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Abstract: In this paper, we address Hardy-Hilbert-type inequality by virtue of constructing weight
coefficients and introducing parameters. By using the Euler-Maclaurin summation formula, Abel’s
partial summation formula, and differential mean value theorem, a new weighted Hardy-Hilbert-type
inequality containing two partial sums can be proven, which is a further generalization of an existing
result. Based on the obtained results, we provide the equivalent statements of the best possible
constant factor related to several parameters. Also, we illustrate how the inequalities obtained in the
main results can generate some new Hardy-Hilbert-type inequalities.
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1. Introduction

The famous Hardy-Hilbert inequality is as follows (see [1]):

1 1
Ly i AN W
m=1n= m+n sin(rc/p) m=1 " n=1 !
where p > 1, %+%:1 am, by > 0,0 < Y% _qah < cand 0 < Y%, b < oo, the

constant factor Sm( 75) being the best possible.

Krni¢ and Pecari¢ [2] provided a parameterized extension of the Hardy—Hilbert in-
equality, as follows:

1

1
0 00 00 P | oo q
Z Z ambn < B(All )\2) l Z mp(l_/\l)_laz/l‘| [Z nq(l_/\z)_le‘| (2)

m=1 n=1

where A; € (0,2] (i = 1,2),A1 + Ay = A € (0,4], the constant factor B(A1, Ap) being the
best possible. Here, B(u, v) is the beta function, which is defined as follows:

o XU 1
B(u,v) := /0 de (u,v>0)

By introducing the notion of partial sums, Adiyasuren et al. [3] presented an unusual
extension of the Hardy—Hilbert inequality, as follows:

1

[ % oo q
— < AA2B(Ag, Az) <Z m”MlAﬁ,> <Z nﬂfAleZ) ®)

m=1 n=1

where A; € (0,1]N(0,A) (i=1,2),A1 + A, = A € (0,2], and the constant factor

—I—n
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AMA2B(Aq, Ay) is the best possible The partial sums, Ay, := )" al and
B, -—Zk 1k (mmne{1,2,---}), satlsfyAm—o( "), By = o(e') (t > 0;m,n — ),
0< 2 m-PM—1AP < o0and 0 < z n—92-1BT < co.

m=1 =1
Huang, Wu and Yang [4] estabhshed an analogous version of inequality (3), which

contains one partial sum B, and three parameters #, 11, #2.

[colENe o}

1
5Oy b F(FAJ)U (kpq (A2 +1))7 (ky (A1)
1
q

=

m=1n=1 (m+1’177])

o0 A I o )
X[ Z (m_rll)p(lf/\l)*lagi]p[ Z (71—772) q)\z 1Bq]
m=1 n=1

where%—i—%:l, p>1,1€(0,2,A0 €(0,3]N(0,A+1), A2 € (0,1]n(0,1),
M= 252 0 A= 252 0 i € (0,4] (1= 1,2), 1 = i+ 72, Bu = Xy s
By = o(et"2)) (t > 0, n — o).
Liao, Wu, and Yang [5] applied a double power function to the weight coefficient and

established the following inequality containing one partial sum in the right-hand side of
the last series:

[c ol

==

1
nlhn S
L L < AGpha (e +1))7 Gk (A1)

o X 1 X 1 @)
x[ ¥ mP=ad)=1gP 1P 15 pall=p(+A2))-1pa1 7
m=1 n=1
where ; + 0 =1 p>1ap€(0,1,A€ (0,5, A € (0,7]N(0,A+1), A2 € (0,5 -1]N

(0, /\+1)
A=A A2+A1 Ay = A= A2+A1 ka1 (A) == BALA+1—A) (i=1,2), By := Y4_, by,

B, =o(e mﬁ) (t>0 n—)oo)
Following the result of [5], Gu and Yang [6] addressed the further extension of Inequal-
ity (5) by imbedding two partial sums in the right-hand side of the series, as follows:

[colENe o}

=

by T(A42 3
i T (P24 D) Gl 1)

