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Abstract: In accordance with the ideas of V.I. Vernadsky, the Earth’s biosphere can exist only because
of the high degree of closure of the cyclic matter transformations carried out by all living organisms
by using the energy from the Sun. In the course of its evolution, the Earth’s biosphere has undergone
a number of cardinal transformations, but, at least for the last 20 million years, the gas composition
of the atmosphere, and primarily the concentration of carbon dioxide, has remained practically
unchanged. Nevertheless, the high degree of closure of material flows in the Earth’s biosphere
seems paradoxical, since closure is not an adaptive feature of an individual undergoing natural
selection for traits that give an advantage here and now (the Vernadsky–Darwin paradox). The
stages in the formation of the closure of the Earth’s biosphere are considered in the context of four
epochs that differ in the energy available to living organisms: (1) geochemical energy; (2) solar
energy; (3) energy of oxidative phosphorylation; and (4) consumption of living flesh, predation.
The paper considers possible options for resolving the VD paradox using as the example models
of closed ecological systems (CES) with low species diversity. The fundamental inapplicability of
ecological models with rigid metabolism for the description of CES is shown. Three mechanisms for
resolving the VD paradox are proposed and the conditions for their implementation are assessed: (1) a
stochastic mechanism: random selection of closing organisms (decomposers) with the corresponding
stoichiometric ratios; (2) changing the consumption stoichiometry by switching catabolic pathways
to different types of substances (proteins, fats, carbohydrates); and (3) changing the consumption
stoichiometry by choosing food, depending on the state of internal nutrient pools. The present study
leads to the conclusion that the Vernadsky–Darwin paradox can be resolved in nature by combining
the mechanisms that simultaneously provide both a current competitive advantage and the ability to
close trophic chains with a wide variation in the composition of material flows.

Keywords: closure of the biosphere; the Vernadsky–Darwin paradox; models of closed ecological
systems

MSC: 37M05

1. Introduction

The biosphere, which occupies the topmost level of the biological hierarchy, is not
a mere sum of the local ecological systems that constitute it. It has the property that
differentiates it from virtually any ecosystem.

The key feature of the biosphere, which ensures its long-term existence, is the balance
of material flows, which is termed “closure”. In thermodynamics, a closed system is a
system that exchanges only energy with the environment. In addition to this requirement,
ecological closure presupposes the existence of an internal cycle of transformations in
matter carried out by living organisms.

In accordance with the ideas of V.I. Vernadsky, the Earth’s biosphere can exist only
because of the high degree of closure of the cyclic matter transformations carried out
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by all living organisms by using the energy from the Sun. Everything that an organism
produces, including itself, is consumed by other organisms, etc. Thus, a continuous cyclic
network of metabolic chemical transformations is established in the biosphere, thanks to
the functioning of which the same atoms of chemical elements are repeatedly used by living
organisms. In essence, when we say “biosphere” we mean “closure”, and when we talk
about closure, we are dealing with the biosphere.

Once again, we note that ecological closure does not mean physical impermeability—
an ecosystem in which there is an intensive circulation of substances or even one of some
limiting growth biogen (for example, phosphorus or nitrogen in a lake) can exchange matter
with the environment. In this case we can speak of partial closure, and there are coefficients
for estimating the degree of an ecosystem closure [1,2]. However, for the biosphere (and
for us living in it) the proximity of the closure coefficients to unity is extremely important,
and the potential danger of biospheric flows’ imbalance can be illustrated by the next
simple assessment.

The Earth’s atmosphere contains ~700 Gt of carbon. The mass of terrestrial biomass in
carbon units is ~500 Gt. The annual net primary photosynthesis production of terrestrial
plants (that is, the amount of atmospheric carbon transferred to biomass) is ~60 Gt. If plant
photosynthesis were the only process, then plants would reduce the concentration of CO2
in the atmosphere to 10% of the existing level in ~10 ÷ 15 years. This level corresponds to
the compensation point of C3 plants, i.e., corresponds to the cessation of plant growth and
then their death. Note that C3 plants account for 95% of all land plants.

This catastrophe does not occur due to the existence of reverse flow into the atmosphere
as a result of the respiration of all heterotrophic organisms, and this flow, before the
beginning of the industrial era, almost perfectly matches the flow from the atmosphere.

In the course of its evolution, the Earth’s biosphere has undergone a number of
cardinal transformations, but, at least for the last 20 million years, the gas composition of
the atmosphere, and primarily the concentration of carbon dioxide, has remained practically
unchanged [3]. The maximum range of changes in carbon dioxide concentration during
the last four ice ages, which occurred over the past 400 thousand years, was ~100 p.p.m. [4].
At the same time, the range of changes in global temperature reached 10 degrees.

It is important that after such serious disturbances, the biosphere–climate system (BCS,
also known as the Earth System) does not leave the region of attraction of its dynamic
attractor. This indicates the existence of a mechanism or mechanisms for the conservation
of a relatively stable state of the biosphere over the past 20 million years.

However, the very existence of such a highly closed and stable state of the biosphere
is paradoxical. Barlow and Volk [5] first drew attention to this paradox and called it the
Vernadsky paradox. The authors formulated it in the form of questions: “The puzzle is this:
How can an aggregate of open-system life forms evolve and persist for billions of years
within a global system that is largely closed to matter influx and outflow?” and “How is
it, then, that the inputs and outputs of a myriad open-system forms a life mesh in such
a way that material closure as a boundary condition of the planet does not destroy the
organized subsystems?”

Later, the important role of evolution in the biosphere closure formation was em-
phasized in [6] and the paradox acquired a double name. Understanding of the nature
of the paradox was formulated as follows: At the population/community level, every
system seeks to exponential propagation and multiplication (according to the Darwinian–
Maltusian law). They are necessarily open systems. However, for all of them to survive,
they must be included into higher systems with cycling (biotic turnover) which trends
to be closed, and is therefore more stable (according to the biogeochemical principles of
Vernadsky). Moreover, multiplication, natural selection, and evolution take place at the
level of population/community. However, at the level of the higher systems with biotic
turnover, there is no coordinated coherent inheritance, and the complicated cycle is not
able to evolve as a single whole. It means that the biotic turnover differs from the organism
as a single whole with its own inheritance.
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If we take into account that the current highly closed state of the biosphere, with
which it entered the industrial revolution, is the result of its evolutionary and ecological
development, this paradox can be formulated as follows: “The closure of the biosphere is
not an adaptive property of an individual (or population)”.

To highlight the key contradiction, a more compact formulation of this paradox was
proposed: “The closure of the biosphere is not an adaptive property of an individual (or
population)” [7].

Indeed, in the course of natural selection, the individual that captures more resources
and leaves behind more viable offspring survives, i.e., in the course of natural selection,
organisms win by the advantage that comes from winning here and now. The consequences
of breaking the closure of the biosphere will be felt much later than the direct results of
selection. Since the closure of the biosphere occurred against the background of natural
selection, working in the “orthogonal”, if not in the opposite direction, it seems logical to
expand the name of this paradox to the Vernadsky–Darwin paradox (VD paradox) [7].

The biosphere has been approaching the present state for ~3.8 billion years, undergoing
serious changes. Judson [8] identifies four epochs in the development of the biosphere,
which differ in the source of energy available to living beings: (1) geochemical energy;
(2) solar energy; (3) energy of oxidative phosphorylation; and (4) consumption of living
flesh, predation. We will briefly trace the history of the biosphere in the context of the
formation of its closure, comparing the change in the degree of closure of the biosphere
with energy epochs, and, at the same time, consider how organisms could ensure this
closure, i.e., how the biosphere resolved or overcame the VD paradox.

The very first question is: When did the biosphere appear? Not as a place where living
organisms exist, but as a system of interacting organisms, populations, and ecosystems?
Most experts tend to believe that life on Earth arose under anaerobic conditions near hy-
drothermal vents that supply energy for chemoautotrophic synthesis [8–11]. The alternative
hypothesis, which suggests the heterotrophic nature of the first organisms, encounters a
number of objections, which are discussed in detail in [7]. It is important that, in any case,
the heterotrophic hypothesis leads to the absence of the closure of the material flow and,
consequently, to the absence of the biosphere as a system of interactions.

