
Citation: Zaslavski, A.J. Global

Convergence of Algorithms Based on

Unions of Non-Expansive Maps.

Mathematics 2023, 11, 3213. https://

doi.org/10.3390/math11143213

Academic Editors: Wei-Shih Du,
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Abstract: In his recent research, M. K. Tam (2018) considered a framework for the analysis of iterative
algorithms which can be described in terms of a structured set-valued operator. At each point in the
ambient space, the value of the operator can be expressed as a finite union of values of single-valued
para-contracting operators. He showed that the associated fixed point iteration is locally convergent
around strong fixed points. In the present paper we generalize the result of Tam and show the global
convergence of his algorithm for an arbitrary starting point. An analogous result is also proven for
the Krasnosel’ski–Mann iterations.
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1. Introduction

The study of the fixed point theory of non-expansive operators [1–9] has been a
rapidly growing area of research since Banach’s classical result [10] on the existence of a
unique fixed point for a strict contraction. Numerous developments have taken place in
this area including, in particular, studies of feasibility, common fixed point problems and
variational inequalities, which find important applications in engineering, medical and the
natural sciences. See [1,7–9,11–16] and the references therein. In [17], a framework was
suggested for the analysis of iterative algorithms, determined by a structured set-valued
operator. For such algorithms it was shown in [17] that the associated fixed point iteration
is locally convergent around strong fixed points. In [18], an analogous result was obtained
for Krasnosel’ski–Mann iterations. In the present paper we generalize the main result
of [17] and show the global convergence of the algorithm for an arbitrary starting point.
An analogous result is also proven for the Krasnosel’ski–Mann iterations.

2. Global Convergence of Iterates

Let (X, ρ) be a metric space and C ⊂ X be its non-empty, closed set. For each x ∈ X
and r > 0, put

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.

For each x ∈ X and non-empty set D ⊂ X, set

ρ(x, D) = inf{ρ(x, y) : y ∈ D}.

For each mapping S : C → C, define

Fix(S) = {x ∈ C : S(x) = x}.

Fix
θ ∈ C.

Suppose that the following assumption holds:
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(A1) For each M > 0, the set B(θ, M) ∩ C is compact.
Assume that m is a natural number, Ti : C → C, i = 1, . . . , m are continuous operators

and that the following assumption holds:
(A2) For each i ∈ {1, . . . , m}, z ∈ Fix(Ti), x ∈ C and y ∈ C \ Fix(Ti), we have

ρ(z, Ti(x)) ≤ ρ(z, x)

and
ρ(z, Ti(y)) < ρ(z, y).

Note that operators satisfying (A2) are called para-contractions [19].
Assume that for every point x ∈ X, a non-empty set

φ(x) ⊂ {1, . . . , m} (1)

is given. In other words,
φ : X → 2{1,...,m} \ {∅}.

Suppose that the following assumption holds:
(A3) For each x ∈ C there exists δ > 0 such that for each y ∈ B(x, δ) ∩ C,

φ(y) ⊂ φ(x).

Define
T(x) = {Ti(x) : i ∈ φ(x)} (2)

for each x ∈ C,
F̄(T) = {z ∈ C : Ti(z) = z, i = 1, . . . , m} (3)

and
F(T) = {z ∈ C : z ∈ T(z)}. (4)

Assume that
F̄(T) 6= ∅.

Denote by Card(D) the cardinality of a set D. For each z ∈ R1, set

bzc = max{i : i is an integer and i ≤ z}.

In the following we suppose that the sum over an empty set is zero.
We study the asymptotic behavior of sequences of iterates xt+1 ∈ T(xt), where t =

0, 1, . . . . In particular, we are interested in their convergence to a fixed point of T. This
iterative algorithm was introduced in [17], also containing its application to sparsity-
constrained minimisation.

The following result, which is proven in Section 4, shows that almost all iterates of our
set-valued mappings are approximated solutions of the corresponding fixed point problem.
Many results of this type are reported in [8,9].

Theorem 1. Assume that M > 0, ε ∈ (0, 1) and that

F̄(T) ∩ B(θ, M) 6= ∅. (5)

Then an integer Q ≥ 1 exists such that for each sequence {xi}∞
i=0 ⊂ C which satisfies

ρ(x0, θ) ≤ M

and
xt+1 ∈ T(xt) for each integer t ≥ 0



Mathematics 2023, 11, 3213 3 of 11

the inequality
ρ(xt, θ) ≤ 3M

holds for all integers t ≥ 0,

Card({t ∈ {0, 1, . . . , } : ρ(xt, xt+1) > ε}) ≤ Q

and limt→∞ ρ(xt, xt+1) = 0.