1 1 ©
<[5 mtl- 214252+ 7)1 4 AP [i AR+ ”2)]7132]51,
m=1 n=1

where J+1=1,p>1Lape (0,1, A€ (0,4, A € (0,7 -1N(0,A+1),
A€ (0,2 —1N(0,A+1),ky(A;) := B(Ay A =) (i =1,2), A := L] ay,

By =Y} by (mne{l,2,---}), Ay =o(e "y, B, = o(e t”ﬁ) (t>0, mn— o).
Inspired by the aforementioned studies [3-6], in this article, we construct a new
weighted generalized version of Hardy-Hilbert inequality involving two partial sums,
which has a different configuration of weight coefficients compared with the above inequal-
ities (3)—(6). At the end of the paper, we show that our main finding is a generalization
of the above-mentioned results obtained by Adiyasuren et al. [3]. Moreover, based on
the obtained results, we are able to uncover the equivalent conditions of the best possible
constant factor associated with several parameters. Also, we illustrate how the inequalities
obtained in the main results can generate some new Hardy-Hilbert-type inequalities.
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2. Preliminaries and Lemmas

In this section, we present several lemmas that are necessary to prove our main results.
Below, we denote the set of conditions using (C1), which is repeated in subsequent sections.

(Cl)p>1,%+%=1,/\e(0,4],04,,86(0 1] Ale(— 2 _n(-1L,A+1),

M (=13 -1N(-LA+1)A =222 4 AR, =k B
A, by > 0(m,n € N ={1,2, ---}),Am = ijl aj,By = Zk:l b, A = o(e™"),

[ee] ~ [ee] ~
B, = o(et”ﬁ) (t>0,mn—o0),0< ¥ mPMIAP 00,0 < Y n~ P27 1B) < oo,

m=1 n=1

In order to estimate the weight coefficients, we first introduce the following results
related to Euler-Maclaurin summation formula.

Lemma 1. (see [4,5,7]) (i) If (=1)' L¢(t) > 0, t € [m, 0) (m € N) with
¢ (c0) =0 (i =0,1,2,3), P;(t), B; (i € N) are the Bernoulli functions and the Bernoulli
numbers of i-order. Then:

0 B
/m Py ()g(t)dt = —sqz—z;g(m) (O<eg<l;g=1,2-). @)

In particular, for g = 1, in view of By = %, we have:

—58m) < [Pz <o; ®)
forq =2, in view of By = 30, we have:
0< [Pttt < py(m). ©)

(ii) If f(t)(> 0) € C3[m, o), f)(c0) = 0(i = 0,1,2,3), then we have the following Euler—
Maclaurin summation formula:

= [7 e+ 3pom + [T R f (1, (10)
k—m m Jm

[P (e = =57/ om)+ ¢ [ Py (e )

Next, we establish the inequalities for wezght coefficients by means of Lemma 1.

Lemma 2. Fors € (0,6], s, € (0, %] N (0,s), ks(s2) := B(sa,s — s2), we define the following

weight coefficient:
wosn) yo PP N 12
@s(sp,m) 1= m Elm(mg ) (12)
Then, we have:
1
0 < ks(s2)(1— O(W)) < @s(sp,m) < ks(sp) (m € N). (13)
1 106 u2 1
where O( aSZ) = ey o (e sdu > 0.

Proof. For fixed m € N, we define a function g(m, t) using
L /Si‘ﬁs27]
g(m,t):= (T Y (t>0).
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Using (10), we obtain:

ngn [ g(m, t)dt + $g(m, 1) + [~ P(t)1g' (m, t)dt

_fo (m, t)dt — h(m),
fo m, t)dt—%g(m, 1) — [ Py(t)g' (m, t)dt.