The hypothesis of the chemoautotrophic origin of life leads to a picture of separate
isolated oases of life around hydrothermal vents. There was practically no interaction
between them due to the limited resources available. The global closure of material flows
was virtually at zero level, and the conditions corresponded to the VD paradox.

About 2.5 billion years ago, the emergence of cyanobacteria, capable of oxygen pho-
tosynthesis, took place, which led to the ‘Great Oxidation Event’, or GOE. The oxygen
concentration increased from an initial fraction of 10−5 of the current level of atmospheric
oxygen, reaching 0.1–1% of the current level by ~2 billion years ago. During the GOE, the
primary biosphere arose, where the global change in the gas composition of the atmosphere
affected all organisms in contact with the atmosphere, and instead of separate and prac-
tically non-interacting chemoautotrophic oases, a single, even though weakly connected,
quasi-ecological system arose. If we compare it with the identification of four energy epochs
of life on Earth proposed above, the appearance of the biosphere corresponds to the end
of the second and the beginning of the third energy epochs—the transition to oxidative
phosphorylation, when the oxygen and CO2 cycle arose.

After the GOE, the concentration of oxygen in the Earth’s atmosphere did not change
for 1.5 billion years. This means that a precise balance has been achieved between the rate
of photosynthesis and the mineralization of organic matter carried out by decomposers.
Since the oxygen concentration in the atmosphere only slightly exceeded the Pasteur point
and no increased sedimentation of organic matter occurred, it can be assumed that an
increased oxygen concentration was created inside the microbial mats, which ensured the
rapid mineralization of dead biomass and the return of nutrients to phototrophs [12,13].
It can be supposed that microbial communities were rather highly closed systems, while
the biosphere, despite the extremely accurate overall balance of material flows, was a
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system with weak global connections—a loosely structured biosphere. At this stage, the
question arises of possible mechanisms or ways to resolve the VP paradox at the level of
the microbial mat.

The next energy stage in the development of the biosphere is the transition to the con-
sumption of living flesh, predation. An intricately branched system of trophic relationships
arises, and from that moment we can talk about the biosphere as a full-fledged system;
the biosphere has passed into the “mature” biosphere stage. Obviously, in such a system,
additional mechanisms may arise that contribute to the elimination of the VD paradox.

The resolution of the paradox is a good example of how a purely academic interest
in the mechanisms of the Earth’s biosphere formation can be of vital practical importance
against the backdrop of modern global changes. Indeed, knowledge of the biosphere
formation mechanisms will make it possible to obtain estimates of its stability in mod-
ern conditions and can help in finding possible ways to prevent possible catastrophic
consequences [14–16].

The resolution of this paradox is not only of academic interest. It also has important
practical objectives: (1) to obtain an assessment of the stability of the biosphere in the
context of global changes and to search for possible ways to prevent potential catastrophic
consequences [11–13] and (2) to create closed ecological human life support systems (CELSS)
for the projected Lunar and Martian settlements.

The second area of practical application of theoretical studies on the formation of
biosphere closure is the creation of closed ecological life support systems (CELSS) for the
discussed lunar and Martian bases. Of course, in this case, it is not practical to rely on
evolution, but it will be possible to create a bioengineered CELSS by taking into account
and using the identified mechanisms for ensuring the closure of material flows.

Thereby the purpose of this work is to find approaches to resolving the Vernadsky–
Darwin paradox using good-fitting mathematical models that take into account the restric-
tions associated with the closure of material flows.

2. Materials and Methods

To search for ways to resolve the VD paradox, a tool is needed to adequately describe
the biosphere, taking into account its specific property—the high degree of closure of the
nutrient cycle. Mathematical models can become such a tool. However, the construction of
a biosphere model faces two interrelated problems: (1) the high complexity of the biosphere;
(2) lack of data on the dynamics of its variables.

A comprehensive mathematical model of the biosphere will be extremely difficult to
analyze: the lack of data will not allow estimating the parameters of the model, and the
relatively short duration of time series of observations for a small number of variables will
not allow validation of the biospheric model.

The situation seems hopeless, but we should remember the advice of one of the
founders of cybernetics, W.R. Ashby [17]: “. . .scientist must be very careful about what
questions he asks. He must ask for what he really wants to know, and not what he thinks he
wants. Thus the beginner/astrophysicists/will say simply that he wants to know what the
star cluster/of 20,000 members/will do, i.e., he wants the trajectories of the components. If
this knowledge, however, could be given to him, it would take the form of many volumes
filled with numerical tables, and he would then realise that he did not really want all that.
In fact, it usually happens that the significant question is something simple, such as “will
the cluster contact to a ball, or will it spread out into a disc?”

Similarly, in this case, we do not need information about the dynamics of many
animal and plant species of the Earth at all, but we need to understand the mechanisms of
biosphere stability and, first of all, the mechanisms for ensuring high closure of flows in
the biosphere. Since the biosphere existed for a long time in the form of isolated microbial
mats representing communities with low species diversity, it makes sense to start the first
attempt to resolve the VD paradox from such closed ecological systems (CES).
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The following definition will be useful in our future work: “If a similarity can be
established between two objects in at least one specific sense, then between these objects
there are relations of the original and the model” [18].

According to this definition, the CES of microbial mats and the Earth’s biosphere
are models of each other in terms of closure—the key property of the biosphere. Ob-
viously, if any mechanism ensures the closure of flows in a system with few species,
then it will also work in a system with a rich species composition. Moreover, the use of
small-sized CES dramatically expands the experimental capability of research. These are
experimental CES of various types [19,20], including life support systems (LSS) for space
applications [21–24]. Folsom microcosms and micro-CES are almost direct experimental
models of the microbial mat.

Experimental CES are a unique tool for studying the biosphere.
Firstly, experimental CES, by definition, are closed, i.e., reproduce the key property

of the biosphere, which means that the reproduction of a stable cycle in the experiment
and the explanation of this stability in a mathematical model will make it possible to gain
further insight into the mechanisms of the closure of the material flows and the stability of
the biosphere.

Secondly, CES are quite simple and observable, which makes it possible to monitor the
state of the system closely and continuously, which is impossible to achieve with natural
ecosystems. The ability to vary the experimental conditions and to create experimen-
tal perturbations during observations is unique: it is virtually impossible to do this in
natural ecosystems.

Thirdly, the observability of laboratory CES makes it possible to create almost compre-
hensive mathematical models of these systems, to which well-established procedures for
reducing complexity can be applied, and which can ultimately lead to the construction of a
unified description of various types of CES, including, in the limit, the Earth’s biosphere.

However, in order to be able to generalize and use the data obtained on laboratory
ecosystems for designing a CELSS and for describing (even though conceptually) the
biosphere, it is necessary to use mathematical models with a good fit to natural ecological
systems in general and laboratory CES in particular.

Traditional models of ecosystems are constructed by analogy with models of chemical
kinetics. In these models, each species is in fact an autocatalyst that consumes strictly
defined proportions of nutrients, similar to the stoichiometric coefficients of chemical
reactions. We will call such models rigid metabolism models (RM models). As the number
of species described by a model increases, the stability of RM models decreases [25].
However, real ecosystems tend to become more stable as their complexity increases [26].
There is a contradiction between the trends in changes in the stability of real ecosystems
and their mathematical models based on the rigid metabolism model.

In addition, the well-known competitive exclusion principle (CEP) states that the
number of species stably coexisting at the same trophic level cannot exceed the amount of
resources available to them [27]. Later, the CEP was expanded, showing that several species
can coexist on the same nutrient substrate if their number does not exceed the number of
density dependent growth control factors (DDGCFs) in the system [28,29]. DDGCFs also
include substances that inhibit or promote growth and predation [30].

In nature, however, there are situations in which the so-called “paradox of the plank-
ton” is observed [31]. The essence of the paradox is that in some ecosystems, the number of
species exceeds the number of revealed DDGCFs. This situation can be observed in both
aquatic and terrestrial ecosystems [32].

