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Abstract: Low-risk pricing anomalies, characterized by lower returns in higher-risk stocks, are
prevalent in equity markets and challenge traditional asset pricing theory. Previous studies primarily
relied on linear regression methods, which analyze a limited number of factors and overlook the
advantages of machine learning in handling high-dimensional data. This study aims to address these
anomalies in the Chinese market by employing machine learning techniques to measure systematic
risk. A large dataset consisting of 770 variables, encompassing macroeconomic, micro-firm, and
cross-effect factors, was constructed to develop a machine learning-based dynamic capital asset
pricing model. Additionally, we investigated the differences in factors influencing time-varying
beta between state-owned enterprises (SOEs) and non-SOEs, providing economic explanations for
the black-box issues. Our findings demonstrated the effectiveness of random forest and neural
networks, with the four-layer neural network performing best and leading to a substantial rise in the
excess return of the long–short portfolio, up to 0.36%. Notably, liquidity indicators emerged as the
primary drivers influencing beta, followed by momentum. Moreover, our analysis revealed a shift
in variable importance during the transition from SOEs to non-SOEs, as liquidity and momentum
gradually replaced fundamentals and valuation as key determinants. This research contributes
to both theoretical and practical domains by bridging the research gap in incorporating machine
learning methods into asset pricing research.
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1. Introduction

Systematic risk measurement and the trade-off between risk and return are central
topics in modern asset pricing research [1,2]. The capital asset pricing model (CAPM), a
well-established equilibrium asset pricing theory, is commonly used to assess risk exposure
in equity markets [3]. According to CAPM, stocks with high risk should yield higher
returns, while stocks with low beta are expected to deliver lower returns. However, recent
empirical evidence has cast doubt on this relationship, indicating the presence of “low-
risk anomalies” [4–6]. These anomalies refer to the phenomenon where low-beta stocks
outperform high-beta stocks in terms of returns, challenging traditional notions of risk
and return.

To address the low-risk pricing anomalies, beta measurement within the CAPM
requires attention in two aspects. Firstly, beta cannot be directly observed and necessitates
precise estimation techniques. Secondly, beta dynamically changes over time. In response to
the second issue, existing research can be classified into two main streams: static CAPM and
dynamic CAPM. The static CAPM derives an unchanging beta through linear regression of
stock returns. On the other hand, the dynamic CAPM recognizes the instability of beta and
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utilizes conditional information to optimize beta measurement. For example, Boguth et
al. [7] proposed that time-varying betas with economic information improved insights into
systematic risk and possessed stronger explanatory power for stock returns. However, most
existing studies rely on simple linear regressions and consider only specific macroeconomic
variables with limited corporate financial factors. As a result, they neglect the potential
impact of a large number of macroeconomic and micro-firm factors on the variation in beta
over time.

The Chinese stock market, with a total value of USD 12.5 trillion (RMB 88 trillion) by
the end of 2022, has solidified its position as the second-largest market globally. Apart
from its sheer size, unique characteristics make it attractive for both academia and industry,
contributing to the exploration of emerging markets [8]. Notably, the Chinese market is
predominantly influenced by retail investors. According to the 2022 yearbook of the Shang-
hai Stock Exchange, there are 299.5 million investors in China, with individual investors
accounting for a staggering 99.7%. The speculative behaviors and short-term trading ac-
tivities of retail investors result in increased trading volume, emphasizing the importance
of investigating how retail investment behaviors affect risk assessment. Furthermore, the
Chinese market exhibits complex market structures, with a large number of state-owned
enterprises (SOEs) in infrastructure and livelihood sectors. SOEs often face criticism for
inadequate information disclosure and divergence of political objectives from corporate
value maximization [9].

The unique structures of the Chinese stock market often render models developed for
mature capital markets less effective. Therefore, highly flexible methods are required. Ma-
chine learning techniques have demonstrated superior predictive performance compared
to traditional methods in various domains, including the prediction of stock returns [10],
bond premiums [11], and loan defaults [12]. The high-dimensional nature of machine
learning enhances its flexibility, providing better access to the complex generation process
of share price. Given that beta exhibits a higher signal-to-noise ratio compared to stock
returns, machine learning techniques can incorporate a broader range of predictors and
richer functional forms, potentially surpassing traditional methods in beta forecasts as well.

The need for machine learning techniques arises from the limitations of traditional
methods in asset pricing research. Traditional models, such as linear regression, typically
assume linearity and overlook the interactions among predictors, resulting in incomplete
risk assessment and less accurate predictions. Moreover, traditional models may struggle to
handle high-dimensional datasets that include numerous macroeconomic and micro-firm
factors. In contrast, machine learning techniques excel at capturing nonlinear patterns and
efficiently handling high-dimensional data. By applying machine learning techniques, we
can enhance the precision and predictive power of risk assessment.

In this study, we aimed to address the persistent risk–return asymmetry observed
in the Chinese stock market. To achieve this, we introduced an innovative dynamic
CAPM utilizing machine learning approach. Specifically, by using mainstream machine
learning algorithms including partial least squares, random forest, and neural networks,
we measured the systematic risk in a more flexible and intelligent way. Additionally, given
the substantial market capitalization of SOEs in the Chinese market, we further examined
the beta anomaly, for both SOEs and non-SOEs separately, and revealed the underlying
reasons driving these differences at the factor level.

This study makes the following contributions:

• We uncovered the factors influencing time-varying beta, including macroeconomic
and micro-firm features, as well as their cross-effects. By constructing a comprehensive
database comprising 70 micro-firm characteristics and 10 macroeconomic indicators,
we enhanced the measurement of systematic risk with improved data dimensionality
and granular precision, surpassing previous research;

• We proposed a novel dynamic CAPM that leverages mainstream machine learning al-
gorithms. This innovation, to the best of our knowledge, is among the first applications
of machine learning techniques to asset pricing research. By incorporating advanced
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methods such as regression trees and neural networks, we effectively tackled the
challenges of high-dimensional data, capturing nonlinear and interactive effects, thus
providing accurate estimates of systematic risk;

• Our paper unveils the underlying causes of low-risk anomalies and provides valuable
implications for academia and industry. We observed that the neural networks, partic-
ularly the NN4, yielded the highest excess returns. Liquidity predictors emerged as the
most influential factors, followed by momentum indicators. Furthermore, through our
subsample analysis, we revealed that, during the transition from SOEs to non-SOEs,
the variable importance of fundamental and valuation diminished, making way for
liquidity and momentum.

The paper is organized as follows. In Section 2, we present a comprehensive review
of the relevant literature. Section 3 provides a detailed description of data sources and
methodology. The main empirical findings are presented in Section 4. In Section 5, we
further investigate the differences in factors influencing beta through a subsample analysis.
In Section 6, we summarize our key findings and conclusions.

2. Literature Review
2.1. The Dynamic CAPM

The CAPM utilizes beta to measure the systematic risk exposure of equities. The
traditional static CAPM theory assumes a constant beta, but empirical evidence suggests
that actual betas are unstable due to several factors [13]. These factors include changes in a
company’s strategy, capital structure, and returns, as well as microeconomic aspects such as
dividend policies and financial leverage. As a result, variations in firm-level characteristics
and the external macroeconomic environment contribute to beta’s variability over time.

