Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach
Abstract
:1. Introduction
- We uncovered the factors influencing time-varying beta, including macroeconomic and micro-firm features, as well as their cross-effects. By constructing a comprehensive database comprising 70 micro-firm characteristics and 10 macroeconomic indicators, we enhanced the measurement of systematic risk with improved data dimensionality and granular precision, surpassing previous research;
- We proposed a novel dynamic CAPM that leverages mainstream machine learning algorithms. This innovation, to the best of our knowledge, is among the first applications of machine learning techniques to asset pricing research. By incorporating advanced methods such as regression trees and neural networks, we effectively tackled the challenges of high-dimensional data, capturing nonlinear and interactive effects, thus providing accurate estimates of systematic risk;
- Our paper unveils the underlying causes of low-risk anomalies and provides valuable implications for academia and industry. We observed that the neural networks, particularly the NN4, yielded the highest excess returns. Liquidity predictors emerged as the most influential factors, followed by momentum indicators. Furthermore, through our subsample analysis, we revealed that, during the transition from SOEs to non-SOEs, the variable importance of fundamental and valuation diminished, making way for liquidity and momentum.
2. Literature Review
2.1. The Dynamic CAPM
2.2. Application of Machine Learning in Stock Forecast
2.3. Related Machine Learning Techniques
3. Methodology
3.1. Data
3.2. Machine Learning-Based Dynamic CAPM
3.3. Performance Evaluation
4. Experimental Results
4.1. Low-Risk Pricing Anomaly in China
4.2. Dynamic CAPM with Time-Varying Beta
4.3. Determining Which Predictors Are Important
5. Subsample Analysis
5.1. SOEs vs. Non-SOEs
5.2. The Predictability of Neutral Network
6. Conclusions and Future Work
6.1. Conclusions
6.2. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model | Hidden Layer |
---|---|
NN1 | 32 |
NN2 | 32, 16 |
NN3 | 32, 16, 8 |
NN4 | 32, 16, 8, 4 |
NN5 | 32, 16, 8, 4, 2 |
PLS | Enet | GBRT | RF | NN |
---|---|---|---|---|
K | = 0.5 | #Depth L = 1∼3 #Trees B = 1∼1000 #Learning Rate | #Depth L = 1∼7 #Trees B = 100∼300 #Features f = 3∼50 | #L1 penalty #Learning Rate #Batch Size Epochs = 100 Patience = 5 Adam Para. = Default Ensemble = 10 |
No. | Acronym | Stock Characteristics | Frequency | Category |
---|---|---|---|---|
1 | acc | accruals | Quarterly | ey |
2 | agr | asset growth | Quarterly | growth |
3 | am | assets-to-market | Quarterly | bpr |
4 | ato | asset turnover | Quarterly | ey |
5 | beta | market beta | Monthly | beta |
6 | betasq | beta squared | Monthly | beta |
7 | bm | book-to-market equity | Quarterly | bpr |
8 | capxg | capital expenditure growth | Quarterly | growth |
9 | cfd | cash flow-to-debt | Quarterly | lever |
10 | cfoa | cash flow over assets | Quarterly | ey |
11 | cfp | cash flow-to-price | Quarterly | bpr |
12 | chato | change in asset turnover | Quarterly | liq |
13 | chmom | change in 6-month momentum | Monthly | mom |