Since there are quite a few attempts to resolve theoretically this paradox, then the
question naturally arises about the applicability of the proposed approaches to resolving
the VD paradox. However, as expected, the proposed approaches are aimed at ensuring
the coexistence of species, and practically do not touch upon the issues of stoichiometric
compliance, and completely ignore the closure of flows. There is an attempt to resolve the
paradox through the search for configurations and parameters of mathematical models,
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in which the coexistence of species is possible in excess of the amount of resources con-
sumed [33], but these models work in certain, and very artificial conditions. There is an
attempt to explain the paradox of plankton by the fact that in the environment there are a
large number of physically separated zones that differ in resource profile, within which
the coexistence of species corresponds to the principle of competitive exclusion [34]. Such
approaches to resolving the plankton paradox cannot help us.

Of interest are approaches in which species coexist not under stationary conditions, but
under conditions of dynamic chaos [35]. The fact that this possibility has been demonstrated
on a rather simple model of one trophic level, against which many claims can be made, is
not so important. It is more important to understand to what extent the regime of dynamic
chaos is realizable in nature. It turned out [36] that the chaotic component in the time series
of population abundance occurs in 30% of cases and is most common among plankton and
insects and least among birds and mammals.

A similar approach is demonstrated in [37], which considers the evolutionary aspects
of resolving the plankton paradox within the framework of game theory, where the number
of species fluctuates during extinction and emergence of new species, and the ability of
species to consume resources may change over time. However, to ensure the coexistence
of species in such a model, a high intensity of mutations and selection is required, which
might exist in plankton, but cannot be extended to other organisms.

Without denying the possible contribution of stochastics to the formation of a high level
of biosphere isolation, one has to admit that stochastics alone is not enough: mechanisms
are needed that work constantly and everywhere, and not in 30% of cases on a selected set
of organisms. At the same time, the proposed mechanisms should simultaneously either
resolve or contribute to the resolution of the plankton paradox.

When formulating the requirements for mathematical models designed to resolve the
VD paradox, one more thing should be singled out, which is of critical importance.

Previously, it has been shown that in models of CES with based on rigid metabolism,
taking into account not only the limiting nutrient, but also other nutrients, a nontrivial
steady state is often absent, which makes it impossible to use such models to describe
CES [38]. This aspect seems to be very important for further work, since it directly concerns
the tools used in this theoretical study.

We will now illustrate the nature of the restrictions that make it impossible to use
models with fixed stoichiometric coefficients to describe closed ecosystems. We describe
the CES in the most general form, without specifying the type of trophic functions:

.
Xi = α+ii fi(

→
X,
→
S )Xi −

N
∑

j=1
α−ij f j(

→
X,
→
S )Xj

.
Xm = α+mm fm(

→
X,
→
S )Xm − α−mm′ fm′(

→
X,
→
S )Xm′

.
Sk =

N
∑

l=1
α+kl fl(

→
X,
→
S )Xl −

N
∑

l=r
α−kr fr(

→
X,
→
S )Xr

where the rates of matter transformation per unit biomass are denoted as fi(
→
X,
→
S ); N—the

number of metabolic species ensuring chemical matter transformations; Xi—biomasses of
producers and consumers; Xm—biomasses of decomposers; Sk—concentrations or amounts
of nutrients taking part in the cycling and taken into account in the CES description of a
selected level of accuracy; and α−ij —an analog of stoichiometric coefficient in ecology.

As we are considering the ideal case of 100% closure, we postulate that everything
produced by the i-th species (including its own biomass) is consumed by other organisms,
i.e., ∑

k
α+ki = 1. Note that steady state is the necessary condition for the closure of such a

system. Therefore, when discussing the conditions for the presence of a steady state, we
are actually discussing the feasibility of the complete closure of the system, which means
the possibility of a long, even potentially infinite, existence of the system.
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Since the purpose of this stage is to analyze the conditions for the closure of the system
with respect to the matter, we will proceed to the consideration of the steady states of the
CES. We thus simplify the form of writing the original system of differential equations:

.
Xi = α+ii Vi −

N
∑

j=1
α−ij Vj ≡ 0

.
Xm = α+mmVm − α−mm′Vm′ ≡ 0

.
Sk =

N
∑

l=1
α+klVl −

N
∑

r=1
α−krVr ≡ 0

where Vi = fi(
→
X
∗
,
→
S
∗
)X∗i , and asterisks mark steady-state values of variables of the CES.

Here, Vi are velocities of flows entering the transformation node (metabolic species) and
flows outgoing from it, which have different stoichiometry.

The nature of the limitations of models with fixed stoichiometric coefficients can be
illustrated by consideration of a biologically quite abstract, but mathematically concrete
example of a CES consisting of two producers (X1, X2) and one consumer (Y) (1). There are
flows of biomass, carbon dioxide, oxygen, and water in the system.

Consider the conditions for the existence of a steady state in a CES. We present each
process carried out by a separate species as a column vector of normalized stoichiometric
coefficients with a dimension equal to the number of chemical compounds (including the
biomass of species) involved in the chemical transformations in the ecosystem. For example,
the process carried out by the producer X1 is represented by a vector which components
are stoichiometric coefficients of the form αi1.

As an illustration, consider the general form of such vectors for an ecosystem consisting
of two producers (X1, X2) and one consumer (Y) (1). There are flows of biomass, carbon
dioxide, oxygen, and water in the system. For simplicity, we assume that dead organic
matter is decomposed very quickly due to the high activity of the microbiota, whose
biomass can be neglected.

dX1
dt = α11V1 − α13V3

dX2
dt = α22V2 − α23V3

dY
dt = α33V3 − α34V4

dO
dt = α41V1 + α42V2 − α43V3 − α44V4

dC
dt = −α51V1 − α52V2 + α53V3 + α54V4

dH
dt = −α61V1 − α62V2 + α63V3 + α64V4

V1 = f1(C, H, O)X1, V2 = f2(C, H, O)X2,

V3 = f3(X1, X2, O)Y, V4 = kdOY

(1)

where O describes the dynamics of O2, C—CO2, and H—H2O.
For the steady-state case, system (1) will be written as a matrix equation:

A
→
V = 0 (2)

where A is the matrix composed of column vectors of stoichiometric coefficients charac-
terizing the processes carried out by the species included in the CES of stoichiometric

coefficients of the system, and
→
V = (V1, V2, V3, V4)

T . For the considered model to have
steady state, Equation (2) linear in Vi must have a solution. The system of linear homoge-
neous Equation (2) has a nonzero solution if and only if the rank of the matrix A is less than
the number of variables.
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To check the possibility of the appearance of hidden dependencies of stoichiometric
coefficients, which can lead to a decrease in the rank of the matrix and, therefore, to the
automatic elimination of the stated problem, and to reduce the degree of arbitrariness, we
will carry out a calculation using a specific example with real stoichiometric coefficients
and ratios of typical biochemical reactions.

In order not to make the illustration too intricate, we will assume that organisms
include only three chemical elements—oxygen, carbon, and hydrogen. Hence, in this
illustrative model, organisms will consist only of fats (palmitic acid—C16H32O2—will be
used as a typical representative), lignin (cinnamic acid tetramer C10H11O2 will be used as
an average representative), glucose—C6H12O6, and cellulose—(C6H10O5)n. These typical
representatives were chosen to assess the potential level of closure of real CELSS [39].