For several decades, scholars in both academia and industry have been actively en-
gaged in the development of dynamic asset pricing models. Hansen and Richard [14]
were among the pioneers in investigating the linear conditional CAPM and time-varying
beta to enhance the model’s explanatory power, thereby laying the foundation for dy-
namic CAPM. Ferson and Siegel [15] examined the impact of conditional information on
the effectiveness of constructing portfolio strategies within the model. Cederburg and
O’Doherty [16] constructed dynamic CAPM incorporating macroeconomic variables such
as lagged beta, market dividend rates, and credit spreads, which effectively mitigated risk
pricing anomalies. Cosemans et al. [17] introduced macroeconomic indicators, micro-firm
variables, and cross-product terms to estimate dynamic stock betas, resulting in superior
predictions with significant practical implications.

Empirical findings from various financial markets have consistently demonstrated
the enhanced cross-sectional asset returns provided by dynamic models. For example,
Mazzola and Gerace [18] conducted comparative analysis of optimal portfolios in the
Australian securities market, evaluating the performance of both static CAPM and dynamic
CAPM models. Their findings revealed that the dynamic approach, based on pre- and
post-transaction cost returns, outperformed the static model due to effective portfolio
rebalancing. Chen and Tindall [19] constructed actively managed portfolios of Chicago
Board Options Exchange (CBOE) Volatility Index derivatives to reduce portfolio correlation
with the equity market. The results indicated that the Kalman filter-based dynamic CAPM
produced the best outcomes, generating equity market-neutral portfolios with positive
alpha. Hollstein et al. [20] suggested that the dynamic CAPM could effectively explain size,
value, and momentum anomalies using high-frequency data, with high-frequency betas
providing more accurate predictions compared to those based on daily data. Leal et al. [21]
introduced the symmetric CAPM, a dynamic approach that considers distributions with
lighter or heavier tails than the normal distribution. They conducted a case study using real
data to estimate the systematic risk of financial assets for a Chilean company, and the results
revealed that the symmetric CAPM outperformed the traditional CAPM, particularly when
dealing with non-Gaussian distributions.
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Furthermore, the static CAPM suggests a trade-off between risk and return, while
empirical results have shown that high-beta stocks tend to provide lower expected returns
than low-beta stocks [22,23]. The reasons behind this low-risk pricing anomaly are complex.
Bali et al. [24] attributed the low-risk effect to investors’ behavioral biases associated with
idiosyncratic risk. Frazzini and Pedersen [25] explained the beta anomaly using the theory
of leverage constraints and found that the betting against beta (BAB) factor generated
significant alpha. Asness et al. [26] argued that alpha is primarily driven by the betting
against correlation factor associated with leverage constraints, rather than the betting
against volatility factor related to behavioral effects.

However, in emerging markets, the beta anomaly lacks convincing explanations.
China, as the largest emerging market, exhibits unique characteristics, including individual
investors as the main players and strict limits on arbitrage. Based on these facts, this paper
aims to address the beta anomaly in China by employing machine learning-based dynamic
models.

2.2. Application of Machine Learning in Stock Forecast

Given that the stock market is inherently a nonlinear, dynamic, and complex stochastic
system, predicting stock prices becomes a challenging task in time-series forecasting. In
the past, traditional time-series models such as linear regression, ARIMA, and GARCH
were commonly used for stock forecasting [27]. However, with advancements in computer
technology and increased computing power, machine learning models such as support
vector regression [28], tree-based models [29], and neural networks [30] have shown
superior capabilities in handling complex, non-stationary, and nonlinear characteristics
compared to traditional models.

Shah [31] published “Machine Learning Techniques for Stock Prediction”, which set
off a boom in applying machine learning technology to asset pricing area. Subsequently,
numerous models have been developed and widely utilized in the prediction of stocks,
bonds, options, and other financial fields. Hsu et al. [32] discovered that machine learning
methods outperform economic methods in predicting financial markets. They further
demonstrated that the prediction accuracy is influenced by market maturity, input variables,
forecast benchmark time, and forecast methods. Zhu et al. [33] employed neural networks
to forecast stock prices by utilizing 14 trading indicators, including opening and closing
prices, as well as technical analysis indicators such as ROC and RSI. Gu et al. [10] compared
the predictive power of linear regression with machine learning models for a cross-section
of stocks in the US market and reported that the artificial neural network model with three
hidden layers exhibited the highest predictive power. Drobetz and Otto [34] evaluated
the forecasting performance of machine learning methods in the European stock market
and found that support vector machines achieved the best performance and significant
profitability.

Several previous studies have applied machine learning methods specifically to Chi-
nese stocks. Yuan et al. [35] developed integrated long-term stock selection models for
the Chinese stock market based on various machine learning algorithms. Their analysis
revealed that the random forest yielded the best performance for both feature selection
and stock price trend prediction. Yu et al. [36] utilized machine learning techniques such
as KNN, SVM, and AdaBoost to analyze the correlation between stock returns and their
ESG (environmental, social, and governance) scores. The experiment indicated that ESG
stocks exhibit better risk performance during normal times compared to non-ESG-related
stocks, although they did not deliver excess returns. Leippold et al. [9] examined the
prediction ability of machine learning methods in the Chinese stock market and identified
liquidity indicators as the most critical factor, followed by price momentum-based signals.
Considering the significant role of government signals, they also observed a substantial
increase in the predictability of SOEs over longer time horizons.

Overall, in the empirical asset pricing literature, studies employing machine learning-
based approaches have addressed many aspects, primarily focusing on the predictability
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of stock returns. However, limited research has been conducted on the predictability of
systemic risk, which is equally important for firms and investors. Hence, this paper aims to
predict the beta of stocks using machine learning techniques and extend the research on
the predictability of risk characteristics.

2.3. Related Machine Learning Techniques

In this section, we introduce three types of machine learning algorithms related to our
study: linear regression with penalty term, regression trees, and neural networks.

Traditional linear regression often yields unreliable estimates when dealing with a
large number of covariates. This unreliability can be attributed to high correlation or
redundancy among the covariates, leading to issues such as multi-collinearity and loss of
efficiency. In the context of high-dimensional regression, one widely used machine learning
technique is linear regression with penalty terms [37]. This approach aims to identify valid
predictors by introducing penalty terms into the loss function. In this study, we employ the
elastic net (Enet) method to address the problem of overfitting. The combination of penalty
terms and the Huber function [38] allows us to identify the most relevant predictors while
considering potential outliers and maintaining robustness. The objective function for Enet
is defined as follows:

LEnet
H =

1
NT

N

∑
s=1

T

∑
t=1

H(Rs,t − f ∗(zs,t−1; θ)RM,t; M) + (1− ρ)λ
P

∑
j=1

∣∣θj
∣∣+ 1

2
ρλ

P

∑
j=1

θ2
j (1)

H(x; M) =

{
x2, if |x| ≤ M

2M|x| −M2, if |x| > M
(2)

where λ and ρ are hyperparameters that control the size of the penalty; the key tuning
parameters are λ ∈ (0, 1) and ρ ∈ (0, 1). Additionally, Rs,t is the excess return of stock, Rm,t
is the excess return of the market portfolio. Finally, H(x; M) is the Huber loss function;
the threshold is determined by the tuning parameter M, and θ represents the vector of
coefficients.