14 | cp | cash productivity | Quarterly | bpr |
15 | cr | current ratio | Quarterly | lever |
16 | crg | current ratio growth | Quarterly | lever |
17 | cta | cash-to-assets | Quarterly | ey |
18 | cto | capital turnover | Quarterly | ey |
19 | dbe | change in shareholders equity | Quarterly | ey |
20 | der | debt-to-equity ratio | Quarterly | lever |
21 | dlme | long term debt-to-market equity | Quarterly | lever |
22 | dp | dividend-to-price ratio | Quarterly | ey |
23 | dpia | changes in PPE and inventory-to-assets | Quarterly | bpr |
24 | ebit | earnings before interests and taxes | Quarterly | ey |
25 | eps | earning per share | Quarterly | bpr |
26 | ey | earnings yield | Quarterly | ey |
27 | gm | gross margins | Quarterly | ey |
28 | ia | investment-to-assets | Quarterly | ey |
29 | idiovol | idiosyncratic return volatility | Monthly | vol |
30 | illiq | illiquidity | Monthly | liq |
31 | ivc | inventory change | Quarterly | size |
32 | lg | liability growth | Quarterly | lever |
33 | maxret | maximum daily return | Monthly | mom |
34 | mom1m | 1-month momentum | Monthly | mom |
35 | mom6m | 6-month momentum | Monthly | mom |
36 | mom12m | 12-month momentum | Monthly | mom |
37 | mom36m | 36-month momentum | Monthly | mom |
38 | mve | size | Monthly | size |
39 | noa | net operating assets | Quarterly | ey |
40 | npop | net payout over profits | Quarterly | ey |
41 | ocfp | operating cash flow-to-price | Quarterly | bpr |
42 | pacc | percent accruals | Quarterly | bpr |
43 | pchgm | change in gross margin—change in sales | Quarterly | growth |
44 | pchsaleinvt | change in sales—change in inventory | Quarterly | growth |
45 | pchsalerect | change in sales—change in A/R | Quarterly | ey |
46 | pchsalexsga | change in sales—change in SG&A | Quarterly | groth |
47 | prc | price | Monthly | liq |
48 | py | payout yield | Quarterly | bpr |
49 | qr | quick ratio | Quarterly | lever |
50 | qrg | quick ratio growth | Quarterly | lever |
51 | retvol | return volatility | Monthly | vol |
52 | rna | return on net operating assets | Quarterly | ey |
53 | roa | return on assets | Quarterly | ey |
54 | roe | return on equity | Quarterly | ey |
55 | roic | return on invested capital | Quarterly | ey |
56 | sc | sales-to-cash | Quarterly | ey |
57 | sg | sustainable growth | Quarterly | growth |
58 | si | sales-to-inventory | Quarterly | bpr |
59 | sp | sales-to-price | Quarterly | bpr |
60 | sr | sales growth | Quarterly | growth |
61 | std_rvol | volatility of RMB trading volume | Monthly | liq |
62 | std_turn | volatility of turnover | Monthly | liq |
63 | stdacc | accrual volatility | Quarterly | ey |
64 | stdcf | cash flow volatility | Quarterly | ey |
65 | tb | debt capacity/firm tangibility | Quarterly | lever |
66 | tbi | taxable income-to-book income | Quarterly | ey |
67 | tg | tax growth | Quarterly | bpr |
68 | turn | share turnover | Monthly | liq |
69 | z | z-score | Quarterly | ey |
70 | zero | zero trading days | Monthly | liq |
No. | Acronym | Macroeconomic Variable | Frequency |
---|---|---|---|
1 | bm | book-to-market ratio | Monthly |
2 | cei | consumer expectation index | Monthly |
3 | dy | dividend–price ratio | Monthly |