The following global convergence result is proven in Section 5.

Theorem 2. Assume a sequence {xt}∞
t=0 ⊂ C and that for each integer t ≥ 0,

xt+1 ∈ T(xt).

Then
x∗ = lim

t→∞
xt

and a natural number t0 exist such that for each integer t ≥ t0

φ(xt) ⊂ φ(x∗)

and if an integer i ∈ φ(xt) satisfies xt+1 = Ti(xt), then

Ti(x∗) = x∗.

Theorem (2) generalizes the main result of [17], which establishes a local convergence
of the iterative algorithm for iterates starting from a point belonging to a neighborhood of
a strong fixed point belonging to the set F̄(T).

3. An Auxiliary Result

Lemma 1. Assume that M, ε > 0 and that z∗ ∈ C satisfies

Ti(z∗) = z∗, i = 1, . . . , m. (6)

Then δ > 0 exists such that for each s ∈ {1, . . . , m} and each x ∈ C ∩ B(θ, M) satisfying

ρ(x, Ts(x)) > ε (7)

the inequality
ρ(z∗, Ts(x)) ≤ ρ(z∗, x)− δ (8)

is true.

Proof. Let s ∈ {1, . . . , m}. It is sufficient to show that δ > 0 exists such that for each
x ∈ C ∩ B(θ, M) satisfying (7), Inequality (8) is true. Assume the contrary, then for each
integer k ≥ 1, there exists

xk ∈ C ∩ B(θ, M) (9)

such that
ρ(xk, Ts(xk)) > ε (10)

and
ρ(z∗, Ts(xk)) > ρ(z∗, xk)− k−1. (11)

In view of (A1) and (9), extracting a subsequence and re-indexing, we may assume
without loss of generality that there exists

x∗ = lim
k→∞

xk. (12)
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From (9)–(12) and the continuity of Ts,

ρ(x∗, θ) ≤ M,

ρ(x∗, Ts(x∗)) = lim
k→∞

ρ(xk, Ts(xk)) ≥ ε

and
ρ(z∗, Ts(x∗)) ≥ ρ(z∗, x∗).

This contradicts (6) and (A2). The contradiction reached proves Lemma 1.

4. Proof of Theorem 1

From (5), there exists
z∗ ∈ B(θ, M) ∩ F̄(T). (13)

Lemma 1 implies that δ ∈ (0, ε) exists such that the following property holds:
(a) for each s ∈ {1, . . . , m} and each x ∈ C ∩ B(z∗, 2M) satisfying

ρ(x, Ts(x)) > ε

we have
ρ(z∗, Ts(x)) ≤ ρ(z∗, x)− δ.

Choose a natural number
Q ≥ 2Mδ−1. (14)

Assume that {xi}∞
i=0 ⊂ C,

ρ(x0, θ) ≤ M (15)

and that for each integer t ≥ 0,
xt+1 ∈ T(xt). (16)

Let t ≥ 0 be an integer. From (2) and (16), s ∈ {1, . . . , m} exists such that

xt+1 = Ts(xt). (17)

Assumption (A2) and Equations (3), (13) and (17) imply that

ρ(z∗, xt+1) = ρ(z∗, Ts(xt)) ≤ ρ(z∗, xt). (18)

Since t is an arbitrary non-negative integer, Equations (13), (15) and (18) imply that for
each integer i ≥ 0,

ρ(z∗, xi) ≤ ρ(z∗, x0) ≤ 2M (19)

and
ρ(xi, θ) ≤ 3M.

Assume that
ρ(xt+1, xt) > ε. (20)

Property (a) and Equations (17), (19) and (20) imply that

ρ(z∗, xt+1) = ρ(z∗, Ts(xt)) ≤ ρ(z∗, xt)− δ.