Next, we explore regression tree models, including random forests (RF) and gradient-
boosted regression trees (GBRT), which have gained prominence in machine learning for
their ability to handle classification and regression tasks flexibly [35]. These methods rely
on the construction of multiple individual trees to make predictions. Mathematically, a
basic regression tree with K leaves and depth L can be represented as follows:

f ∗(zs,t−1; θ, K, L) =
K

∑
k=1

θk1{zs,t−1∈CK(L)} (3)

where CK(L) is k-th division of data, and L represents the maximum number of nodes in a
complete branch. The stock s with characteristics zs,t−1 is clustered into the k-th leaf, and
the basic tree predicts the systematic risk as θk.

To predict beta, we aggregate forecasts from regression trees into a single one, using
ensemble methods, including bagging and boosting. Bagging methods combine the results
of multiple parallel models through voting, while boosting obtains the final result by
summing the predictions of multiple series models. In this study, GBRT follows the
boosting approach, which combines multiple shallow trees to create a single strong learner
that surpasses the performance of a deep tree. GBRT iteratively improves the model
by sequentially fitting new trees to the residuals of previous iterations, reducing the
overall prediction error. On the other hand, RF employs a bagging approach, where
bootstrap samples are drawn from the original dataset and each sample is used to train an
independent decision tree, the predictions are then averaged to create a strong learner. The
construction of RF is illustrated in Figure 1.
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Figure 1. The construction of the random forest.

The steps involved in the RF model are as follows [39]. Firstly, N training datasets
are generated using the bagging method by sampling from the original training dataset.
Secondly, N decision trees are trained independently based on these N training datasets.
Thirdly, the random forest is composed of these N decision trees. In classification problems,
the final classification result is determined by aggregating the predictions of the N decision
tree classifiers. For regression problems, the average of the predicted values from the
N decision trees determines the final prediction result. In summary, random forests are
formed by integrating a large number of decision trees as the basic unit.

Moving on, we delve into neural networks (NN), which are widely employed in stock
return forecasting due to their ability to construct nonlinear models effectively [40]. Similar
to the human brain, neural networks consist of interconnected computational units called
neurons. While individual neurons may provide limited predictive power, the collective
power of a network composed of multiple neurons is substantial. With the highly parame-
terized and fault-tolerant nature, they are well-suited for solving complex problems [41].
However, it is important to note that the interpretability of neural network algorithms is
limited, and their predictions may not always be easily explained or understood.

In our analysis, we utilized feed-forward neural networks. The model included input
layers to capture lagged stock-level features, hidden layers to capture interactions between
input predictors, and output layers to generate predictive outputs (realized betas). Each
node in the network is connected to all nodes in the preceding layer, following a one-
way direction. The structure of the neural network is illustrated in Figure 2. We chose
the number of neurons in the hidden layer according to the geometric pyramid rule [42],
referring to the practice of Gu et al. [10] and Leppiod et al. [9].

(a) (b)

Figure 2. The construction of neural networks. (a) Two-layer fully connected neural network.
(b) Activation function.
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We considered neural networks with one to five hidden layers. Each layer consists of
a certain number of neurons, built using commonly-used activation functions. For instance,
the predicted systematic risk under the NN2 model can be represented as follows:

βs,t = α1 + W1σ(α2 + W2σ(α3 + W3zs,t−1)) + εs,t (4)

where σ() represents activation function, {a1, a2, a3} is the bias set, {W1, W2, W3} is the
predicted weight matrics, and εs,t is the residual term. The specific parameter configurations
for NN1 to NN5 are presented in Appendix A—Table A1.

3. Methodology
3.1. Data

In this study, we collected individual stock return data and financial data for all A-
share companies listed on the Shanghai and Shenzhen stock exchanges from China Stock
Market and Accounting Research (CSMAR) and Wind, which are the two most influential
financial databases in China. The corresponding monthly macro data were obtained from
the CSMAR and National Bureau of Statistics websites. We calculated risk-free rates using
monthly one-year government bond yields, and market portfolio returns were derived by
taking a weighted average of the market value of all equity returns. The complete sample
period spanned from January 2002 to December 2020, covering a total of 19 years. To
mitigate the effects of outliers generated by special stocks, we excluded stocks that were
classified as special treatment, delisted, or listed for less than one year. As a result, the final
sample consisted of 3619 stocks.

3.2. Machine Learning-Based Dynamic CAPM

Based on the literature related to the cross-section of stock returns and studies on
market-specific factors in China, we collected 70 variables documented in Green et al. [43]
and Ma et al. [44] to build a large-scale micro-firm factor database. These variables were
categorized into 9 groups: beta, valuation (bpr), earnings (ey), growth, leverage (lever),
liquidity (liq), momentum (mom), size, and volatility (vol). Additionally, we included 4 bi-
nary variables representing the ownership type of listed companies for subsample analysis.
To ensure the accuracy of stock return forecasting, we excluded factors that were updated
semi-annually and annually. Regarding data frequency, 17 firm-level characteristics were
updated monthly, while 53 were updated quarterly. To mitigate the impact of outliers on
prediction results, we followed the approach of Gu et al. [10] and standardized all company
characteristics by mapping their values to the [−1,1] interval. Appendix A—Table A3
provides detailed information on characteristics and categories.

Furthermore, we constructed 10 macroeconomic predictors commonly used in stock
market analysis. These predictors fell into two categories based on the definitions provided
by Welch [45]: national economic indicators, such as consumer confidence index (cei),
macroeconomic prosperity index (hj), inflation (infl), and M2 growth rate (m2gr); and stock
market monitoring indicators, such as book-to-market ratio (bm), dividend–price ratio
(dp), earnings–price ratio (ep), volatility (lvol), stock variance (svar), and turnover rate (to).
These indicators have been previously validated as effective in relevant studies and are
summarized in Appendix A—Table A4.

A fundamental assumption in the CAPM is that the beta used to measure asset risk
is constant. However, subsequent research has shown that beta coefficients exhibit time-
varying properties. Existing studies on time-varying betas often rely on small datasets
with irregular sample selection, failing to leverage the valuable information contained in
macro- and micro-influences within big data. Moreover, these studies often focus solely
on traditional linear regression methods to estimate betas, disregarding techniques such
as factor reduction, variable screening, and nonlinear models, which have the potential
to enhance predictive accuracy. Given the limitations in the current literature, this paper
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aimed to address these gaps by constructing a dynamic CAPM using machine learning
algorithms:

Rs,t = αs + βs,tRm,t + µs,t (5)

where βs,t is the time-varying beta for systematic market risk measure, αs is the excess
return of stock s under CAPM, and µs,t is the residual term.