4 | ep | earnings–price ratio | Monthly |
5 | hj | economic climate index | Monthly |
6 | inf | inflation | Monthly |
7 | lvol | volatility | Monthly |
8 | m2gr | m2 growth rate | Monthly |
9 | svar | stock variance | Monthly |
10 | to | turnover | Monthly |
References
- Rodríguez-Moreno, M.; Peña, J.I. Systemic risk measures: The simpler the better? J. Bank. Financ. 2013, 37, 1817–1831. [Google Scholar] [CrossRef] [Green Version]
- He, D.; Ho, C.Y.; Xu, L. Risk and return of online channel adoption in the banking industry. Pac.-Basin Financ. J. 2020, 60, 101268. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. The capital asset pricing model: Theory and evidence. J. Econ. Perspect. 2004, 18, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Ang, A.; Chen, J. CAPM over the long run: 1926–2001. J. Empir. Financ. 2007, 14, 1–40. [Google Scholar] [CrossRef]
- Baker, M.; Bradley, B.; Taliaferro, R. The low-risk anomaly: A decomposition into micro and macro effects. Financ. Anal. J. 2014, 70, 43–58. [Google Scholar] [CrossRef]
- Schneider, P.; Wagner, C.; Zechner, J. Low-Risk Anomalies? J. Financ. 2020, 75, 2673–2718. [Google Scholar] [CrossRef] [Green Version]
- Boguth, O.; Carlson, M.; Fisher, A.; Simutin, M. Horizon effects in average returns: The role of slow information diffusion. Rev. Financ. Stud. 2016, 29, 2241–2281. [Google Scholar] [CrossRef]
- Li, Y.; Li, W. Firm-specific investor sentiment for the Chinese stock market. Econ. Model. 2021, 97, 231–246. [Google Scholar] [CrossRef]
- Leippold, M.; Wang, Q.; Zhou, W. Machine learning in the Chinese stock market. J. Financ. Econ. 2022, 145, 64–82. [Google Scholar] [CrossRef]
- Gu, S.; Kelly, B.; Xiu, D. Empirical asset pricing via machine learning. Rev. Financ. Stud. 2020, 33, 2223–2273. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, D.; Büchner, M.; Tamoni, A. Bond risk premiums with machine learning. Rev. Financ. Stud. 2021, 34, 1046–1089. [Google Scholar] [CrossRef]
- Barbaglia, L.; Manzan, S.; Tosetti, E. Forecasting loan default in Europe with machine learning. J. Financ. Econom. 2023, 21, 569–596. [Google Scholar] [CrossRef]
- Bollerslev, T.; Engle, R.F.; Wooldridge, J.M. A capital asset pricing model with time-varying covariances. J. Political Econ. 1988, 96, 116–131. [Google Scholar] [CrossRef]
- Hansen, L.P.; Richard, S.F. The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models. Econom. J. Econom. Soc. 1987, 55, 587–613. [Google Scholar] [CrossRef] [Green Version]
- Ferson, W.E.; Siegel, A.F. Testing portfolio efficiency with conditioning information. Rev. Financ. Stud. 2009, 22, 2735–2758. [Google Scholar] [CrossRef] [Green Version]
- Cederburg, S.; O’DOHERTY, M.S. Does it pay to bet against beta? On the conditional performance of the beta anomaly. J. Financ. 2016, 71, 737–774. [Google Scholar] [CrossRef]
- Cosemans, M.; Frehen, R.; Schotman, P.C.; Bauer, R. Estimating security betas using prior information based on firm fundamentals. Rev. Financ. Stud. 2016, 29, 1072–1112. [Google Scholar] [CrossRef] [Green Version]