The corresponding equations for the synthesis and, accordingly, the decomposition of
these substances have the form:

C16H32O2: 16H2O + 16CO2 ↔ C16H32O2 + 23O2

C10H11O2: 22H2O + 40CO2 ↔ 4C10H11O2 + 47O2

C6H12O6: 6H2O + 6CO2 ↔ C6H12O6 + 6O2

C6H10O5: 5H2O + 6CO2 ↔ C6H10O5 + 6O2

In order to demonstrate the stoichiometric difference between the simulated organisms
(the biochemical difference between the model organisms rather than the correspondence
to the compositions of real organisms is important here), we arbitrarily assign the following
compositions to them:

X1 =


0.1− fats
0.2− lignin
0.3− glucose
0.4− cellulose

X2 =


0.3− fats
0.1− lignin
0.1− glucose
0.5− cellulose

Y =


0.4− fats
0.0− lignin
0.6− glucose
0.0− cellulose

Then the elemental composition of all components of the model can be presented as a
matrix of mass fractions for the three main nutrients and the selected composition of the
biomass of model organisms:

C =

 1 0.727 0.889 0.398 0.325 0.335
0 0.273 0 0.529 0.587 0.570
0 0 0.111 0.073 0.088 0.095

←


O
C
H

O2 CO2 H2O X1 X2 Y

Now we write down the stoichiometric coefficients for the processes considered in the
model. Process V1 corresponds to photosynthesis of biomass of Producer 1:

ν1CO2 + ν2H2O→ ν3X1 + ν4O2

To calculate the stoichiometric coefficients of this process, it is necessary to find a
solution to the following vector equation:

ν1

0.727
0.273

0

+ ν2

0.889
0

0.111

 = ν3

0.398
0.529
0.073

+ ν4

1
0
0


with obvious additional conditions: ν1 + ν2 = 1 and ν3 + ν4 = 1.
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The stoichiometric coefficients rounded to three decimal places are: ν1 = −0.746,
ν2 = −0.254, ν3 = 0.385, and ν4 = 0.615. As is customary, the sign in front of the stoichiomet-
ric coefficient indicates the loss or production of a substance in the reaction. We place the
found stoichiometric coefficients in the matrix of Equation (2):

V1 V2 V3 V4

A =



0.385 0 −α13 0
0 α22 −α23 0
0 0 α33 −α34

0.615 α42 −α43 −α44
−0.746 −α52 α53 α54
−0.254 −α62 α63 α64

←


X1
X2
Y

O2
CO2
H2O

Having carried out a similar procedure for all processes, we fill the matrix:

V1 V2 V3 V4

A =



0.385 0 −0.327 0
0 0.340 −0.270 0
0 0 0.331 −0.340

0.615 0.660 −0.403 −0.660
−0.746 −0.731 0.522 0.710
−0.254 −0.269 0.147 0.290

←


X1
X2
Y

O2
CO2
H2O

The system of linear homogeneous Equation (2) has a nonzero solution if and only
if the rank of matrix A is less than the number of variables. The rank of this matrix is 4,
which means that this system has no solution.

Verification of this conclusion in computational experiments for different variants of
trophic functions (a simple product of the corresponding variables and the Mitscherlich
formula) confirmed its correctness. Moreover, when selecting the parameters of the model,
one can obtain a rather complex transition process, which, nevertheless, ends with the
extinction of one or two species (Figure 1).

This example illustrates the situation in which the stoichiometric ratios of elements
in the organisms under consideration are chosen arbitrarily, i.e., it corresponds to the
rough case that typically occurs in nature. Of course, the values of the parameters can be
specifically selected to ensure the degeneracy of the matrix (which will be shown below for
another model), but this non-rough case does not suit us for describing real systems.

The assessment of the presence or absence of a steady state is a non-strict mathematical
proof—a situation is possible when a solution for Vi exists, but there is no suitable ratio
of steady-state variables included in the expressions for Vi, for example, when they are
negative. That is, the presence of a solution to this linear system does not guarantee
the presence of a steady state for the model, but the absence of a solution to this system
indicates the fatal absence of a steady state for the model.

Here we are faced with a very important question about our ability to distinguish
between the true steady state of a real system and a very long transition process, when
the rate of change of variables is less than the measurement accuracy. It seems that from
a “practical” point of view, both for researchers and for the inhabitants of the ecosystem
the sufficient duration of the transition process, which is orders of magnitude greater
than the time of individual existence of an individual and the rate of mutational changes,
is of fundamental importance. In addition, a 100% degree of closure is, most likely, an
idealization that is not achievable in reality. In the future, to assess the feasibility of the
CES, we will primarily rely on the duration of its existence.
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demonstrate the implementation of conservation laws for chemical elements. Note that such verifica-
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simulations. To save space, such graphs are not shown again in the other figures.

There seem to be two possible ways to overcome the limitations of RM models in order
to make it possible in principle to describe the exact steady state of the CES: (1) to increase
the number of organisms, which formally corresponds to an increase in the number of
variables in the system of the considered type, and (2) to switch to ecosystem models in
which stoichiometric coefficients can change (models with flexible metabolism, FM models).
Obviously, removing the limitation of RM models is a necessary, but perhaps not sufficient,
condition for resolving the VD paradox. We will now take a look at how the two approaches
discussed above can contribute to overcoming the VD paradox at different stages of the
evolution of the biosphere.

3. Results
3.1. The Feasibility of Closing the Microbial Mat System by Organisms with Rigid Metabolism

We now consider the possibility (conditions) of resolving the VD paradox inside
microbial mats. We will construct a model of such a system, taking into account the
stoichiometric proportions of nutrients (for example, carbon, nitrogen, and phosphorus) in
the biomass of autotrophic and heterotrophic bacteria.

Consider the general form of the proposed model (3). Let the biomass growth rate
of autotroph X depend on the concentration of nutrients in the environment (Ai) and be
described by a formula close to the Mitscherlich formula [40]. Taking into account the
discussion of an adequate form of the formula describing the extinction of organisms [41],
we introduce a quadratic dependence of the rate of extinction on the concentration of
biomass. The dying biomass turns into several forms of detritus Dk corresponding to
nutrients, which are then consumed by decomposers Yi. The proportion of nutrients
for each species is given by the ratio ai/bi. The decomposer mineralizes detritus by first
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converting it into its own biomass and then lysing the biomass of dead heterotrophic
bacteria. In addition, the laws of conservation of nutrients operate in the system (Ai).

dX
dt = p(

→
A)X−mXX2

dDk
dt = akXmXX2 −∑

i
aki fi(

→
D)Yi

dYi
dt = fi(

→
D)Yi −miY2

i

dAk
dt = −akX p(

→
A)X + ∑

i
akimiY2

i

p(
→
A) = µX∏k Ak

∏k Ak+KX

fi(
→
D) = µi∏k Dk

∏k Dk+Ki

(3)

To begin with, consider the case in which the microbial mat contains one autotrophic
species and one heterotrophic species in the presence of two nutrients. Then the model
contains one equation each for an autotroph and a heterotroph, and two equations each for
detritus and mineralized nutrients:

dX
dt = p(A1, A2)X−mXX2

dD1
dt = a1XmXX2 − a11 f (D1, D2)Y

dD2
dt = a2XmXX2 − a21 f (D1, D2)Y

dY
dt = f (D1, D2)Y−mYY2

dA1
dt = −a1X p(A1, A2)X + a11mYY2

dA2
dt = −a2X p(A1, A2)X + a21mYY2

p(A1, A2) =
µX A1 A2

A1 A2+KX

f1(D1, D2) =
µ1D1,D2

D1D2+KY

(4)

Now we estimate the conditions for the existence of a steady state of the system. From
Equations (2)–(4) of (4), we obtain:

a1

b1
=

a2

b2
(5)

This condition shows that a steady state exists in the system only when the ratios
of nutrients in the biomass of the autotroph and decomposer match each other, i.e., if
they are genetically identical organisms. It seems obvious that organisms that perform
different functions cannot have an identical structure and, therefore, an identical elemental
composition determined by genetics.