Machine learning-based approaches offer a distinct and rigorous methodology for
capturing cross-sectional variations in future beta. These techniques focus explicitly on
predicting beta with multiple sources of information as predictors. For example, the
achieved beta is included as a dependent variable in the regression, helping the recall of
the forecast target and potentially maximizing the predictive power. In this study, we
employed a generalized additive prediction error model, as outlined in Gu et al. [10], to
characterize stock beta and its influential predictors:

βs,t = Et[βs,t] + εs,t (6)

We further assumed that, given the available information in period t − 1, the con-
ditional expectation of beta can be expressed as a functional form of a set of predictors:

Et[βs,t] = f ∗(zs,t−1) (7)

where the specific functional f ∗() remains unspecified, and zs,t−1 represents a set of p-
dimensional predictors. Despite belonging to different families, the machine learning-based
models employed in this study were all designed to optimize prediction performance.

To examine the combined influence of macroeconomic and micro-firm characteristics
on time-varying beta, we defined the stock-level covariates zs,t−1 as cross-product terms:

zs,t−1 = xt−1 ⊗ cs,t−1 (8)

where cs,t−1 is a PC × 1 matrix of the firm’s micro-feature matrix, xt−1 is a PX × 1 matrix of
the macro-variables, and zs,t−1 represents a PCPX × 1 matrix of the combined macro–micro
dataset. The total number of covariates was 70 × (10 + 1) = 770. It is worth noting that
zs,t−1 contains the interactions between stock-level characteristics and macroeconomic state
variables, thereby providing deeper insights into stock return forecasts.

In total, we employed nine machine learning methods to construct the dynamic CAPM:
(1) linear regressions, including partial least squares (PLS) and Enet; (2) regression trees,
including GBRT and RF; (3) neural networks, ranging from one to five layers. Both the Enet
and GBRT models were equipped with Huber loss functions to mitigate potential interfer-
ence from extreme values [38]. This paper primarily utilized the Sklearn library in Python
to construct a dynamic CAPM, with comprehensive details regarding the computational
framework and hyperparameters provided in Appendix A—Table A2.

Considering the time-series continuity, we divided the data into three periods: the
training sample (2002–2007), the validation sample (2008–2010), and the test sample
(2011–2020). The training sample was used to estimate the model parameters based on
pre-specified hyperparameters, while the validation sample was utilized to optimize the
hyperparameters of models. The test sample contained data for the subsequent 12 months
after validation to assess the models’ predictive performances.

Given the computational complexity associated with machine learning, we adopted
the sample splitting approach introduced by Gu et al. [10] to annually update the prediction
model. When modifying the model, we expanded the size of the training sample by 1 year,
while the validation period and the 1-year test period shifted forward to include the most
recent 12 months. The data spanning from January 2002 to December 2020 were divided
into 10 periods, as illustrated in Figure 3.
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Figure 3. Rolling window of sample division.

3.3. Performance Evaluation

In evaluating the performance of our stock return forecasts, we followed the standard
approach commonly employed in the literature [9,34]. To assess the predictive accuracy of
individual excess stock return forecasts, we calculated the non-demeaned out-of-sample R2

using the following formula:

R2
oos = 1−

∑(s,t)∈T3

(
Rs,t − R̂s,t

)2

∑(s,t)∈T3
R2

s,t
(9)

where Rs,t denotes the actual return of stock s at time t, and R̂s,t denotes the predicted
return rate of stock s at time t. T3 indicates that the calculation is restricted to the testing
sample; in other words, the data never enter into model estimation or tuning.

Throughout the above analysis, we constructed a modelling flow for the dynamic
CAPM based on various machine learning algorithms, as shown in Figure 4.

Figure 4. Dynamic CAPM modeling process based on machine learning.
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4. Experimental Results
4.1. Low-Risk Pricing Anomaly in China

At the beginning of each January, the beta value for each stock was calculated using
the daily stock returns over the previous 12 months, following the approach of Hong and
Sraer [23]:

rs,t = as + βs,0rm,t + βs,1rm,t−1 + βs,2rm,t−2 + βs,3rm,t−3 + βs,4rm,t−4 + βs,5rm,t−5 + εs,t (10)

where rs,t is the excess return of stock s at period t, rm,t is the excess return of the market
portfolio at period t, rs,t−1, . . . , rs,t−5 are lagged excess returns of the market portfolio, and
εs,t is the regression residual.

To account for variations in the dissemination of market information, the model incor-
porated five lagged excess returns, considering factors such as illiquidity and asynchrony.
The value of predicted beta was the sum of parameter estimates:

β̂s,t = β̂s,0 + β̂s,1 + β̂s,2 + β̂s,3 + β̂s,4 + β̂s,5 (11)

The stocks were categorized into 10 groups based on their beta values, arranged
in descending order. Portfolios were constructed for each group, and they were held
throughout the year until December. The total monthly returns for 10 portfolios were
calculated over a 10-year period, spanning from January 2011 to December 2020. The
results are presented in Table 1.

Table 1. The mean and variance of portfolio return.

Portfolio Beta Mean Variance Portfolio Beta Mean Variance

1 0.664 1.007 0.013 6 1.219 1.228 0.021
2 0.907 0.915 0.017 7 1.283 1.112 0.016
3 1.014 0.739 0.017 8 1.353 0.744 0.012
4 1.091 1.319 0.018 9 1.442 0.581 0.015
5 1.157 1.262 0.014 10 1.626 0.432 0.017

Table 1 displays the mean of and variance in monthly returns for the 10 portfolios,
where Beta represents the market capitalization-weighted beta of stocks in the portfolio;
Mean represents the mean of the market capitalization-weighted monthly returns of all
stocks in the portfolio in %; and Variance represents the variance in monthly returns of all
stocks in the portfolio. Notably, the portfolios with lower beta values (1–5) generally exhib-
ited higher returns compared to the portfolios with higher beta values (6–10), indicating
a decreasing trend in returns as beta increased. These results suggest that the static beta
from traditional CAPM cannot adequately explain the pattern of stock returns. In other
words, higher risk does not necessarily correspond to higher returns. Therefore, there exists
a low-risk pricing anomaly in the Chinese equity market.

To further analyze the anomaly under the static CAPM, the time series of Portfolio
1 (L) and Portfolio 10 (H) were selected, which represented the lowest and highest beta
portfolios:

rs,t = as + βsrm,t + εs,t (12)

The regression results are presented in Table 2. The alpha was 0.29% for Portfolio L
and −0.53% for Portfolio H over the sample period. By investing long on Portfolio H and
short on Portfolio L, the alpha of the long–short portfolio H–L was −0.82%, which was
statistically significant at the 5% level. This finding indicates that the static CAPM fails to
address the low-risk pricing anomaly.
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Table 2. The regression results of portfolios under the static CAPM.

