009, 22, 1816–1820. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Torres, D.F.M. Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 2011, 61, 3097–3104. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R. Optimality conditions for fractional variational problems with free terminal time. Discret. Contin. Dyn. Syst. 2018, 11, 1–19. [Google Scholar] [CrossRef]
- Baleanu, D.; Ullah, M.Z.; Mallawi, F.; Saleh Alshomrani, A. A new generalization of the fractional Euler–Lagrange equation for a vertical mass-spring-damper. J. Vib. Control 2021, 27, 2513–2522. [Google Scholar] [CrossRef]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation. Autom. Remote Control 2013, 74, 543–574. [Google Scholar] [CrossRef]
- Butkovskii, A.G.; Postnov, S.S.; Postnova, E.A. Fractional integro-differential calculus and its control-theoretical applications. II. Fractional dynamic systems: Modeling and hardware implementation. Autom. Remote Control 2013, 74, 725–749. [Google Scholar] [CrossRef]
- Baleanu, D.; Tenreiro Machado, J.A.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012. [Google Scholar]
- Zhou, Y. Fractional Evolution Equations and Inclusions: Analysis and Control; Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- van Brunt, B. The Calculus of Variations; Universitext Springer: New York, NY, USA, 2004. [Google Scholar]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R.; Pooseh, S.; Torres, D.F.M. Computational Methods in the Fractional Calculus of Variations; Imperial College Press: London, UK, 2015. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. Introduction to the Fractional Calculus of Variations; Imperial College Press: London, UK, 2012. [Google Scholar]
- Malinowska, A.B.; Odzijewicz, T.; Torres, D.F.M. Advanced Methods in the Fractional Calculus of Variations; Springer Briefs in Applied Sciences and Technology; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Muslih, S.I.; Baleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 2005, 304, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Rabei, E.M.; Nawafleh, K.I.; Hijjawi, R.S.; Muslih, S.I.; Baleanu, D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 2007, 327, 891–897. [Google Scholar] [CrossRef]
- Almeida, R.; Pooseh, S.; Torres, D.F.M. Fractional variational problems depending on indefinite integrals. Nonlinear Anal. 2012, 75, 1009–1025. [Google Scholar] [CrossRef] [Green Version]
- Gregory, J. Generalizing variational theory to include the indefinite integral, higher derivatives, and a variety of means as cost variables. Methods Appl. Anal. 2008, 15, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Martins, N.; Torres, D.F.M. Generalizing the variational theory on time scales to include the delta indefinite integral. Comput. Math. Appl. 2011, 61, 2424–2435. [Google Scholar] [CrossRef] [Green Version]
- Almeida, R. Further properties of Osler’s generalized fractional integrals and derivatives with respect to another function. Rocky Mountain J. Math. 2019, 49, 2459–2493. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, R. Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives. Mathematics 2023, 11, 3208. https://doi.org/10.3390/math11143208
Almeida R. Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives. Mathematics. 2023; 11(14):3208. https://doi.org/10.3390/math11143208
Chicago/Turabian StyleAlmeida, Ricardo. 2023. "Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives" Mathematics 11, no. 14: 3208. https://doi.org/10.3390/math11143208
APA StyleAlmeida, R. (2023). Euler–Lagrange-Type Equations for Functionals Involving Fractional Operators and Antiderivatives. Mathematics, 11(14), 3208. https://doi.org/10.3390/math11143208