One possible way to resolve the Vernadsky–Darwin paradox at the level of the micro-
bial mat in this model is to assume that the trophic level of decomposers consists of two
species differing in stoichiometric composition.
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We determine what conditions the stoichiometric composition of decomposers must
satisfy in the case of two types of decomposers. In model (3), we have two equations
describing the dynamics of decomposers, and we write it explicitly:

dX
dt = p(A1, A2)X−mXX2

dD1
dt = a1XmXX2 − a11 f1(D1, D2)Y1 − a12 f2(D1, D2)Y2

dD2
dt = a2XmXX2 − a21 f1(D1, D2)Y1 − a22(D1, D2)Y2

dY1
dt = f1(D1, D2)Y1 −m1Y2

1
dY2
dt = f2(D1, D2)Y2 −m2Y2

2

dA1
dt = −a1X p(A1, A2)X + a11m1Y2

1 + a12m2Y2
2

dA2
dt = −a2X p(A1, A2)X + a21m1Y2

1 + a22m2Y2
2

p(A1, A2) =
µX A1 A2

A1 A2+KX

f1(D1, D2) =
µ1D1,D2

D1D2+K1
f2(D1, D2) =

µ2D1,D2
D1D2+K2

(6)

Having carried out simple calculations, we find that in the steady state the following
relation must be fulfilled between the biomasses of decomposers:

Y2
1

Y2
2
=

m2

m1

(
a12a2X − a1Xa22

a1Xa21 − a11a2X

)
(7)

For expression (7) to make sense, the expression in parentheses must be positive. This
requirement is met if the ratios of the amounts of nutrients in the biomass of organisms
satisfy the following conditions:

a11

a21
<

a1X
a2X

<
a12

a22
or

a11

a21
>

a1X
a2X

>
a12

a22
(8)

Inequality-type relationships are typical of nature. They expand the conditions for the
existence (coexistence) of the cycle, and one can hope for the possibility of the existence of
a steady state in the CES of a microbial mat with two decomposers.

A trial numerical integration of the system equations for different parameters con-
firmed the feasibility of a steady state in this model (Figure 2A). At the same time, combina-
tions of parameters for which there is no steady state were more common than combinations
corresponding to a steady state. However, even in the absence of a steady state in the
system, interesting dynamics of the transition process is observed: while the variables
describing the key nutrients in mineral and organic (detritus) forms undergo changes, the
variables describing the biomass of organisms have large values and almost do not change.
The system looks quite safe. However, when the transition process is over, the system
rapidly breaks down (Figure 2B).

To visualize the feasibility of the presence of the steady closed state in the system under
conditions (7), we construct a parametric portrait of the model, that is, we estimate the
regions of existence of a steady/quasi-steady state on the plane of the selected parameters.
These parameters will be the specific growth rates of the autotrophic component (µX) and
one of the heterotrophs (µ1) at different values of the stoichiometric composition of the
other heterotroph.

Since the system is too complex for analytical study, we will use direct numerical
integration of the system over a given time interval. We will assume that the system, after
the integration time has elapsed, is in a steady state if the changes in the increments of the
variables describing the concentrations of nutrients are less than 0.001 per step of numerical
integration and the biomass of each organism is above 0.002. Obviously, with this approach,
we cannot distinguish the long existence in a slow transition process from the presence
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of a true steady state, which is not entirely correct. However, this approach gives an idea
of the range of parameter values corresponding to long-term existence, which makes it
possible for the system to be modified through mutations and, as it were, start over. As
noted above, from the point of view of an external observer (and what is very important,
the inhabitants of the microbial mat), the true steady state and the quasi-steady state are
practically indistinguishable.
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Figure 2. Dynamics of variables of a microbial mat closed system: (A)—a mat with a stable steady
state; (B)—rapid destruction of the system after the equilibrium of nutrients and detritus is established.
Here and in all subsequent figures, the lower graphs represent visual control of the conformity to the
laws of nutrient conservation.

The parametric portraits were calculated at a1X = 0.3; a11 = 0.2. The ranges of variations
in specific growth rates were: µX = 0 ÷ 3; µ1 = 0 ÷ 10. The parametric portraits (Figure 3)
show that the region of existence of a steady/quasi-steady state is not very wide, but,
nevertheless, it can ensure the long-term existence of the system with noticeable variations
in the stoichiometric composition of organisms resulting from the mutation process.
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Figure 3. Parametric portraits of the model in coordinates of the specific growth rate of an autotroph
(µX) and one of the heterotrophs (µ1) at different values of the stoichiometric composition of the
second heterotroph (in the order of the portraits): a12 = 0.35, 0.50, 0.80. The integration time was 5000
relative units. That is, the state of the system was assessed upon reaching this time. Coordinates of
selected points for viewing system dynamics: (A) µX = 1.5, µ1 = 1.9: (B) µX = 1.5, µ1 = 1.8; (C) µX = 0.2,
µ1 = 3.5.

To check the correctness of the calculation of the parametric portrait and reveal the
possible features of the system behavior in different regions of the portrait, we calculated
the dynamics at the points selected on the portrait (Figure 4). As expected, the regions of the
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“steady” state included both true steady states (point A) and states with a long transition
period (point C), which corresponded to the chosen criterion in the chosen integration
interval (5000 rel. time units). The change in the nature of the behavior of the system when
crossing the boundary of the stable region occurs quite abruptly (point B), especially for
values of µX > 1.
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Figure 4. Dynamics of the system corresponding to different points in the parametric portrait. The
designations of the points are the same as the designations in Figure 3: (A) true steady state; (B) very
fast destruction of the system when crossing the stability boundary; (C) a long transition period.

The study of a two-nutrient system could suggest that a similar method of ensuring
the closure of the system by increasing the number of representatives of the trophic level
of decomposers to the number of key nutrients would also work with a larger number of
controlled nutrients. At the same time, it is unlikely that the number of decomposers can be
greater than the number of nutrients, according to Gause’s competitive exclusion principle.
It turned out that an increase in the number of decomposers to the number of key nutrients
does not lead to a steady state in the CES.

Analysis of model (3) for the case with three nutrients and three decomposers showed
that for the system to have steady state, the matrix of the form:

A =

a11 − a1X a12 − a1X a13 − a1X
a21 − a2X a22 − a2X a23 − a2X
a31 − a3X a32 − a3X a33 − a3X

 (9)

must be degenerate, i.e., have linearly dependent lines or columns, and this is virtually
improbable for the independently formed values of stoichiometric coefficients. The para-
metric portraits of the three-nutrient system confirmed that assumption. The parametric
portraits were calculated at a1X = 0.3; a2X = 0.3; a3X = 0.4; a11 = 0.1; a21 = 0.2; a31 = 0.7;
a13 = 0.1; a23 = 0.7; and a33 = 0.2. The ranges in variations in specific growth rates were
µX = 0÷3; µ1 = 0÷10.

As noted above, parametric portraits obtained by direct integration allow us to select
areas corresponding to the existence of the system during a given period, but this existence
can be a long (sometimes very long) and outwardly favorable for living organisms transition
process, which ends with the destruction of the system. Figure 5 presents parametric
portraits of the existence of a three-nutrient system for 5000 relative time units. In selected
areas, the transitional mode can take time that is an order of magnitude longer than that
used to build portraits. However, in the end, the systems come to destruction; not a single
stable system was found after the transition process was completed.
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Figure 5. Parametric portraits of the three-nutrient system with different stoichiometric relationships
of the second decomposer: (A) a12 = 0.25, a22 = 0.1, a32 = 0.65; (B) a12 = 0.4, a22 = 0.1, a32 = 0.5;
(C) a12 = 0.7, a22 = 0.1, a32 = 0.2.

However, if the stoichiometric ratios are selected in a special way so that they make
matrix (8) degenerate, then a steady state can exist in the system in a very narrow region.
Indeed, at stoichiometric ratios of the first decomposer equal to a11 = 0.1, a21 = 0.225,
a31 = 0.675, the rank of matrix (9) becomes equal to 2, and there may be a steady state in the
system (Figure 6A).
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Figure 6. Dynamics of the transition process in the three-nutrient system with a degenerate matrix
(9) (non-rough case) for small deviations in the stoichiometric ratio from the singular point. The
values of the variable parameter in the presence of a steady state a21 = 0.225 (A) and in the case of the
extinction of the system a21 = 0.2253 (B), a21 = 0.2246 (C).