Portfolio CAPM_Alpha CAPM_Beta R2

L
0.29

(1.53)
0.77

(25.18) 0.84

H
−0.53

(−1.41)
1.50

(25.26) 0.84

H–L
−0.82

(−1.73)

4.2. Dynamic CAPM with Time-Varying Beta

This section examines the performance of machine learning-based dynamic CAPM
in predicting future stock returns, with a focus on addressing the low-risk anomaly. We
constructed time-varying betas using different families of models: linear regression, regres-
sion trees, and neural networks. These are all representative mainstream machine learning
algorithms in the financial field.

We utilized the return time-series data of Portfolio H and Portfolio L, as constructed
in Section 4.1. The training period spanned six years, from January 2002 to December
2007, while the verification period covered three years, from January 2008 to December
2010. Given the computational intensity and time-consuming nature of machine learning,
we adopted the sample splitting method introduced by Gu et al. [10] to refit the models
annually. In our experiment, the first monthly time-varying beta to be predicted was for
January 2011. The final prediction interval extended from the beginning to December 2020,
including a total of 120 monthly return observations.

Table 3 presents the regression results of the dynamic CAPM based on different
machine learning techniques. To demonstrate the efficacy of our proposed dynamic CAPM
model in addressing the low-risk pricing anomaly, we utilized the excess return (a%) of
the long-short portfolio H–L as the validating performance metric. This metric provided a
measure of the improvement in returns achieved by our model. Furthermore, we ensured
the accuracy and reliability of our research results by assessing the regression values
and statistical t-values associated with various machine learning algorithms. For the
regularized models, including PLS and Enet, the monthly excess returns for the H–L
portfolio were −0.45% and −0.32%, respectively, with corresponding t-values of −0.73
and −0.52. Compared to the static CAPM, these improved models provided a more than
50% increase in excess returns, indicating the effectiveness of dimensionality reduction
when dealing with a large number of covariates. This suggests that, when employing factor
analysis to predict stock market returns, certain micro-level stock characteristics may be
redundant, supporting the conclusions of Ma et al. [44] regarding the existence of the factor
zoo phenomenon in the Chinese market.

Additionally, in terms of the predictive ability of time-varying beta, the linear regres-
sion models performed better on high-beta portfolios compared to the low-beta group.
For PLS and Enet, the excess return for portfolio H increased from −0.53% to 0.21% and
0.43%, respectively. This improvement can be attributed to the higher return volatility in
the high-beta portfolio, wherein dimensionality reduction techniques and penalty terms
effectively enhanced the stability of the time-series data.

Among all the models, the RF and NN models significantly addressed the low-risk
pricing anomalies. Particularly, the dynamic model based on NN4 yielded the best perfor-
mance, with an excess return of 0.36%, which was 118% higher than that of static CAPM.
This result emphasizes the superiority of machine learning in capturing complex inter-
actions among predictors, which are often overlooked by traditional linear models. It is
worth noting that, although the complexity of an NN model increases by adding hidden
layers, the excess returns of the long–short portfolio H–L initially rose and then declined;
eventually, the five-layer model failed to improve over NN4. This observation indicates
that, while machine learning improves excess returns, its benefits are limited in mitigating
the pricing anomaly in the Chinese stock market.
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Table 3. The regression results of dynamic CAPM based on machine learning.

Portfolio Indicator CAPM PLS Enet GBRT RF NN1 NN2 NN3 NN4 NN5

L

a (%) 0.29 1

(1.53)
0.66

(1.43)
0.75

(1.61)
0.66

(0.74)
0.52

(0.61)
0.56

(0.69)
0.55

(0.66)
0.54

(0.67)
0.36

(0.49)
0.43

(0.51)

βs
0.77 2

(25.18)
0.10

(1.37)
0.15

(2.07)
0.24

(1.73)
0.29

(2.16)
0.28

(2.20)
0.28

(2.21)
0.27

(2.17)
0.25

(1.70)
0.24

(1.82)

βs,t
−0.36 3

(−3.27)
0.37

(3.32)
1.74

(4.05)
1.91

(5.04)
2.38

(7.01)
2.10

(6.33)
2.00

(6.41)
1.22

(2.65)
1.56

(5.67)

H

a (%)
−0.53

(−1.41)
0.21

(0.33)
0.43

(0.48)
0.88

(1.91)
0.78

(1.72)
0.82

(1.89)
0.80

(1.83)
0.80

(1.84)
0.72

(1.52)
0.77

(1.76)

βs
1.50

(25.26)
0.18

(1.26)
0.29

(2.10)
0.13

(1.80)
0.15

(2.10)
0.14

(2.15)
0.15

(2.14)
0.14

(2.13)
0.13

(1.77)
0.13

(1.87)

βs,t
−0.79

(−3.66)
0.89

(4.18)
0.83

(3.76)
0.79

(3.93)
1.05

(5.74)
0.91

(5.12)
0.88

(5.26)
0.54

(2.28)
0.74

(5.18)

H–L a (%)
−0.82

(−1.73)
−0.45

(−0.73)
−0.32

(−0.52)
0.22

(0.35)
0.26

(0.44)
0.25

(0.45)
0.26

(0.44)
0.27

(0.46)
0.36

(0.58)
0.34

(0.56)
1 a (%) represents the excess return, and t-value is in parentheses; 2 βs corresponds to the static beta coefficient ob-
tained for the Rm,t item regression; 3 βs,t corresponds to the dynamic beta coefficient obtained for the f ∗(zs,t−1)Rm,t

item regression.

In summary, the integration of machine learning into the dynamic CAPM effectively
addresses the “low risk with high return” anomaly in China’s A-share market. The impres-
sive performance of neural networks highlights the benefits of incorporating potentially
complex interactions among predictors.

4.3. Determining Which Predictors Are Important

Understanding the economic mechanisms behind machine learning models is crucial,
as they often lack transparency in economic reasoning [46]. With a multitude of influencing
factors, we aimed to identify the predictors that matter in constructing time-varying beta.
We examined the variable importance of 70 micro-firm characteristics and 10 macroeco-
nomic characteristics in each prediction model. Following Gu et al. [10], we calculated
the decrease in R2 when setting the given predictor to zero, and then averaged the results
across training samples to obtain a single importance measure for each predictor. The
variable importance was normalized to sum to one, allowing for a explanation of relative
importance. In general, the greater the drop in R2 after elimination, the more important
the predictor.

Firstly, we investigated the impact of micro-characteristics on beta forecasts, and this
impact varied depending on the specific prediction model employed. Figure 5 presents the
overall influence of micro-features across the entire sample. The vertical axis represents
each characteristic, with the feature rankings sorted from high to low. This ranking reflects
the combined contribution of each feature across all models, where the most influential
features are at the top and the least influential features are at the bottom. On the horizontal
axis, each applied machine learning technique is represented. Additionally, the color
gradient indicates the variable importance of the predictors in their respective models. A
dark gradient signifies the most influential features, while a light gradient represents the
least influential features.

We found that each individual model consistently selected the most decisive pre-
dictors, which could be categorized into three groups. Market liquidity features were
most influential, including volatility of turnover (std_turn, std_rvol, and chato), illiquidity
indicators (illiq), and number of zero trading days (zero). The second-most influential
group comprised recent price trends, such as short-term momentum (mom1m), momen-
tum change (chmom), and recent maximum return (maxret). The third group comprised
fundamental features and valuation ratio, including market capitalization (mve), sales and
inventory changes (si and sp), and book-to-market ratio (bm).
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Figure 5. Variable importance of predictors for all models.