Thus, we have shown that the following property holds:
(b) if an integer t ≥ 0 satisfies (20), then

ρ(z∗, xt+1) ≤ ρ(z∗, xt)− δ.
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Assume that n ≥ 1 is an integer. Property (b) and Equations (18)–(20) imply that

2M ≥ ρ(z∗, x0) ≥ ρ(z∗, x0)− ρ(z∗, xn+1)

=
n

∑
t=0

(ρ(z∗, xt)− ρ(z∗, xt+1))

≥∑{ρ(z∗, xt)− ρ(z∗, xt+1) : t ∈ {0, . . . , n}, ρ(xt, xt+1) > ε}

≥ δCard({t ∈ {0, . . . , n} : ρ(xt, xt+1) > ε})

, and in view of (14),

Card({t ∈ {0, . . . , n} : ρ(xt, xt+1) > ε}) ≤ 2Mδ−1 ≤ Q.

Since n is an arbitrary natural number, we conclude that

Card({t ∈ {0, 1, . . . } : ρ(xt, xt+1) > ε}) ≤ Q.

Since ε is any element of (0, 1), Theorem 1 is proven.

5. Proof of Theorem 2

In view of Theorem 1, the sequence {xt}∞
t=0 is bounded. In view of (A1), it has a limit

point x∗ ∈ C and a subsequence {xtk}∞
k=0 such that

x∗ = lim
k→∞

xtk . (21)

In view of (A3) and (21), we may assume without loss of generality that

φ(xtk ) ⊂ φ(x∗), k = 1, 2, . . . (22)

and that
p̂ ∈ φ(x∗)

exists such that
xtk+1 = Tp̂(xtk ), k = 1, 2, . . . . (23)

It follows from Theorem 1, the continuity of Tp̂ and Equations (21) and (23) that

Tp̂(x∗) = lim
k→∞

Tp̂(xtk ) = lim
k→∞

xtk+1 = lim
k→∞

xtk = x∗. (24)

Set
I1 = {i ∈ φ(x∗) : Ti(x∗) = x∗}, I2 = φ(x∗) \ I1. (25)

In view of (24) and (25),
p̂ ∈ I1.

Fix δ0 ∈ (0, 1), such that

ρ(x∗, Ti(x∗)) > 2δ0, i ∈ I2. (26)

Assumption (A3), the continuity of Ti, i = 1, . . . , m and (26) imply that δ1 ∈ (0, δ0)
exists such that for each x ∈ B(x∗, δ1) ∩ C,

φ(x) ⊂ φ(x∗), (27)

ρ(x, Ti(x)) > δ0, i ∈ I2. (28)
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Theorem 1 implies that an integer q1 ≥ 1 exists such that for each integer t ≥ q1,

ρ(xt, xt+1) ≤ δ0/2. (29)

Assume that
ε ∈ (0, δ1), (30)

t ≥ q1 (31)

is an integer and that
ρ(xt, x∗) ≤ ε. (32)

It follows from (27), (28), (30) and (32) that

φ(xt) ⊂ φ(x∗) (33)

and
ρ(xt, Ti(xt)) > δ0, i ∈ I2. (34)

In view of (33),
s ∈ φ(x∗)

exists such that
xt+1 = Ts(xt). (35)

From (29), (31) and (35),

ρ(xt, Ts(xt)) = ρ(xt, xt+1) ≤ δ0/2. (36)

It follows from (25), (34) and (36) that

s ∈ I1, Ts(x∗) = x∗.

Combined with Assumption (A2) and Equations (32) and (35), this implies that

ρ(xt+1, x∗) = ρ(Ts(xt), x∗) ≤ ρ(xt, x∗) ≤ ε.

Thus, we have shown that if t ≥ q1 is an integer and (32) holds, then (33) is true and if
s ∈ φ(x∗) and (35) holds, then s ∈ I1 and ρ(xt+1, x∗) ≤ ε.

By induction and (21), we obtain that

ρ(xi, x∗) ≤ ε

for all sufficiently large natural numbers i. Since ε is an arbitrary element of (0, δ1), we
conclude that

lim
t→∞

xt = x∗

and Theorem 2 are proven.

6. Krasnosel’ski-Mann Iterations

Assume that (X, ‖ · ‖) is a normed space and that ρ(x, y) = ‖x − y‖, x, y ∈ X. We
use the notation, definitions and assumptions introduced in Section 2. In particular, we
assume that Assumptions (A1)–(A3) hold. Suppose that the set C is convex and denoted by
Id : X → X the identity operator: Id(x) = x, x ∈ X. Let

κ ∈ (0, 2−1).

We consider the Krasnosel’ski-Mann iteration associated with our set-valued mapping
T and obtain the global convergence result (see Theorem (4) below), which generalizes the
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local convergence result of [18] for iterates starting from a point belonging to a neighbor-
hood of a strong fixed point belonging to the set F̄(T).