The integration of the system showed that all (except one) selected areas corresponded
to a very long transition process ending in the death of the system. Only one region,
indicated by an arrow in Figure 7, corresponds to the steady state. Actually, this region is a
straight-line segment, but in the figure, it has a finite width because of the earlier-described
method used to construct the parametric portrait, when we cannot distinguish between
a long transient that looks like a steady state and a true steady state. However, from
the “point of view” of living organisms, these cases are also indistinguishable until this
transitional process approaches the stage of rapid catastrophic changes.
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Figure 7. The parametric portrait of the system for the non-rough case of stoichiometric ratios
of the second decomposer (the values correspond to Figure 5): (A) a12 = 0.25, a22 = 0.1, a32 = 0.65;
(B) a12 = 0.4, a22 = 0.1, a32 = 0.5; (C) a12 = 0.7, a22 = 0.1, a32 = 0.2. The red arrow denotes the regions of
the parameters corresponding to the steady state.

Thus, theoretical analysis and computational experiments showed that the formation
of closure in an ecological system with low species diversity (microbial mat), with all
variables in a steady state, in the general case cannot be ensured by a mutation process
that generates variants of decomposers with fixed stoichiometric coefficients. What can be
achieved at the most is a long transition process with almost steady values of the biomass
of organisms.

At the same time, the transition state of a system with low species diversity can be
long enough for, say, mutants with a different stoichiometric ratio of nutrients to appear
and for the system to pass into a new transition process. That is, to resolve the VD paradox
within the framework of such a process, it is necessary to assume an almost continuous
process of selection of mutants that provide acceptable stoichiometric ratios.

3.2. A Flexible Metabolism Model—“Catabolic Modifier”

Consider a microbial mat model based on the flexible metabolism notion and conceptu-
ally similar to the “Switching Paths” model [42]. According to this model, the stoichiometric
coefficients of anabolism (plastic metabolism) are fixed and determined by genetics. At the
same time, catabolism (energy metabolism) in the model is assumed to be variable—the
body directs into energy metabolism those substances that are excessive and not needed
for anabolism.

The demonstration model includes one autotroph and one heterotroph; the major
detritus substances are proteins, fats, and carbohydrates; the mineral forms taken into
account are carbon and nitrogen. The laws of conservation for carbon and nitrogen oper-
ate in the model. The model variables are X—autotroph; Y—heterotroph (decomposer);
P—proteins (in detritus); F—fats (in detritus); Ch—carbohydrates (in detritus); C—carbon
(mineralized, suitable for use as food for the autotroph); N—nitrogen (the same as car-
bon); and a—average concentration of ATP as an indicator of vital functions in cells of
the heterotroph.

.
X = (p(C, N)−mX(C, N))X
.

Y = ( f (P, F, Ch, a)−mY(a))Y
.
P = βXPmX(C, N)X + βYPmY(a)Y− (βYP f (P, F, Ch, a) + αPgP(P))Y
.
F = βXFmX(C, N)X + βYFmY(a)Y− (βYF f (P, F, Ch, a) + αFgF(F))Y
.
Ch = βXCh mX(C, N)X + βYChmY(a)Y− (βYCh f (P, F, Ch, a) + αChgCh(Ch))Y
.
C =

(
γPCαPgP(P) + γFCαFgF(F) + γChCαCh gCh(Ch)

)
Y− γXC p(C, N)X

.
N = αPgP(P)Y− γXN p(C, N)X
.
a =

(
αPgP(P) + αFgF(F) + αCh gCh(Ch)

) Y
ε+Y − f (P, F, Ch, a)

(10)
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where p(C, N) = VXCN
(KC+C)(KN+N)

, Vx, KC, KN are Mitscherlich’s coefficients for the function
of autotroph’s reproduction, taking into account two limiting substances;

mX(C, N) = MX
1+AXCN —death rate, taking into account mineral starvation;

f (P, F, Ch, a) =
VsP(λF F+λCh

Ch+1)
(KP+P)(KFCh+λF F+λCh

Ch)
· a

A+a —the function of heterotroph’s reproduc-

tion. The formula takes into account that fats and carbohydrates are interchangeable, but
proteins are not: λF, λCh, KP, KF, and KCh—coefficients of the function of heterotroph’s
reproduction described below.

Functions gj(xj) =
VMxj
Kj+xj

· 1
Ki+a2 describe nutrient consumption for energy metabolism.

These functions are responsible for mineralization of proteins, fats, and carbohydrates
of the dead autotroph by the heterotroph. These functions determine mortality—if it is
not possible to maintain metabolism, the heterotroph begins to die off. Mortality of the
heterotroph is described by the function:

mY(a) =
MY

1 + AYa

In the model, βXP, βXF, βXCh, βYP, βYF, and βYCh are stoichiometric coefficients (frac-
tions) of proteins, fats, and carbohydrates in the autotroph (X) and heterotroph (Y); γPC,
γPN, γFC, γFN, γChC, and γChN are fractions of carbon and nitrogen in proteins, fats, and
carbohydrates.

In this case, the following relations are satisfied:

γXC = βXPγPC + βXFγFC + βXCh γChC

γXN = βXPγPN

The model assumes that the intensity of the use of proteins, fats, and carbohydrates in
energy metabolism is determined by the parameters αP, αF, and αCh. Variations in these
parameters change the final consumption stoichiometry

To assess the capabilities of this mechanism to ensure the closure of the material flows,
simple principles for controlling the values of these coefficients are considered: (A) the
coefficients are equal to each other and constant; (B) the organism sends to the energy
metabolism mainly the substance whose concentration is the greatest; and (C) the substance
whose utilization rate is the greatest is mainly directed to the energy metabolism.

The choice of one or another compound for catabolism was performed in the model
using the SoftMax function known from neural network practice, which in this case served
as a difference amplifier:

ai =
eg(xi)·100

∑
j

eg(xj)·100

In the case of constant coefficients, the choice of a substance for catabolism is
spontaneous—the substance whose quantity is the greatest is predominantly consumed
in the reaction. In fact, we have the effect of an increase in the number of variables in the
system of equations with the number of model equations remaining unchanged—degrees
of freedom are added.

The form of parametric portraits of the model was found to be practically independent
of the above methods of choosing the parameters ai. This independence is so complete that
it makes no sense to show all the options. Figure 8 shows a parametric portrait of the model
for the case of selection according to the rate of substance oxidation during catabolism. All
parametric portraits are characterized by a wide region of stable existence of a steady state.
The dynamics of the initial transition process is shown in Figure 9.
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Figure 8. Parametric portraits of the system for the case of selection according to the rate of substance
oxidation during catabolism. Stoichiometric ratios: (A) βXP = 0.1, βYP = 0.1; (B) βXP = 0.1, βYP = 0.2;
(C) βXP = 0.1, βYP = 0.4. Red dot on sub picture (B) represents the parameter values VX = 2 and VS = 3
which are chosen to illustrate typical dynamics of the system shown on Figure 9.
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Figure 9. The dynamics of the transition process in the “Switching Paths” model. The values of the
model parameters correspond to a point on the parametric portrait in Figure 8B with the parameter
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Analysis of the system shows that since the region of stable existence of closure in a
system functioning according to the “Switching Paths” model is very extensive, the VD
paradox is resolved quite simply here. It is enough for evolution to select organisms with
a wide variation in the sets of substances that can be used in energy metabolism, and the
possibility of such a switch provides a selective advantage here and now, which practically
eliminates this paradox.

3.3. A flexible Metabolism Model—“Internal Regulatory Pool”

In small-sized systems, another variant of flexible metabolism is possible, which,
in microbial mats, is implemented under the assumption that there are mineral salts
with a predominant content of one of the nutrients, and the autotroph can selectively
consume them. To the greatest extent, this type of flexible metabolism is associated with
the appearance of predators, i.e., organisms that consume other organisms and are able to
choose a victim. The appearance of predators corresponds to the onset of the fourth energy
epoch in the development of life on Earth [8]—the consumption of living flesh—predation.