- Mazzola, P.; Gerace, D. A comparison between a dynamic and static approach to asset management using CAPM models on the Australian securities market. Australas. Account. Bus. Financ. J. 2015, 9, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Tindall, M.L. Constructing Equity Market–Neutral VIX Portfolios with Dynamic CAPM. J. Altern. Investments 2016, 19, 70–87. [Google Scholar] [CrossRef]
- Hollstein, F.; Prokopczuk, M.; Wese Simen, C. The conditional Capital Asset Pricing Model revisited: Evidence from high-frequency betas. Manag. Sci. 2020, 66, 2474–2494. [Google Scholar] [CrossRef] [Green Version]
- Leal, D.; Jiménez, R.; Riquelme, M.; Leiva, V. Elliptical Capital Asset Pricing Models: Formulation, Diagnostics, Case Study with Chilean Data, and Economic Rationale. Mathematics 2023, 11, 1394. [Google Scholar] [CrossRef]
- Black, F.; Jensen, M.C.; Scholes, M. The capital asset pricing model: Some empirical tests. In Studies in the Theory of Capital Markets; Jensen, M.C., Ed.; Praeger: New York, NY, USA, 1972. [Google Scholar]
- Hong, H.; Sraer, D.A. Speculative betas. J. Financ. 2016, 71, 2095–2144. [Google Scholar] [CrossRef]
- Bali, T.G.; Brown, S.J.; Murray, S.; Tang, Y. A lottery-demand-based explanation of the beta anomaly. J. Financ. Quant. Anal. 2017, 52, 2369–2397. [Google Scholar] [CrossRef]
- Frazzini, A.; Pedersen, L.H. Betting against beta. J. Financ. Econ. 2014, 111, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Asness, C.; Frazzini, A.; Gormsen, N.J.; Pedersen, L.H. Betting against correlation: Testing theories of the low-risk effect. J. Financ. Econ. 2020, 135, 629–652. [Google Scholar] [CrossRef]
- Mohammadi, M. Prediction of α-stable GARCH and ARMA-GARCH-M models. J. Forecast. 2017, 36, 859–866. [Google Scholar] [CrossRef]
- Ismail, M.S.; Noorani, M.S.M.; Ismail, M.; Razak, F.A.; Alias, M.A. Predicting next day direction of stock price movement using machine learning methods with persistent homology: Evidence from Kuala Lumpur Stock Exchange. Appl. Soft Comput. 2020, 93, 106422. [Google Scholar] [CrossRef]
- Nobre, J.; Neves, R.F. Combining principal component analysis, discrete wavelet transform and XGBoost to trade in the financial markets. Expert Syst. Appl. 2019, 125, 181–194. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, L.; Lai, Y. Stock Price Prediction Using CNN-BiLSTM-Attention Model. Mathematics 2023, 11, 1985. [Google Scholar] [CrossRef]
- Shah, V.H. Machine learning techniques for stock prediction. In Foundations of Machine Learning; Spring: Berlin/Heidelberg, Germany, 2007; Volume 1, pp. 6–12. [Google Scholar]
- Hsu, M.W.; Lessmann, S.; Sung, M.C.; Ma, T.; Johnson, J.E. Bridging the divide in financial market forecasting: Machine learners vs. financial economists. Expert Syst. Appl. 2016, 61, 215–234. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Yin, J.; Li, Q. A stock decision support system based on DBNs. J. Comput. Inf. Syst. 2014, 10, 883–893. [Google Scholar]
- Drobetz, W.; Otto, T. Empirical asset pricing via machine learning: Evidence from the European stock market. J. Asset Manag. 2021, 22, 507–538. [Google Scholar] [CrossRef]
- Yuan, X.; Yuan, J.; Jiang, T.; Ain, Q.U. Integrated long-term stock selection models based on feature selection and machine learning algorithms for China stock market. IEEE Access 2020, 8, 22672–22685. [Google Scholar] [CrossRef]