The following result is proven in Section 7.

Theorem 3. Assume that M > 0, ε ∈ (0, 1) and that

F̄(T) ∩ B(θ, M) 6= ∅ (37)

Then there exists an integer Q ≥ 1 such that for each

{λt}∞
t=0 ⊂ (κ, 1− κ) (38)

and each sequence {xi}∞
i=0 ⊂ C which satisfies

‖x0 − θ‖ ≤ M

and
xt+1 ∈ (1− λt)xt + λtT(xt) for each integer t ≥ 0 (39)

the inequality
‖xt − θ‖ ≤ 3M

holds for all integers t ≥ 0,

Card({t ∈ {0, 1, . . . , } : ‖xt − xt+1‖ > ε}) ≤ Q

and limt→∞ ‖xt − xt+1‖ = 0.

The following result is proven in Section 8.

Theorem 4. Assume that
{λt}∞

t=0 ⊂ (κ, 1− κ)

and that a sequence {xt}∞
t=0 ⊂ C satisfies (39). Then

x∗ = lim
t→∞

xt

and a natural number t0 exist such that for each integer t ≥ t0

φ(xt) ⊂ φ(x∗)

and if an integer i ∈ φ(xt) satisfies

xt+1 = λtTi(xt) + (1− λ)xt,

then
Ti(x∗) = x∗.

7. Proof of Theorem 3

From (37), there exists
z∗ ∈ B(θ, M) ∩ F̄(T). (40)

Lemma 1 implies that δ ∈ (0, ε) exists such that the following property holds:
(c) for each s ∈ {1, . . . , m} and each x ∈ C ∩ B(z∗, 2M) satisfying

ρ(x, Ts(x)) > ε

we have
ρ(z∗, Ts(x)) ≤ ρ(z∗, x)− δ.
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Choose a natural number
Q ≥ 2Mδ−1κ−1. (41)

Assume that (38) holds and that a sequence {xi}∞
i=0 ⊂ C satisfies (39) and

‖x0 − θ‖ ≤ M. (42)

Let t ≥ 0 be an integer. From (2) and (39), s ∈ {1, . . . , m} exists such that

xt+1 = λtTs(xt) + (1− λt)xt. (43)

Assumption (A2) and Equations (3), (40) and (43) imply that z∗ is a fixed point of Ts
and that

‖xt+1 − z∗‖ = ‖λtTs(xt) + (1− λt)xt − z∗‖

≤ λt‖Ts(xt)− z∗‖+ (1− λt)‖xt − z∗‖ ≤ ‖z∗ − xt‖. (44)

Since t is an arbitrary non-negative integer, Equations (40), (42) and (44) imply that for
each integer i ≥ 0,

‖z∗ − xi‖ ≤ ‖z∗ − x0‖ ≤ 2M

and
‖xi − θ‖ ≤ 3M.

Assume that
‖xt+1 − xt‖ > ε. (45)

It follows from (38), (43) and (45) that

ε < ‖xt+1 − xt‖ = ‖λtTs(xt) + (1− λt)xt − xt‖ = λt‖Ts(xt)− xt‖

and
‖Ts(xt)− xt‖ ≥ ελ−1

t ≥ ε(1− κ)−1. (46)

Property (c) and Equation (46) imply that

‖z∗ − Ts(xt)‖ ≤ ‖z∗ − xt‖ − δ. (47)

From (38), (43) and (47),

‖xt+1 − z∗‖ = ‖λtTs(xt) + (1− λt)xt − z∗‖

≤ λt‖Ts(xt)− z∗‖+ (1− λt)‖xt − z∗‖

≤ λt(‖xt − z∗‖ − δ) + (1− λt)‖xt − z∗‖

≤ ‖xt − z∗‖ − λtδ ≤ ‖xt − z∗‖ − δκ. (48)

Thus, we have shown that the following property holds:
(d) if an integer t ≥ 0 satisfies (45), then

‖z∗ − xt+1‖ ≤ ‖z∗ − xt‖ − δκ.