Our experimental results differed from the conclusions of previous research. Leippold
et al. [9] suggested that, with the exception of recent maximum return, price trend features
have minimal impact on the Chinese stock market. However, our study reveals that short-
term momentum reversals are the second-most decisive predictor, and other momentum
features also exhibit significant influence, aligning with previous studies on momentum
and reversal effects [47]. On the other hand, Gu et al. [10] demonstrated that, in the
US market, fundamental and valuation ratios have lower overall variable importance
compared to risk measure features, such as total return volatility (retvol) and idiosyncratic
return volatility (idiovol). However, our findings present a contrasting perspective. We find
that, apart from market capitalization, fundamental signals play a crucial role in predicting
stock returns. Predictors such as si, bm, and sp exhibit notable influences, consistent with
previous research in the Chinese stock market [48].

Machine learning algorithms are often referred to as “black boxes” due to their com-
plexity and opacity; thus, we attempted to explain influential predictors from the underly-
ing economic mechanism. Firstly, the turnover indicator is commonly used to reflect the
liquidity of the stock market, where higher turnover indicates active trading and strong
liquidity. Frequently fluctuating turnover (std_turn, std_rvol) is often associated with
high volatility risk and speculation risk, and stocks with speculative tendency always
carry high risk expectations. Therefore, liquidity features form the first influential group in
time-varying beta forecasts. Secondly, the momentum effect, a well-known market anomaly,
has been observed across various stock markets. The existing literature suggests that, in the
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Chinese market, the short-term momentum effect and long-term reversal effect are related
to the unique phenomenon of a large proportion of short-dated investors, such as retail
investors and lobbyists [49]. Among different momentum features, short-term momentum
(mom1) demonstrates superior explanatory power and forecasting ability, as a sustained
high-return trend in the short term implies a high-risk state. Thirdly, fundamental and
valuation features play a crucial role in evaluating performance, estimating value, and
monitoring operations. Companies with strong turnover capacity, high-quality assets, and
a positive growth trend tend to have relatively stable share prices and are less exposed to
systemic risk.

Furthermore, we investigated the differences between various machine learning meth-
ods in the variable importance of predictors. The results revealed that regression tree mod-
els place more emphasis on predictors such as 12-month momentum (mom12), 36-month
momentum (mom36), and cash productivity (cp). The reason may be that regression trees
randomly select a subset from all features and then split the nodes in each decision tree.
Unlike the bagging method, which selects the optimal attribute from all sets, the subset-
based selection of splitting attributes enhances training efficiency. Consequently, these
predictors carry more weight in certain decision trees, making them more relevant to the
overall models. Liquidity and momentum features are the two most important for tree
models, although their rankings slightly differ from other models, particularly concerning
the variable importance of medium-term and long-term momentum. In addition, neural
network models demonstrate a preference for liquidity, fundamental, and valuation fea-
tures, with predictors such as mve, sp, and si standing out. This finding can be attributed
to the variation in variable importance with the time dimension in neural networks. By
employing appropriate training algorithms and hyperparameter adjustments, these models
can accurately forecast stock returns, reflecting the flexibility and high fault tolerance.

We also explored the impact of macro-characteristics on time-varying beta. The
variable importance measures for 10 macroeconomic predictors, normalized to sum to one
within each model, are presented in Figure 6.

Figure 6. Variable importance of macro-predictors for all models.

The results indicated that inflation (inf) and book-to-market ratio (bm) are crucial
macro-predictors in beta forecasting for all models, particularly in neural networks. Con-
versely, the effects of dividend–price ratio (dp), earnings–price ratio (ep), and stock variance
(svar) were deemed negligible, except for a certain proportion observed in the PLS model.
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5. Subsample Analysis

The Chinese stock market possesses a range of unique characteristics, including a sig-
nificant presence of SOEs and stringent regulations on short selling. Given the prominence
and distinct nature of SOEs, it is crucial to examine their impact separately. In this section,
we explore the impact of dynamic CAPM on SOEs and non-SOEs, and reveal the deep
reasons for the differences through factor analysis.

5.1. SOEs vs. Non-SOEs

By the end of 2022, the number of SOEs in China’s A-share market accounted for
27.8%, and their total market value reached 49.86%, indicating a significant difference
from other equity markets. SOEs have large market capitalization, as they often represent
leading companies in industries such as military, chemicals, and utilities. Therefore, it was
essential to examine whether the high proportion of SOEs affects stock return forecasts. We
divide stocks into subsamples comprising SOEs and non-SOEs. Out of the 3619 stocks in
our dataset, 1090 were classified as SOEs, while the remaining 2529 were non-SOEs. The
excess returns for each subsample are reported in Table 4.

Table 4. The excess returns of SOEs and non-SOEs.

Sample Portfolio CAPM PLS ENET GBRT RF NN1 NN2 NN3 NN4 NN5

SOE

L
0.40

(1.70)
1.05

(2.16)
1.01

(1.86)
1.15

(1.08)
1.25

(1.18)
0.29

(0.46)
0.24

(0.38)
0.22

(0.32)
0.08

(0.42)
0.20

(0.30)

H
−0.14

(−0.39)
1.02

(1.08)
0.94

(0.91)
1.29

(2.45)
1.35

(2.58)
0.68

(1.96)
0.65

(1.93)
0.66

(1.72)
0.57

(1.61)
0.65

(1.71)

H–L
−0.54

(−1.21)
−0.14

(−0.19)
−0.07

(−0.10)
0.14

(0.18)
0.10

(0.13)
0.39

(0.61)
0.41

(0.65)
0.44

(0.69)
0.49

(0.77)
0.45

(0.70)

non-
SOE

L
1.54

(3.69)
1.51

(3.87)
1.55

(3.67)
1.60

(3.79)
1.57

(3.71)
1.60

(3.80)
1.53

(3.46)
1.51

(3.54)
1.56

(3.64)
1.54

(3.61)

H
2.21

(1.30)
2.14

(1.27)
2.55

(1.49)
3.00

(1.84)
3.10

(1.99)
2.87

(1.75)
2.87

(1.60)
3.30

(2.09)
4.06

(2.90)
4.07

(2.99)

H–L
0.67

(0.44)
0.64

(0.42)
0.99

(0.65)
1.40

(0.96)
1.53

(1.12)
1.27

(0.86)
1.34

(0.83)
1.80

(1.31)
2.52

(2.13)
2.53

(2.25)

The regression results demonstrated that the NN-based dynamic CAPM, particularly
the 3–5 layer models, exhibited a positive and robust impact on pricing anomaly for both
SOEs and non-SOEs. In addition, the performance of regression trees were mixed. RF and
GBRT performed exceptionally well on non-SOE stocks, surpassing the linear regression
models and even outperforming the 1–2 layer neural networks. However, their performance
on the SOEs subsample was far from impressive.