We will consider the corresponding model—“Internal regulatory pool” [38,42]. The
model assumes that the consumed food is broken down in the body into monomers and
accumulates in the corresponding internal pools, from where they are supplied for the
synthesis of the organism biomass. Depending on the degree of filling of the pools, the
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organism selectively consumes food that predominantly contains a deficient nutrient. The
minimal version of the model includes two producers (X1 and X2) and one consumer (Y)
and two nutrients (for example, nitrogen and phosphorus or carbon and nitrogen, the
content of which in the pools is indicated by the letters a and b with the corresponding
indices, and in free form by the symbols A and B). The model has the following form:

dX1
dt = P1(a1, b1)X1 − k1(am

0 − a0)X1Y−mx1X2
1

da1
dt =

(
kA1(am

1 − a1)A− α1P1(a1, b1)
)
X1

db1
dt =

(
kB1(bm

1 − b1)B− β1P1(a1, b1)
)
X1

dX2
dt = P2(a2, b2)X2 − k2(bm

0 − b0)X2Y−mx2X2
2

da2
dt = (kA2(am

2 − a2)A− α2P2(a2, b2))X2

db2
dt = (kB2(bm

2 − b2)B− β2P2(a2, b2))X2

dY
dt = F(a0, b0)Y−mY2

da0
dt =

(
α1k1(am

0 − a0)X1 + α2k2(bm
0 − b0)X2 − α0F(a0, b0)

)
Y

db0
dt =

(
β1k1(am

0 − a0)X1 + β2k2(bm
0 − b0))X2 − β0F(a0, b0)

)
Y

dA
dt = −kA1(am

1 − a1)AX1 − kA2(am
2 − a2)AX2 + α0mY2

dB
dt = −kB1B(bm

1 − b1)BX1 − kB2(bm
2 − b2)BX2 + β0mY2

Pi(ai, bi) =
µxiaibi

Kxi+aibi
F(a0, b0) =

µY a0b0
KY+a0b0

(11)

where ai
m and bi

m denote capacity limits of the pools of the i-th organism; αi and βi are
stoichiometric ratios of nutrients in the biomass of the i-th organism (αi + βi = 1); Pi() and F()
are the rates of biomass synthesis from the nutrients contained in the pools; ki—constants
of food uptake rate.

As can be seen from the parametric portraits (Figure 10), the region of existence of
a stable steady state in the system is very large and is practically independent of the
stoichiometric ratios of nutrients in the species included in the system.
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Figure 10. A parametric portrait of a model with switching pools with different stoichiometric
proportions of the biomass of one of the producers (α1 = 0.5, 0.7, 0.9).

It is important, however, that such a result is possible when the stoichiometric ratio
of nutrients in the biomass of the consumer occupies an intermediate position relative to
the ratios of nutrients in the biomass of the producers. For each nutrient, there must be a
producer that has a greater portion of some nutrient than the consumer does.
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4. Discussion

Unfortunately, it was not possible to find related publications in the literature, so it
is not possible to compare obtained results with the approaches of other authors. The
present study discusses three possible mechanisms for ensuring the closure/quasi-closure
of material flows where several nutrients are taken into account:

(1) The stochastic mechanism—random selection of closing organisms (decomposers)
with the corresponding stoichiometric ratios;

(2) Changing the consumption stoichiometry by switching catabolic pathways to different
types of substances (proteins, fats, carbohydrates);

(3) Changing the consumption stoichiometry by choosing food, depending on the state
of internal nutrient pools.

The possibilities of these mechanisms in ensuring the closure of ecosystems were con-
sidered singly, each in isolation from others. At the same time, for example, the switching
of catabolite pathways is characteristic of the vast majority of organisms. Therefore, it is
natural to assume that in the process of evolutionary formation of the biosphere closure, all
three mechanisms operate, complementing each other.

The further development of this direction is the verification and refinement of the
proposed models on experimental models of low-species CES of small size. Of interest
is the possibility of identifying the species diversity of heterotrophic bacteria in fossil
bacterial mats in order to test the assumption about the required species diversity within an
ancient bacterial CES. The proposed “Catabolic modifier” model can be, after the necessary
modification, used to simulation the components (including a human beings) of the CES in
the design of LSS for long-term space missions [43].

The current study leads to the conclusion that the Vernadsky–Darwin paradox can be
resolved in nature by combining the mechanisms discussed in this work, which provide
both the current competitive advantage and the ability to close trophic chains, with a wide
variation in the composition of material flows.

5. Conclusions

1. It is shown that models based on rigid metabolism (characterized by fixed values
of stoichiometric coefficients of nutrient consumption) in general case do not have
a non-trivial stationary state, and therefore cannot ensure the existence of a closed
ecological system for an arbitrarily long time. However, the time of the transient
process can be long enough to allow the appearance of mutants capable, in principle,
of utilizing the dead ends of the organic matter and returning them back to the cycle.

2. Models based on so-called flexible metabolism have a stable stationary state in a
wide range of parameters, and therefore are capable of describing an arbitrarily long
existence of a CES.

3. Based on our research, we can conclude that the Vernadsky–Darwin paradox can be
resolved in nature by combining the considered mechanisms that provide both the
current competitive advantage and the ability to close trophic chains with a wide
variation in the composition of substance flows.

Author Contributions: Conceptualization, S.B. and A.D.; methodology, A.D.; software, S.B.; formal
analysis, S.B.; writing—original draft preparation, S.B.; writing—review and editing, A.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by RUSSIAN SCIENCE FOUNDATION, grant number
23-44-00059.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 3218 21 of 22

References
1. Finn, J.T. Measures of ecosystem structure and function derived from analysis of flows. J. Theor. Biol. 1976, 56, 363–380. [CrossRef]
2. Bartsev, S.I. Naturally deducing estimate for the coefficient of CELSS closure. Adv. Space Res. 2003, 31, 75–1682. [CrossRef]
3. Pearson, P.N.; Palmer, M.R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 2000, 406, 695–699.

[CrossRef]
4. Mulvaney, R.; Abram, N.J.; Hindmarsh, R.C.A.; Arrowsmith, C.; Fleet, L.; Triest, J.; Sime, L.C.; Alemany, O.; Foord, S. Recent

Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 2012, 489, 141–144. [CrossRef]
5. Barlow, C.; Volk, T. Open systems living in a closed biosphere: A new paradox for the Gaia debate. BioSystems 1990, 23, 371–384.

[CrossRef]
6. Pechurkin, N.S. The Biogeochemical Principles of Vernadsky as the Basis for a New Field of Science—Biospherics. J. Sib. Fed.

Univ. Biol. 2008, 1, 189–193. [CrossRef]
7. Bartsev, S.I.; Degermendzhi, A.G.; Sarangova, A.B. Closure of Earth’s Biosphere: Evolution and Current State. J. Sib. Fed. Univ.

Biol. 2019, 12, 337–347. [CrossRef]
8. Judson, O.P. The energy expansions of evolution. Nat. Ecol. Evol. 2017, 1, 9. [CrossRef]
9. Lazcano, A.; Miller, S.L. The origin and early evolution of life: Prebiotic chemistry, the pre-RNA world, and time. Cell 1996, 85,

793–798. [CrossRef]
10. Russell, M.J.; Hall, A.J. The onset and early evolution of life. In Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—

Constraints from Ore Deposits: Geological Society of America Memoir 198; Kesler, S.E., Ohmoto, H., Eds.; Geological Society of America:
Boulder, CO, USA, 2006; pp. 1–32. [CrossRef]

11. Amenabar, M.J.; Boyd, E.S. A review of the mechanisms of mineral-based metabolism in early Earth analog rock-hosted
hydrothermal ecosystems. World J. Microbiol. Biotechnol. 2019, 35, 1–18. [CrossRef]

12. Abed, R.M.M. Interaction between cyanobacteria and aerobic heterotrophic bacteria in the degradation of hydrocarbons. Int.
Biodeterior. Biodegrad. 2010, 64, 58–64. [CrossRef]

13. Morris, J.J.; Kirkegaard, R.; Szul, M.J.; Johnson, Z.I.; Zinser, E.R. Facilitation of robust growth of Prochlorococcus colonies and
dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 2008, 74, 4530–4534. [CrossRef]

14. Bartsev, S.I.; Degermendzhi, A.G.; Erokhin, D.V. Global Minimal Model of Long-Term Carbon Dynamics in the Biosphere. Dokl.
Earth Sci. 2005, 401, 326–329.