- Yu, G.; Liu, Y.; Cheng, W.; Lee, C.T. Data analysis of ESG stocks in the Chinese Stock Market based on machine learning. In Proceedings of the 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 14–16 January 2022; pp. 486–493. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Huber, P.J. Robust Statistics. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1248–1251. [Google Scholar] [CrossRef]
- Prinzie, A.; Van den Poel, D. Random forests for multiclass classification: Random multinomial logit. Expert Syst. Appl. 2008, 34, 1721–1732. [Google Scholar] [CrossRef]
- Devadoss, A.V.; Ligori, T.A.A. Stock prediction using artificial neural networks. Int. J. Data Min. Tech. Appl. 2013, 2, 283–291. [Google Scholar]
- Yu, J.; Wen, Y.; Yang, L.; Zhao, Z.; Guo, Y.; Guo, X. Monitoring on triboelectric nanogenerator and deep learning method. Nano Energy 2022, 92, 106698. [Google Scholar] [CrossRef]
- Masters, T. Practical Neural Network Recipes in C++; Morgan Kaufmann: Burlington, MA, USA, 1993. [Google Scholar]
- Green, J.; Hand, J.R.; Zhang, X.F. The characteristics that provide independent information about average US monthly stock returns. Rev. Financ. Stud. 2017, 30, 4389–4436. [Google Scholar] [CrossRef]
- Ma, T.; Leong, W.J.; Jiang, F. A latent factor model for the Chinese stock market. Int. Rev. Financ. Anal. 2023, 87, 102555. [Google Scholar] [CrossRef]
- Welch, I. The Link between Fama-French Time-Series Tests and Fama-Macbeth Cross-Sectional Tests; SSRN: Rochester, NY, USA, 2008. [Google Scholar]
- Camacho-Urriolagoitia, O.; López-Yáñez, I.; Villuendas-Rey, Y.; Camacho-Nieto, O.; Yáñez-Márquez, C. Dynamic Nearest Neighbor: An Improved Machine Learning Classifier and Its Application in Finances. Appl. Sci. 2021, 11, 8884. [Google Scholar] [CrossRef]
- Lou, D. A flow-based explanation for return predictability. Rev. Financ. Stud. 2012, 25, 3457–3489. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Lilti, J.J. Whether profitability and investment factors have additional explanatory power comparing with Fama-French Three-Factor Model: Empirical evidence on Chinese A-share stock market. China Financ. Econ. Rev. 2017, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Zhao, J.; Lv, Z.; Gu, Y.; Yang, P.; Halgamuge, S.K. Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction. IEEE Trans. Fuzzy Syst. 2020, 28, 939–952. [Google Scholar] [CrossRef]
- Gao, J.; Guo, H.; Xu, X. Multifactor Stock Selection Strategy Based on Machine Learning: Evidence from China. Complexity 2022, 2022, 7447229. [Google Scholar] [CrossRef]
- Pontiff, J. Costly arbitrage and the myth of idiosyncratic risk. J. Account. Econ. 2006, 42, 35–52. [Google Scholar] [CrossRef]
- Habib, A.; Hasan, M.M.; Jiang, H. Stock price crash risk: Review of the empirical literature. Account. Financ. 2018, 58, 211–251. [Google Scholar] [CrossRef] [Green Version]
Portfolio | Beta | Mean | Variance | Portfolio | Beta | Mean | Variance |
---|---|---|---|---|---|---|---|
1 | 0.664 | 1.007 | 0.013 | 6 | 1.219 | 1.228 | 0.021 |
2 | 0.907 | 0.915 | 0.017 | 7 | 1.283 | 1.112 | 0.016 |