Assume that n ≥ 1 is an integer. Property (d) and Equations (40), (42) and (44) imply
that

2M ≥ ‖z∗ − x0‖ ≥ ‖z∗ − x0‖ − ‖z∗ − xn+1‖

=
n

∑
t=0

(‖z∗ − xt‖ − ‖z∗ − xt+1‖)

≥∑{‖z∗ − xt‖ − ‖z∗ − xt+1‖ : t ∈ {0, . . . , n}, ‖xt − xt+1‖ > ε}

≥ δκCard({t ∈ {0, . . . , n} : ‖xt − xt+1‖ > ε}),
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and in view of (41),

Card({t ∈ {0, . . . , n} : ‖xt − xt+1‖ > ε}) ≤ 2M(δκ)−1 ≤ Q.

Since n is an arbitrary natural number, we conclude that

Card({t ∈ {0, 1, . . . } : ‖xt − xt+1‖ > ε}) ≤ Q.

Since ε is any element of (0, 1), we can obtain

lim
t→∞
‖xt − xt+1‖ = 0.

Theorem 3 is thus proven.

8. Proof of Theorem 4

In view of Theorem (3), the sequence {xt}∞
t=0 is bounded. In view of (A1), it has a limit

point x∗ ∈ C and a subsequence {xtk}∞
k=0 such that

x∗ = lim
k→∞

xtk . (49)

In view of (A3) and Equations (38), (39) and (49), extracting a subsequence and re-
indexing, we may assume without loss of generality that

φ(xtk ) ⊂ φ(x∗), k = 1, 2, . . . (50)

and that
p̂ ∈ φ(x∗)

exists such that
xtk+1 = λtk Tp̂(xtk ) + (1− λtk )xtk , k = 1, 2, . . . (51)

and that there exists
λ∗ = lim

k→∞
λtk ∈ [κ, 1− κ]. (52)

It follows from Theorem (3), the continuity of Tp̂ and Equations (49), (51) and (52) that

λ∗Tp̂(x∗) + (1− λ∗)x∗

= lim
k→∞

(λtk Tp̂(xtk ) + (1− λtk )xtk )

= lim
k→∞

xtk+1 = lim
k→∞

xtk = x∗. (53)

Set
I1 = {i ∈ φ(x∗) : Ti(x∗) = x∗}, I2 = φ(x∗) \ I1. (54)

In view of (53) and (54),
p̂ ∈ I1.

Fix δ0 ∈ (0, 1) such that

‖x∗ − Ti(x∗)‖ > 2δ0, i ∈ I2. (55)

Assumption (A3), the continuity of Ti, i = 1, . . . , m and (55) imply that δ1 ∈ (0, δ0)
exists such that for each x ∈ B(x∗, δ1) ∩ C,

φ(x) ⊂ φ(x∗), (56)

‖x− Ti(x)‖ > δ0, i ∈ I2. (57)



Mathematics 2023, 11, 3213 10 of 11

Theorem (3) implies that an integer q1 ≥ 1 exists such that for each integer t ≥ q1,

‖xt − xt+1‖ ≤ κδ0/2. (58)

Assume that
ε ∈ (0, δ1), (59)

t ≥ q1 (60)

is an integer and that
‖xt − x∗‖ ≤ ε. (61)

It follows from (56), (57), (59) and (61) that

φ(xt) ⊂ φ(x∗) (62)

and
‖xt − Ti(xt)‖ > δ0, i ∈ I2. (63)

In view of (39),
s ∈ φ(xt) ⊂ φ(x∗)

exists such that
xt+1 = λtTs(xt) + (1− λt)xt. (64)

From (38), (58) and (64),

κδ0/2 ≥ ‖xt+1 − xt‖ = λt‖Ts(xt)− xt‖

and
‖xt − Ts(xt)‖ ≤ κδ0(2λt)

−1 ≤ δ0/2. (65)

It follows from (54), (56), (57), (59), (61) and (65) that

s ∈ I1, Ts(x∗) = x∗.

Combined with Assumption (A2) and Equations (39), (61) and (64), this implies that

‖xt+1 − x∗‖ = ‖λtTs(xt) + (1− λt)xt − x∗‖

≤ λt‖Ts(xt)− x∗‖+ (1− λt)‖xt − x∗‖

≤ ‖xt − x∗‖ ≤ ε.

Thus, we have shown that if t ≥ q1 is an integer and (61) holds, then ‖xt+1 − x∗‖ ≤ ε.
By induction and (49), we can obtain that

‖xi − x∗‖ ≤ ε

for all sufficiently large natural numbers i. Since ε is an arbitrary element of (0, δ1), we can
conclude that

lim
t→∞

xt = x∗

and Theorem (4) are proven.
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