15. Bartsev, S.I.; Degermendzhi, A.G.; Erokhin, D.V. Principle of the worst scenario in the modelling past and future of biosphere
dynamics. Ecol. Model. 2008, 216, 160–171. [CrossRef]

16. Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell,
S.E.; Crucifix, M.; et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 2018, 115, 8252–8259.
[CrossRef]

17. Ashby, W.R. An Introduction to Cybernatics; Chapman & Hall Ltd.: London, UK, 1957; 295p.
18. Lerner, A.Y. The Beginnings of Cybernetics; Nauka: Moscow, Russia, 1967; 400p. (In Russian)
19. Folsome, C.E.; Hanson, J.A. The emergence of materially closed system ecology. In Ecosystem Theory and Application; Polunin, N.,

Ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 269–299.
20. Kovrov, B.G. Artificial microecosystems with a closed cycle of substances as a model of the biosphere. In Biophysics of Cell

Populations and Supra-Organizational Systems; Nauka: Moscow, Russia, 1992; pp. 62–70. (In Russian)
21. Gitelson, J.I.; Terskov, I.A.; Kovrov, B.G.; Sidko FYa Lisovsky, G.M.; Okladnikov, Y.N.; Belyanin, V.B.; Trubaehev, I.N. Life-support

systems with autonomic control employing plant photosynthesis. Acta Astronaut. 1976, 3, 633–650. [CrossRef]
22. Allen, J. Biosphere 2: The Human Experiment; Penguin Books, A Synergetic Press, Inc.: London, UK, 1991; 156p.
23. Nelson, M.; Dempster, W.; Alvarez-Romo, N.; MacCallum, T. Atmospheric dynamics and bioregenerative technologies in a

soil-based ecological life support system: Initial results from Biosphere 2. Adv. Space Res. 1994, 14, 417–426. [CrossRef] [PubMed]
24. Liu, H.; Yao, Z.; Fu, Y.; Feng, J. Review of research into bioregenerative life support system(s) which can support humans living in

space. Life Sci. Space Res. 2021, 31, 113–120. [CrossRef]
25. May, R.M. Stability in multi-species community models. Math. Biosci. 1971, 12, 59–79. [CrossRef]
26. Ives, A.R.; Carpenter, S.R. Stability and Diversity of Ecosystems. Science 2007, 317, 58–62. [CrossRef]
27. Gause, G.F. A mathematical approach to issues of struggle for existence. Zool. Zhurnal (J. Zool.) 1933, 12, 170–177. (In Russian)
28. Degermendzhi, A.G.; Pechurkin, N.S.; Furyaeva, A.V. Analysis of commensal interactions of two microbial populations in

continuous culture. Ekologiya (Ecology) 1978, 2, 91–94. (In Russian)
29. Degermendzhi, A.G.; Pechurkin, N.S.; Tushkova, G.I.; Furyaeva, A.V. Mechanism of stable coexistence of diploid and haploid

Sacharomyces cerevisiae yeasts in continuous culture. Izv. SO AN SSSR (Proc. SB USSR AS) Biol. Ser. 1979, 1, 62–68. (In Russian)
30. Odum, E.P. Basic Ecology; CBS College Publishing: Philadelphia, PA, USA, 1983; 613p.
31. Hutchinson, G.E. The paradox of the plankton. Am. Nat. 1961, 95, 137–145. [CrossRef]
32. Levine, J.M.; HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 2009, 461, 254–257.

[CrossRef] [PubMed]
33. Record, N.R.; Pershing, A.J.; Maps, F. The paradox of the “paradox of the plankton”. ICES J. Mar. Sci. 2014, 71, 236–240. [CrossRef]
34. Behrenfeld, M.J.; O’Malley, R.; Boss, E.; Karp-Boss, L. Phytoplankton biodiversity and the inverted paradox. ISME Commun. 2021,

1, 9. [CrossRef]

https://doi.org/10.1016/S0022-5193(76)80080-X
https://doi.org/10.1016/S0273-1177(03)80014-5
https://doi.org/10.1038/35021000
https://doi.org/10.1038/nature11391
https://doi.org/10.1016/0303-2647(90)90018-V
https://doi.org/10.17516/1997-1389-0263
https://doi.org/10.17516/1997-1389-0307
https://doi.org/10.1038/s41559-017-0138
https://doi.org/10.1016/S0092-8674(00)81263-5
https://doi.org/10.1130/2006.1198(01)
https://doi.org/10.1007/s11274-019-2604-2
https://doi.org/10.1016/j.ibiod.2009.10.008
https://doi.org/10.1128/AEM.02479-07
https://doi.org/10.1016/j.ecolmodel.2008.03.002
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1016/0094-5765(76)90103-X
https://doi.org/10.1016/0273-1177(94)90331-X
https://www.ncbi.nlm.nih.gov/pubmed/11540215
https://doi.org/10.1016/j.lssr.2021.09.003
https://doi.org/10.1016/0025-5564(71)90074-5
https://doi.org/10.1126/science.1133258
https://doi.org/10.1086/282171
https://doi.org/10.1038/nature08251
https://www.ncbi.nlm.nih.gov/pubmed/19675568
https://doi.org/10.1093/icesjms/fst049
https://doi.org/10.1038/s43705-021-00056-6


Mathematics 2023, 11, 3218 22 of 22

35. Huisman, J.; Weissing, F. Biodiversity of plankton by species oscillations and chaos. Nature 1999, 402, 407–410. [CrossRef]
36. Rogers, T.L.; Johnson, B.J.; Munch, S.B. Chaos is not rare in natural ecosystems. Nat. Ecol. Evol. 2022, 6, 1105–1111. [CrossRef]
37. Huang, W.; de Araujo Campos, P.R.; de Oliveira, V.M.; Ferrreira, F.F. A resource-based game theoretical approach for the paradox

of the plankton. PeerJ 2016, 4, e2329. [CrossRef]
38. Bartsev, S.I. Stoichiometric constraints and complete closure of long-term life support systems. Adv. Space Res. 2004, 34, 1509–1516.

[CrossRef] [PubMed]
39. Volk, T.; Rummel, J.D. Mass Balances for a Biological Life Support System Simulation Model. Adv. Space Res. 1987, 7, 141–148.

[CrossRef] [PubMed]
40. Mitscherlich, E.A. Yield Laws; Akademie-Verlag: Berlin, Germany; FRG: Tokyo, Japan, 1956; 75p. (In German)
41. Tyutyunov, Y.V.; Titova, L.I. From Lotka–Volterra to Arditi–Ginzburg: 90 Years of Evolving Trophic Functions. Biol. Bull. Rev.

2020, 10, 167–185. [CrossRef]
42. Saltykov, M.Y.; Bartsev, S.I.; Lankin, Y.P. Stability of Closed Ecology Life Support Systems (CELSS) models as dependent upon the

properties of metabolism of the described species. Adv. Space Res. 2012, 49, 223–229. [CrossRef]
43. Antonenko, S.V.; Bartsev, S.I.; Degermendzhi, A.G. An Artificial Habitat for Colonizing the Solar System. Her. Russ. Acad. Sci.

2015, 85, 402–411. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/46540
https://doi.org/10.1038/s41559-022-01787-y
https://doi.org/10.7717/peerj.2329
https://doi.org/10.1016/j.asr.2003.04.069
https://www.ncbi.nlm.nih.gov/pubmed/15846880
https://doi.org/10.1016/0273-1177(87)90045-7
https://www.ncbi.nlm.nih.gov/pubmed/11537263
https://doi.org/10.1134/S207908642003007X
https://doi.org/10.1016/j.asr.2011.10.002
https://doi.org/10.1134/S1019331615050056

	Introduction 
	Materials and Methods 
	Results 
	The Feasibility of Closing the Microbial Mat System by Organisms with Rigid Metabolism 
	A Flexible Metabolism Model—“Catabolic Modifier” 
	A flexible Metabolism Model—“Internal Regulatory Pool” 

	Discussion 
	Conclusions 
	References