It follows from the function g(m, t) that —1g(m, 1) = . Moreover, integration

—B
2(ma+1)°"
by parts yields the following:

tﬁsz 1 u t.B us2— 1
fo m, t)dt = IBfo (ma+t[3 fo 7”“
du®2 f
0 (m® )’ s (m"‘"‘“ 0 m“Jru 1Y
_1_ 1 dys2+1
=5 (ma+1)s + 52(52+1) fo (ma+u>s+]

1_ 1 s w2tl 1 s(s+1) 1 s+l
52(5241) [(m"‘—&-u)SH]O 52052 +1) (A1) 72 Jo w2t idu
A 1 + s(s+1) 1
$2(52+1) (ma41)t1 7 sa(s2+1)(s242) (ma41)"27
o . 7ﬁ(/552 l)tﬁsz 2 Igzstﬁﬂisz 2
g(mt) = =yt g
_ B(Bsp—1)tP272 | Bs(mt+tF—m*) 272 B(Bs—Psp+1tF272 BRsmt P22

(m“+t/3)s (m"‘+ti8)s+1 (m”‘thﬁ)s (m"‘+tﬂ)s+1 ’

Note that, for 0 < s, < 2,0 < B <1,sp <s < 6,itholds that:

/5/
. di t,BSZ_Z . di tﬁSZ—Z

V) 0,(-1)' =[——=7 0(i=0,1,2,3).
( )dtl (mp(+tﬁ)5]> /( )dtl (mﬂ+tl3)s+1]> (Z , 1,2, )

Hence, using (8)—(11), we acquire:

Psy—2

B(Bs — Bs2+1) [ Pi(t) Y dt > — BlBs—Bsatl)

12(m"‘+1)5 ’
Bsp—2
_ ‘Bzmasfloo Pl(t) W:fwdt

. B2m®s . Bm®s ® po(t ¢Bsp—2 " dt
12(me 1)1 f1 (m"‘+tﬁ)s+1]

S pPmts ,Bzm"‘s[ P22 ]//
12(m"‘+1)s+1 720 (m”‘+tﬁ5)s+] t=1

Br(m*+1-1)s _ pA(m*+1)s [(s+1)(s+2)ﬁ2 1 BlH)(5=p=2psy) (Z*ﬁsz)(C’*,Bsz)]
12(m“+1)5+1 720 (m”‘+l)s+3 (ma+1)s+2 (ma+1)s+1

_ B ps

To12(mt 1) 12(me+1) !

_LZS[(SH)(SJrZ)ﬁZ + B(s+1)(5—B—2Ps) + (2—Bs2) (3~ ﬁsz)].

700 (met1)°t? (me+1)"H! (me+1)°
Note that h(m) > (mwlﬂ)s hy + (mafl)sﬂ hy + (n:w(i;s)ﬂ h3, where

heo—= L1 _B_ B—pB’sy _ 1325(2—1352)(3—/552)
1- 12

Sp 2
o 1B W
27 S+l | 12 720
— 1 Bt (s+2) -y
and h3z := ST 70 . We find:

st _B_B- B2 sp*(2—Ps2)(3—Ps2) _ g(s2)
=g 2 12 720 720s,”
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where we define the function g¢(¢) (o € (0, %]) by
g(0) := 720 — (4208 + 65B%)o + (608> + 55p°) 0> — sBic.
Thus, we deduce that for g € (0,1],s € (0, 6],

¢'(0) = — (4208 + 65B2) + 2(608? + 5sB%)c — 3B%0?
—4208 — 6p> +2(60p> + 55p%) 5 = (145 — 180)B < 0,

and then it follows that iy > %((s)iz > g7(220/£ ) = é > 0. We find that for s, € (0, %},

B> B> 5(s+1)p? 1 s+1

BB _5s+1p 1 2
hy > (2~ 120 P >0

and h3 > (5 — $52)B° >0 (0 <s <6).
Hence, we have /(m) > 0. Now, setting u = m~*t#, we obtain the following:

@s(sp,m) = m*(5752) Zg(mn)<m s752) [ g (m, t)dt
n=1

_ o thaldr _ oo w2 ldu _ =
51,”06 5— sz)f o T 0 Lzl—&-u)u B(SQ,S — 52) = ks(SZ).