Notably, two findings regarding SOEs stand out. Firstly, the neural networks consis-
tently outperformed all other models for SOEs, while, for non-SOEs, achieving comparable
performance was feasible with other methods. Secondly, as the number of layers increased,
the excess return initially increased and then decreased, reaching a peak at NN4, which
aligned with the results from the full-sample analysis. Based on these observation, we
argue that the beta forecasts of SOEs require adaptable and flexible algorithms to capture
the nonlinear effects among the predictors. This could be attributed to factors such as
opaque information disclosure and specific social utility, which undermine the corporate
performance of SOEs.

Based on the subsample analysis, machine learning approaches—particularly, multi-
layer neural networks—demonstrate their ability to address low-risk pricing anomaly in
SOEs. Additionally, our proposed dynamic CAPMs showed improvement in excess returns
for stock forecasting in non-SOEs, with almost all methods performing well.
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5.2. The Predictability of Neutral Network

Neural networks consistently outperformed other models in terms of predictability
performance, both in full samples and subsamples. However, their black-box nature made
interpretation challenging, and it is difficult to find corresponding support in economic
theory [50]. To gain intuitive insights into predictors that contribute to stock predictability,
we focused on the NN4 model, which performed best in improving the low-risk pricing
anomaly. This section aims to compare the differences in variable importance between SOE
and non-SOE stocks under the NN4 model.

Figure 7 illustrates the fluctuations in variable importance among the 20 most influ-
ential predictors in the analysis of the full sample. The red gradient denotes an increase
in variable importance, the green gradient denotes an decrease, and the white denotes
stability. The rankings of the three most important predictors remained largely unchanged
when transitioning from SOEs to non-SOEs. These predictors were as follows: (1) mom1m,
1-month momentum, which represents the cumulative daily return from the end of month
t−1 and serves as a short-term momentum indicator; (2) std_turn, the monthly standard
deviation of daily share turnover, which proxies for liquidity; and (3) mve, market capi-
talization, which is used to measure firm size. Given that SOEs often represent leading
companies in various industries with large market capitalization, there exists a strong
correlation between company size and the classification of SOE or non-SOE stocks.

Figure 7. Relative variable importance of predictors.

While the variable importance of the top-ranked indicators remained largely consistent,
in other predictors, it changed noticeably. We observed that liquidity features such as
std_rvol, chato, and zero gained more weight for non-SOEs, aligning with previous research
indicating that investors pay more attention to market liquidity for small-cap stocks [20].
In contrast, fundamental signals such as ocfp, sp, cta, and bm received less weight when
transitioning from SOEs to non-SOEs. In other words, under the NN4 model, valuation,
earnings, and growth features exert greater influences on the predictability of SOEs.

Furthermore, changes in volatility features, such as idivol and maxret, are also of
interest. Firstly, the variable importance of idivol increases when shifting from SOE to non-
SOE stocks. Since non-SOEs generally have smaller market capitalization and idivol is an
influential predictor for small-cap stocks, our findings support the limited arbitrage theory,
which suggests that the predictability increases when the anomaly of stocks with high
idiosyncratic risk strengthens [51]. Secondly, the variable importance of maxret increased
for non-SOE stocks, which further corresponds to the unique characteristics of the Chinese
market. Retail investors have a particular preference for small-cap stocks with significant
upside potential; thus, extreme positive returns display considerable predictability in
asset pricing.

Next, we focused on predictor categorization to delve deeper into the differences in
stock return forecasts between SOE and non-SOE. Following the classification methods
employed by Gu et al. [10], we categorized all predictors into nine distinct groups: beta
(C_beta), valuation (C_bpr), earnings (C_ey), growth (C_growth), leverage (C_lever), liquid-
ity (C_liq), momentum (C_mom), size (C_size), and volatility (C_vol). Specific classification
details are presented in Appendix A—Table A3.

Figure 8 illustrates the disparities in group importance between SOEs and non-SOEs.
We observed a slight increase in the variable importance of liquidity and momentum,
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which were considered the two most critical groups when transitioning from SOEs to non-
SOEs. Notably, the differences in pricing anomalies between subsamples were primarily
influenced by fundamental and volatility features. In the NN4 model, the beta of SOEs
assigned higher weights to fundamental signals (C_size, C_ey) and growth features (C_bpr,
C_growth). This can be attributed to the concentration of SOEs in the infrastructure
industry, where stable operating capital flows make it challenging for investors to pursue
short-term excessive profits. Therefore, fundamental indicators play a decisive role in stock
forecasts for SOEs. On the other hand, non-SOEs place greater emphasis on predictors
related to volatility and corporate leverage. This finding aligns with previous research
suggesting that private companies are less resilient to risk, even with high growth rates
and profitability [52].

Figure 8. Relative importance of variable categories.

Overall, the variable importance of micro-firm characteristics and their associated
categories align with previous studies in the Chinese stock market. Our analysis reveals
that predictors such as short-term momentum, market liquidity, and market capitalization
significantly influence the behavior of the dynamic CAPM model for each subsample. When
transitioning from SOEs to non-SOEs, we observe a gradual shift in relative importance,
with fundamental signals and valuation indicators being gradually replaced by liquidity
and momentum. Additionally, the volatility category appears to play a more substantial
role in smaller firms.

6. Conclusions and Future Work
6.1. Conclusions

Based on the analysis of a large database comprising 70 micro-firm characteristics
and 10 macroeconomic indicators, our research highlights the effectiveness of machine
learning-based dynamic CAPM in mitigating the low-risk pricing anomaly in the Chinese
market. Our findings demonstrate the superiority of nonlinear models, such as RF and NN,
over linear regression models in stock return forecasts. Among the neural network models,
NN4 stands out as the best performer, leveraging its ability to capture complex interactions
among predictors. Additionally, we have identified liquidity features as the most critical
predictors influencing time-varying beta, with momentum as the second-most important,
followed by fundamental signals and valuation ratios.

Moreover, our investigation into the subsample analysis of SOEs and non-SOEs re-
vealed the significant capabilities of machine learning-based dynamic CAPM. Multilayer
neural networks display substantial capability in addressing the beta anomaly prevalent
in SOEs. When transitioning from SOEs to non-SOEs, we observe that fundamental and
valuation features gradually give way to liquidity and momentum in relative variable
importance. Notably, volatility features play a more influential role in the stocks of smaller
capitalization firms.

The implications of our research are twofold and contribute significantly to asset
pricing research. Firstly, our study highlights the value of employing machine learning
techniques to capture systematic risk, providing insights into the underlying economic
explanations of the low-risk pricing anomaly. By demonstrating the superiority of nonlinear
models, we offer compelling evidence for the adoption of machine learning in asset pricing
research, which can lead to more accurate and robust forecasts.
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Secondly, considering the differences in market structure between the Chinese market
and mature capital markets, our findings open up exciting avenues for future research
to compare systemic risk factors across different regions and countries. Understanding
these variations can enhance our understanding of market dynamics and contribute to the
broader field of finance and investment research.