3 | 1.014 | 0.739 | 0.017 | 8 | 1.353 | 0.744 | 0.012 |
4 | 1.091 | 1.319 | 0.018 | 9 | 1.442 | 0.581 | 0.015 |
5 | 1.157 | 1.262 | 0.014 | 10 | 1.626 | 0.432 | 0.017 |
Portfolio | CAPM_Alpha | CAPM_Beta | |
---|---|---|---|
L | 0.29 (1.53) | 0.77 (25.18) | 0.84 |
H | −0.53 (−1.41) | 1.50 (25.26) | 0.84 |
H–L | −0.82 (−1.73) |
Portfolio | Indicator | CAPM | PLS | Enet | GBRT | RF | NN1 | NN2 | NN3 | NN4 | NN5 |
---|---|---|---|---|---|---|---|---|---|---|---|
L | a (%) | 0.29 1 (1.53) | 0.66 (1.43) | 0.75 (1.61) | 0.66 (0.74) | 0.52 (0.61) | 0.56 (0.69) | 0.55 (0.66) | 0.54 (0.67) | 0.36 (0.49) | 0.43 (0.51) |
0.77 2 (25.18) | 0.10 (1.37) | 0.15 (2.07) | 0.24 (1.73) | 0.29 (2.16) | 0.28 (2.20) | 0.28 (2.21) | 0.27 (2.17) | 0.25 (1.70) | 0.24 (1.82) | ||
−0.36 3 (−3.27) | 0.37 (3.32) | 1.74 (4.05) | 1.91 (5.04) | 2.38 (7.01) | 2.10 (6.33) | 2.00 (6.41) | 1.22 (2.65) | 1.56 (5.67) | |||
H | a (%) | −0.53 (−1.41) | 0.21 (0.33) | 0.43 (0.48) | 0.88 (1.91) | 0.78 (1.72) | 0.82 (1.89) | 0.80 (1.83) | 0.80 (1.84) | 0.72 (1.52) | 0.77 (1.76) |
1.50 (25.26) | 0.18 (1.26) | 0.29 (2.10) | 0.13 (1.80) | 0.15 (2.10) | 0.14 (2.15) | 0.15 (2.14) | 0.14 (2.13) | 0.13 (1.77) | 0.13 (1.87) | ||
−0.79 (−3.66) | 0.89 (4.18) | 0.83 (3.76) | 0.79 (3.93) | 1.05 (5.74) | 0.91 (5.12) | 0.88 (5.26) | 0.54 (2.28) | 0.74 (5.18) | |||
H–L | a (%) | −0.82 (−1.73) | −0.45 (−0.73) | −0.32 (−0.52) | 0.22 (0.35) | 0.26 (0.44) | 0.25 (0.45) | 0.26 (0.44) | 0.27 (0.46) | 0.36 (0.58) | 0.34 (0.56) |
Sample | Portfolio | CAPM | PLS | ENET | GBRT | RF | NN1 | NN2 | NN3 | NN4 | NN5 |
---|---|---|---|---|---|---|---|---|---|---|---|
SOE | L | 0.40 (1.70) | 1.05 (2.16) | 1.01 (1.86) | 1.15 (1.08) | 1.25 (1.18) | 0.29 (0.46) | 0.24 (0.38) | 0.22 (0.32) | 0.08 (0.42) | 0.20 (0.30) |
H | −0.14 (−0.39) | 1.02 (1.08) | 0.94 (0.91) | 1.29 (2.45) | 1.35 (2.58) | 0.68 (1.96) | 0.65 (1.93) | 0.66 (1.72) | 0.57 (1.61) | 0.65 (1.71) | |
H–L | −0.54 (−1.21) | −0.14 (−0.19) | −0.07 (−0.10) | 0.14 (0.18) | 0.10 (0.13) | 0.39 (0.61) | 0.41 (0.65) | 0.44 (0.69) | 0.49 (0.77) | 0.45 (0.70) | |
non- SOE | L | 1.54 (3.69) | 1.51 (3.87) | 1.55 (3.67) | 1.60 (3.79) | 1.57 (3.71) | 1.60 (3.80) | 1.53 (3.46) | 1.51 (3.54) | 1.56 (3.64) | 1.54 (3.61) |
H | 2.21 (1.30) | 2.14 (1.27) | 2.55 (1.49) | 3.00 (1.84) | 3.10 (1.99) | 2.87 (1.75) | 2.87 (1.60) | 3.30 (2.09) | 4.06 (2.90) | 4.07 (2.99) | |
H–L | 0.67 (0.44) | 0.64 (0.42) | 0.99 (0.65) | 1.40 (0.96) | 1.53 (1.12) | 1.27 (0.86) | 1.34 (0.83) | 1.80 (1.31) | 2.52 (2.13) | 2.53 (2.25) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, Z. Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach. Mathematics 2023, 11, 3220. https://doi.org/10.3390/math11143220
Wang J, Chen Z. Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach. Mathematics. 2023; 11(14):3220. https://doi.org/10.3390/math11143220
Chicago/Turabian StyleWang, Jiawei, and Zhen Chen. 2023. "Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach" Mathematics 11, no. 14: 3220. https://doi.org/10.3390/math11143220
APA StyleWang, J., & Chen, Z. (2023). Exploring Low-Risk Anomalies: A Dynamic CAPM Utilizing a Machine Learning Approach. Mathematics, 11(14), 3220. https://doi.org/10.3390/math11143220