On the other hand, using (10), we have:

ngn [ g(m, t)dt + 3g(m, 1) + [~ Py(t)g (m, t)dt

= [ g(m, t)dt + H(m),
H(m) = 58(m, 1) + [" Pr(£)g' (m, )dt

s, and

We obtain Jg(m,1) = %

_ B(Bs — Bsa + 1)tP22  prsmtb2
(e + tF)° (e t6)"H

g (m,t) =

Fors; € (0, %] (0,5),0 < s < 6,by (7), we find
Bsp—2
—B(Bs — Bs2+ 1) [ Pi(t fﬂitﬁ) dt > 0, and
1Bs2—2 [BZmrxs ,st
P (t) ———=dt > — > — .
‘B /1 1( )(m"‘ + t‘B)erl 12(m"‘ + 1)s+1 12(m“ + 1)5

Hence, we obtain:

Hom > P Bs . 68

2me+1)°  12m*+17 ~ 2mc+1)° 12(m*+1)7

and then we deduce:
@s (Sz,m) — m(s—s2) ozo: g(m,n) > mtx(s—sz)floo g(m,t)dt
n=1
= m*752) [ ¢ (m, t)dt — m“(S’SZ)fl g(m, t)dt

1
1
1) 0"’“ 27 gyl >0,

= ks(s2) | 1= i 0" oy



Mathematics 2023, 11, 3212

6 of 13

We now set O( ;) fo " (Iﬁ_ 7 sdu, satisfying

1 so—1 1
x o2 x 1
< /m ——du < /m u2 " ldy = .
0o (14u) 0 Spm*%2

The two-side inequalities in (13) are derived. This proves Lemma 2.

Next, we address an extended Hardy-Hilbert inequality, which is essential for proofing
our main results in the next section.

Lemma 3. Under the assumption (C1), we have the following Hardy—Hilbert-type inequality:

®© © a—1,p-1 1
hiaim £ B 2000 408, < (. p(h + 1) (bl + 1)
n=1m=

1 1
X ( OZO‘, mp"‘j‘llAf;) ’ ( Y nqﬁ;\leZ> !

m=1 n=1

= (=

(14)

Proof. Based on the results found using Lemma 2, and by means of the principle of
symmetry, for s; € (0, %] N (0,s),s € (0,6], we can obtain the following inequalities for
another weight coefficient:

)< ws(sy,n)

0 < ks(s1)(1 — O(

o ‘ 15)
L _ ucm’“lfl . (
= n/s(s Sl)mél (m"‘+nﬂ)s < ks(Sl) = B(S],S — Sl)(l’l S N),
1 ﬁ T
where O( ﬂﬁ) = e Jo iy sdu > 0.
By utilizing Holder’s inequality [8], we obtain:
® X «(=M)/a(ppp-1)P nB(=22)/p (gma—1)1/1
_ 1 m (Bnf—") a—1 2P (am® )7 g1
2= ngl mgl (m“+nﬂ)A+2 |:nﬁ(_)‘2)/p(vém”‘l)1/q Am:| |: (= Al)/q(ﬁnﬁfl)l/pn B,
1 1
< OZO: O pmPD)  a(=A)(p=1) -1 4P | P OZO: S B nﬁ( A2)(4=1)pa-1g1 | 4
T LnZ1 w1 me ) nP A e )P 2 () et R (1)1

==

1/ ® 5 1
= (%) ()7 ( g @)r12(A2 + 1,”1)”1_”“)‘1_1145;1) g

(Z w2 (A +1,n)n A= 1Bq>
n=1

Further, using (13) and (15) (fors = A +2,s; = A; +1(i = 1,2)), together with the
assumption condition (C1), we derive the desired Inequality (14). Lemma 3 is proved. [J

In the following, we prove two inequalities related to the partial sums in preparation
for establishing a Hardy-Hilbert-type inequality involving partial sums.