Overall, our study successfully showcases the practical application of machine learning
techniques in asset pricing models within the Chinese markets. By providing a deeper
understanding of the factors influencing pricing anomalies, we contribute to the Fintech
field and inspire further exploration of novel methodologies and cross-market comparisons.
The insights gained from our research have implications for practitioners, regulators, and
academics, offering new perspectives on risk assessment in dynamic market conditions.

6.2. Future Work

The proposed approach in this research has theoretical and practical limitations,
which may impact the generalizability and applicability of the findings. Firstly, while
machine learning techniques offer improved performance in capturing complex patterns
and interactions, the interpretability of the models might be compromised. The black-box
nature of these algorithms makes it challenging to provide clear economic interpretations
for the relationships between predictors and time-varying beta. These limitations restrict
the extent to which the findings can be generalized and applied in practical settings that
require transparent decision-making processes.

Secondly, the findings of this study are based on the Chinese stock market, which has
unique characteristics and institutional structures. These features, such as the dominance
of retail investors and the presence of SOEs, might limit the generalizability of the research
findings to other markets or regions. The dynamics of risk factors and the impact of
predictor variables on time-varying beta could differ significantly in different markets.
Therefore, caution should be exercised when directly applying the results to other stock
markets, particularly those with distinct market structures or regulatory environments.

There are several promising avenues for further research that have emerged. In order
to gain a comprehensive understanding of the effectiveness and robustness of dynamic
CAPM, future research should focus on conducting rigorous cross-market comparisons.
Comparative analyses across diverse markets, encompassing both emerging and mature
economies, would provide valuable insights into how this approach performs under various
market conditions. By examining the role of market structure and investor behavior in
shaping asset pricing anomalies, such studies can offer essential implications for global
investment strategies and portfolio management practices.

Furthermore, the development of methodologies to enhance the interpretability of
machine learning models needs to attract enough attention. Efforts should be directed
towards devising transparent and interpretable techniques that offer meaningful economic
insights. By fostering a clearer understanding of the underlying drivers of asset pricing
anomalies, such research can lead to more informed decision-making and enhance the
acceptance of advanced machine learning techniques in practical financial scenarios.
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Appendix A

Table A1. Number of neurons for all neural networks.

Model Hidden Layer

NN1 32
NN2 32, 16
NN3 32, 16, 8
NN4 32, 16, 8, 4
NN5 32, 16, 8, 4, 2

Table A2. Hyperparameters for all prediction models and corresponding specifications.

PLS Enet GBRT RF NN

K
ρ = 0.5
λ ∈

(
10−4, 10−1)

#Depth
L = 1∼3
#Trees
B = 1∼1000
#Learning Rate
LR ∈ {0.01, 0.1}

#Depth
L = 1∼7
#Trees
B = 100∼300
#Features
f = 3∼50

#L1 penalty
λ ∈

(
10−5, 10−2)

#Learning Rate
LR ∈ {10−4, 10−2}
#Batch Size
B ∈ {64, 512, 2048, 10,000}
Epochs = 100
Patience = 5
Adam Para. = Default
Ensemble = 10

Table A3. Details on micro-firm characteristics.

No. Acronym Stock Characteristics Frequency Category

1 acc accruals Quarterly ey
2 agr asset growth Quarterly growth
3 am assets-to-market Quarterly bpr
4 ato asset turnover Quarterly ey
5 beta market beta Monthly beta
6 betasq beta squared Monthly beta
7 bm book-to-market equity Quarterly bpr
8 capxg capital expenditure growth Quarterly growth
9 cfd cash flow-to-debt Quarterly lever

10 cfoa cash flow over assets Quarterly ey
11 cfp cash flow-to-price Quarterly bpr
12 chato change in asset turnover Quarterly liq
13 chmom change in 6-month momentum Monthly mom
14 cp cash productivity Quarterly bpr
15 cr current ratio Quarterly lever
16 crg current ratio growth Quarterly lever
17 cta cash-to-assets Quarterly ey
18 cto capital turnover Quarterly ey
19 dbe change in shareholders equity Quarterly ey
20 der debt-to-equity ratio Quarterly lever
21 dlme long term debt-to-market equity Quarterly lever
22 dp dividend-to-price ratio Quarterly ey
23 dpia changes in PPE and inventory-to-assets Quarterly bpr
24 ebit earnings before interests and taxes Quarterly ey
25 eps earning per share Quarterly bpr
26 ey earnings yield Quarterly ey
27 gm gross margins Quarterly ey
28 ia investment-to-assets Quarterly ey
29 idiovol idiosyncratic return volatility Monthly vol
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Table A3. Cont.

No. Acronym Stock Characteristics Frequency Category

30 illiq illiquidity Monthly liq
31 ivc inventory change Quarterly size
32 lg liability growth Quarterly lever
33 maxret maximum daily return Monthly mom
34 mom1m 1-month momentum Monthly mom
35 mom6m 6-month momentum Monthly mom
36 mom12m 12-month momentum Monthly mom
37 mom36m 36-month momentum Monthly mom
38 mve size Monthly size
39 noa net operating assets Quarterly ey
40 npop net payout over profits Quarterly ey
41 ocfp operating cash flow-to-price Quarterly bpr
42 pacc percent accruals Quarterly bpr
43 pchgm change in gross margin—change in sales Quarterly growth
44 pchsaleinvt change in sales—change in inventory Quarterly growth
45 pchsalerect change in sales—change in A/R Quarterly ey
46 pchsalexsga change in sales—change in SG&A Quarterly groth
47 prc price Monthly liq
48 py payout yield Quarterly bpr
49 qr quick ratio Quarterly lever
50 qrg quick ratio growth Quarterly lever
51 retvol return volatility Monthly vol
52 rna return on net operating assets Quarterly ey
53 roa return on assets Quarterly ey
54 roe return on equity Quarterly ey
55 roic return on invested capital Quarterly ey
56 sc sales-to-cash Quarterly ey
57 sg sustainable growth Quarterly growth
58 si sales-to-inventory Quarterly bpr
59 sp sales-to-price Quarterly bpr
60 sr sales growth Quarterly growth
61 std_rvol volatility of RMB trading volume Monthly liq
62 std_turn volatility of turnover Monthly liq
63 stdacc accrual volatility Quarterly ey
64 stdcf cash flow volatility Quarterly ey
65 tb debt capacity/firm tangibility Quarterly lever
66 tbi taxable income-to-book income Quarterly ey
67 tg tax growth Quarterly bpr
68 turn share turnover Monthly liq
69 z z-score Quarterly ey
70 zero zero trading days Monthly liq

Table A4. Details on macroeconomic variables.

No. Acronym Macroeconomic Variable Frequency

1 bm book-to-market ratio Monthly
2 cei consumer expectation index Monthly
3 dy dividend–price ratio Monthly
4 ep earnings–price ratio Monthly
5 hj economic climate index Monthly
6 inf inflation Monthly
7 lvol volatility Monthly
8 m2gr m2 growth rate Monthly
9 svar stock variance Monthly

10 to turnover Monthly
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