Lemma 4. Under the assumption (C1), for t > 0, the following inequalities hold true:

Z et g, < ta Z et a1, (16)
m=1 m=1
Z e_t”ﬁbn < t,BZ e_t”ﬁnﬁ_an. (17)

n=1 n=1
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Proof. In view of A,e ™ =o(1)(m — ), applying Abel’s summation using a parts
formula provides:

3
118
o

—tmty = hmA et 4 Z Am|: gmtm® _ g=t(m+1)"
1 m=1

:mgl A [e—fm _ e tmt1)* }

Set ¢(x) = e, x € [m,m + 1]. We conclude that g’(x) = —tax*le™"", and for
€ (0,1],h(x) := x*Le=*" is decreasing in [m, m + 1].
By using the differential mean value theorem, we have

OZO‘, ety = — of: Ap(g(m+1) —g(m))

= - Amg (m+0)=ta OZOJ h(m+0)Ay

m m=1
< ta Z h(m)A, =ta Y m* e A, (6 € (0,1)),
m=1 m=1

which leads to Inequality (16). In the same way as above, we can derive the inequality (17).
Lemma 4 is proved. [

3. Main Results

Theorem 1. Under the assumption (C1), we have the following Hardy—Hilbert-type inequality
involving two partial sums:

(ool o}

1
I:= 21 21 (mziinﬁ)A < "‘ABHrA(j\rz (;SkA+2(/\2 +1))7 (ka2 (A1 +1))
m n

= (=

[ 1 [ 1 (18)
x( 5 mPMllA,’;) ’ ( v nqﬁﬁle,Z> !
m=1 n=1
In particular, for Ay + Ay = A, we have:
(e o0
0< Y m PMTIAL < 00,0 < Y n 9PR1B] < o,
m=1 n=1
and the following inequality:
R amby sl (/\+2)
mélngl (m“+n5)A< B0y B(A1+1,A,+1)
0 1 o] 1 (19)
><< Y lelAfn) ’ ( Y anlBZ) "
m=1 n=1
Proof. By virtue of the expression
1 _ 1 /°° A= = (Pt g
(me+nfY* T(A)Jo
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and using (16) and (17), it follows that

[= L E oi ﬂmbnfooo pA=1 o= (m*4nP)t 34

ﬁfom tA_1< Y e_'”“tam) ( Y e‘”ﬁtbn)dt

n=1
-1 <t¢x y e’"atm”‘lAm) (t/% Y e"ﬁfnﬁ13n>dt
m=1 n=1

A
i § E m“’lnﬁ’lAmanooo A= (mt+nP)t gy
m=1n=1

IN
2
o%

oA T(A2) & & eyl
= D‘ﬁ 1"(/\) mZ:;1 ngl (ma+n/3)?x+2 AmBn

Furthermore, by virtue of Inequality (14), we deduce Inequality (18). This proves that
Theorem 1 is complete. U

In the following theorems, we provide some equivalent statements of the best possible
constant factor related to several parameters in (18).

Theorem 2. For Ay + Ay = A € (0,4, if A1 € (0, —1]N(0,4),A2 € (0, 5 — 1] N (0, ), then
the constant factor

1 1

“ﬁW(;kA+z(/\z + 1));; (%k)\-i-z()H + 1))q

in (18) is the best possible.

Proof. We first prove that the constant factor

I'(A+2)

1 1
ey B(A1+1,A2 4 1)(= a? B1A1A2B(A1, A2))

1 1
anﬁq

in (19) is the best possible in the condition.
For any 0 < ¢ < min{pAy,gAy}, we set:

Ay 1= m“(Al_%)_l,En = nﬁ()‘z_s)_l(m,n eN)

Note that 0 < A; — % < % —1,0 < a(A; — %) < 2 —w < 2, according to the result
(2.2.24) described in [7], we have:

Api= Y@=y fMmp) o pmpaa=5)-1y,

D]+ e — &) — 1M ]

:%(ma(?u p)+cl+o( “(’\1_5)_1)1)
a(A—%) _
< WD (1 ferm N 4 j0(m 1) (6o € (0,1);m € N,m — oo).
P
Using the same method, for 0 < g(A; — %) < 2, we obtain:

ﬁ(/\z—g) *
Zbk BTy (Lt lealn” P20 4 10a(n 1)) (1 € Njn — o0)
g

ci(i = 1,2) are constants. We deduce that A, = o(e™"), B, = o(e!") (t > 0;m,n — o0).
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If there is a constant M (< & v IB% r%/tj\rZ B(A1+1,A2 4+ 1)) such that (19) is valid when

we replace ar ﬁ'i r}Ej\_)z \B B(A1 +1,A2 +1) by M, then from the particular substitution of

Am = Am, by = bn, Ay = Ay and B, = B, in (19), we have

1

1 1
[ee] . 14 (ee] - q
< M( Y mr’MllA,’;> (2 nqﬁAleZ> (20)

m=1 n=1

For a(x) — 0(x — o0), we obtain:

lim%: lim ? p(L+a()"a'(x) _ = limp(1 +a(x))P ' =p,

X—00 a(x) X—00 a’(x) X—00

and then (1 +a(x))” =1+ O(a(x))(x — o). So, we have:

1(m=H)])?
1

D((/\lf |
+[O1(m~ 1)) (m € N;m — o0).

(1+ ‘C1|m7 )
a(A—3)

=1+0(|c1|m

Thus, we acquire:

) —~ p o0 _ _ £ p
 mPNlAD < Luﬁn] L (U fefm M+ O(m 1)
m=

m=1 E

1P

14 O(fey m ™M1 5 4 jO(m~)1])]

I
2]
=
|
o)
3
1018
L

e 14 Y O(|eylm MO L jo(mee2)1))
2 m=1

m=eet 4 01(1))

Tre

p
— 1
el [

1P

I
2]
=
“‘ [
Joo|
3
1018

2

r 7 p
< a(/\ll_ ) (fl x—as—ldx+O1(1)) = L‘(/\ll—;):| (é‘l»ol(l)).

Similarly, we have:

i n—9Br2—1B1 [11 q(l +05(1))
T B(A ) '

n=1

Furthermore, we obtain;

~ M 1 1 1 e 1
TR (s o) (5+0m)”

By virtue of (15) (fors = A € (0,4],51 = A1 — % c (0,% —1]N(0,A)), we still have:

T § 9w -1 1R gt [0t ) § ot
( ' m=1 (m*+nP)
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From the above results, it follows that:

1B(A1 — 5,20+ £) (3 —<0s(1)

=

1
T 1 1 1 P(1 q
<€I<er(/\ 7%)/3(/\27;)(&4'801(1)) (B-FEOQ(l)) .

1

Setting ¢ — 0T, by means of the continuity of the beta function, we find

sponsssghe () G).

T(A+2)
T'(A)

ie.,

1 1 1 1
wr B B(A+1,A3+1) = a? BiA1AB(A1, A7) < M.

Consequently, M = a%ﬁ%

F(FA(X)Z) B(Aq 4 1,A; + 1) is the best possible constant factor

in (19), which implies that the constant factor in (18)

-

1
1 7.1 q
2kya(A2+1)) (&kHz(M +1))

=

T(A+2)
“$7rn (B

is the best possible. This proves Theorem 2. []
Theorem 3. If the constant factor in (18)

1 71 1

(ghra(a 1) (i +1))°

is the best possible, then for

A=A —Ap < min{p(i -1 —Al),q(é —1—)\2)}
we have A + Ay = A.

Proof. For A; = )‘%\24-% = #—i—/\l,f\z = )‘_T)‘l—b—% = #—k)\z, we
observe that

}A\1+)A\2:A,and0<}\1,)12 < %+%=)\.

Now, for A — A1 — Ay < p(%—l—/\l),wehaveﬁl < %—1; for A — A1 — Ay <
q(% —1— ), we have A, < % -1

Substitution of A; = A; (i = 1,2) in (19), we still have:

[c ol o]

=

r(A A A
LB + 1,42+ 1)

x( r mPMllAﬁ) ' ( r nqﬁﬁleZ) g

m=1 n=1

1
amby v
— I w P
m=1n=1 (m’urnﬁ)/\ p
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By applying Holder’s inequality [8], we deduce that:
B(A1+1,A3+1) =kaa(352 + 4 +1)
o0 Ay A M
= fO (1+'})/\+2u 4 + ‘I d = fo 1+u A+2 (u i’ ) (u 1 >du
1 1
) _ P 0 q
> 1o (1+3)"*2 ul )‘Zdu} {fo (H;)HZuAldu} (22)

[ 1
T |

o P [ oo 7
Jo” vhdv] {fo T ”Md”]
1 1
= (ky p(A2+1))P (k) n(A1+1))7.

If the constant factor ocIBM (llskAJrz()\z + 1)) (Lkyn(M41)) g in (18) is the best

possible, then, by comparison w1th the constant factors in (18) and (21), we have the
following inequality:

=

wBTD (L (A +1))7 (My (A + 1))

<appi T B(A + 1,4+ 1)

it follows that:
A A 1 1
B(A +1, A2 +1) 2(kyp(A2+1))7 (ky (A1 +1))7 (23)

Hence, with the aid of (22), we obtain:

e

. R 1
B(A1+1,A2 +1) =(ky2(A2 +1))7 (ky 2 (A1 + 1))

and (22) takes the form of equality.

We observe that the equality holds in (22) if and only if there exist constants A and B,
such that they are not both zero satisfying (see [8]): Aur "2 = BuM g.e. in R. Without loss
of generality, let A # 0, one has urMh = % ae.in Ry, thatis A — Ay — Ay = 0. Hence,
A1+ A2 = A. The proof of Theorem 3 is complete. [J

Remark 1. Putting o« = B = 1 in Inequality (19) with an application of the identity:

T(A+2)

ey B(A1+1,A02 +1) = A1A2B(Aq, Ag)

we obtain Inequality (3). Hence, Inequalities (18) and (19) are generalizations of Inequality (3)
obtained by Adiyasuren et al. in an earlier paper [3].

Remark 2. As a direct application of the main result in Theorem 1, we can derive more Hardy—
Hilbert-type inequalities from special cases of the parameters.
(i)  Choosinga = B = %,A; € (0,3] N (0,A) (i = 1,2) in (19), we obtain

5 b G < 2P

1 1
( v m21AP)p ( > n"ﬁleZ)".
m=1

(ii) Choosingw = B = % A; € (0,4] N (0,A) (i = 1,2) in (19), we obtain:

(24)



Mathematics 2023, 11, 3212 12 of 13
(o) (o)
amby )‘1/\2
< B(Aq, Ao
mélnzl(\ﬁ"‘\F))L ( ! )
1 (25)

References

1
A P o A
(Eor o) (£ )
m=1 n=1

(iii) Takinga = B =A=1,A1 = 1, Ay = L in (19), we obtain:

1
q’ p

1 1
b [e] _ 14 o] _ q
”n<z m PA51> (Zn qBZ) ) (26)
m=1 n=1

(iv) Takinga =Pp=A=1 A = %,Az = % in (19), we obtain:

m=1n=1 m—+

[e) [e9) mbn B o _ %
m; ;m—i—n @ <Zm 2A”> (nz_ln 232) . (27)

pq sin( 5

(v) Taking p = q = 2 in Inequalities (26) and (27) provides:

1
b ) 00 2
L Lt i(Emea ) @)
m=1 n=1

m=1n=

It is worth noting that the constant factors in the above inequalities are the best possible.

4. Conclusions

In this study, by using the idea of constructing weight coefficients and introducing
parameters, we establish a new weighted generalization of a Hardy—Hilbert-type inequality
involving two partial sums. Our main result is stated in Theorem 1. In order to illustrate
the innovation of the current results, in Remark 1, we show that Inequalities (18) and (19)
asserted by Theorem 1 are generalizations of the results presented by Adiyasuren et al. [3].
In Theorem 2 and Theorem 3, we propose and prove two results on equivalent statements
of the best possible constant factor related to several parameters, which reveals the essential
characteristics of this type of Hardy-Hilbert inequality. In Remark 2, we show some
applications of the main results in establishing new inequalities. With regards to the future
orientation of research, we notice that more and more researchers have paid attention to
the extension of classical inequalities via fractional calculus in recent years [9-12]. We hope
that the present results and some existing results about Hardy—Hilbert-type inequalities
can be extended to the case of fractional calculus.
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