
Citation: Xie, J.; Zhang, L.; Yang, J. A

Fast Algorithm for Updating

Negative Concept Lattices with

Increasing the Granularity Sizes of

Attributes. Mathematics 2023, 11, 3229.

https://doi.org/10.3390/

math11143229

Academic Editor: Theodore E. Simos

Received: 11 June 2023

Revised: 18 July 2023

Accepted: 19 July 2023

Published: 22 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Fast Algorithm for Updating Negative Concept Lattices with
Increasing the Granularity Sizes of Attributes
Junping Xie * , Liuhai Zhang and Jing Yang

Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China;
20202106031@stu.kust.edu.cn (L.Z.); 20222106017@stu.kust.edu.cn (J.Y.)
* Correspondence: 20110206@kust.edu.cn

Abstract: In this paper, firstly, we studied the relationship between negative concept lattices with
increasing the granularity sizes of the attributes. Aiming to do this, negative concepts and covering
relations were both classified into three types, and the sufficient and necessary conditions of distin-
guishing these kinds of negative concepts and covering relations are given, respectively. Further,
based on the above analysis, an algorithm for updating negative concept lattices after the increase is
proposed. Finally, the experimental results demonstrated that our algorithm performed significantly
better than the direct construction algorithm.

Keywords: concept analysis; negative concept lattices; update of negative concept lattices; increase
of the granularity sizes of attributes

MSC: 06C15; 68T30

1. Introduction

Formal concept analysis (FCA), proposed by Wille [1], has been widely applied in
knowledge discovery [2–6]. In FCA, formal contexts, formal concepts, and concept lattices
are the three cornerstones [7]. To deal with various data, formal contexts are extended
to fuzzy contexts [8–16], decision contexts, incomplete contexts [17–20], multi-scale con-
texts [21–24], and triadic contexts [25]. Most of the studies on FCA concentrate on the
following topics: concept lattices’ construction [26–28], knowledge reduction [29,30], rule
acquisition [19,31–36], three-way FCA [37–44], and concept learning [45,46].

In classic FCA, attention is only paid to positive attributes, while negative attributes
are neglected. In fact, positive attributes and negative attributes are of equal importance
in many fields. Qi et al. [37] proposed negative operators. To be specific, using negative
operators, the attributes that are not owned by any given set of objects and the objects
that do not have any given set of attributes can be obtained. Based on negative operators,
negative concepts and negative concept lattices are defined.

In classic contexts, an attribute is either owned or not owned by an object, that is
the relation between an object and an attribute is a binary relation. However, in real data,
attributes could be many-valued, and these many-valued attributes are called general
attributes. A data table with general attributes needs to be transformed into a one-valued
context by the scaling approach [7]. The scaling approach is to replace each general attribute
with a sequence of one-valued attributes considered as the corresponding values of the
general attribute at certain granularity sizes. For a general attribute, finding appropriate
granularity sizes is expected according to a specific requirement. Since the requirements
are different, changing the granularity sizes of general attributes is common.

If a classic or negative concept lattice is reconstructed every time whenever the granular-
ity sizes of the attributes change, it is obvious that it will be very computationally expensive
and time consuming. In order to avoid reconstructing classic or negative concept lattices,
studying the issues of updating classical or negative concept lattices is important when

Mathematics 2023, 11, 3229. https://doi.org/10.3390/math11143229 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11143229
https://doi.org/10.3390/math11143229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8839-7430
https://doi.org/10.3390/math11143229
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11143229?type=check_update&version=2

Mathematics 2023, 11, 3229 2 of 14

the granularity sizes of attributes change. Many researchers [8,47–49] have investigated
how to update classic concept lattices when the granularity sizes of attributes change.
However, little work has been performed on how to update negative concept lattices when
the granularity sizes of attributes change. This paper focused on how to update negative
concept lattices with increasing the granularity sizes of the attributes.

The rest of this paper is structured as follows. Section 2 recalls the basic knowledge about
formal concept analysis. Section 3 studies the relationship between negative concept lattices
(negative concepts and covering relations) before and after increasing the granularity sizes
of attributes. Section 4 develops a new algorithm (named NCL-Fold) to update the negative
concept lattices after the increase. Section 5 carries out the comparison experiment for
verifying the effectiveness of our algorithm. Section 6 concludes this paper.

2. Preliminaries

In this section, we present the related notions and propositions in FCA. A detailed
description of them can be found in [1,37,47]. We write P(·) to denote the power set of
a set.

A formal context is a triple (G, M, I), where G refers to a set of objects, M refers to a
set of attributes, and I refers to a binary relation between G and M. Here, (x, m) ∈ I (or
(x, m) 6∈ Ic) denotes that the object x has the attribute m, while (x, m) 6∈ I (or (x, m) ∈ Ic)
denotes that the object x does not have the attribute m, where Ic = (G×M)− I.

Let (G, M, I) be a formal context. For X, Y ⊆ G and A, B ⊆ M, the positive derivative
operator ∗ and the negative derivative operator ∗̄ are as follows:

∗ : P(G)→ P(M), X∗ = {m ∈ M|∀x ∈ X, (x, m) ∈ I},
∗ : P(M)→ P(G), B∗ = {x ∈ G|∀m ∈ B, (x, m) ∈ I},
∗̄ : P(G)→ P(M), X∗̄ = {m ∈ M|∀x ∈ X, (x, m) ∈ Ic},
∗̄ : P(M)→ P(G), B∗̄ = {x ∈ G|∀m ∈ B, (x, m) ∈ Ic}.

For these operators, there exist some useful properties. Take the negative derivative
operator for example. For X, X1, X2 ⊆ G and A, A1, A2 ⊆ M, then:

(1) X1 ⊆ X2 ⇒ X∗̄2 ⊆ X∗̄1 and A1 ⊆ A2 ⇒ A∗̄2 ⊆ A∗̄1 ;
(2) X ⊆ X∗̄∗̄ and A ⊆ A∗̄∗̄;
(3) X∗̄ = X∗̄∗̄∗̄ and A∗̄ = A∗̄∗̄∗̄;
(4) X ⊆ A∗̄ ⇔ A ⊆ X∗̄;
(5) (X1 ∪ X2)

∗̄ = X1
∗̄ ∩ X2

∗̄ and (A1 ∪ A2)
∗̄ = A1

∗̄ ∩ A2
∗̄;

(6) (X1 ∩ X2)
∗̄ ⊇ X1

∗̄ ∪ X2
∗̄ and (A1 ∩ A2)

∗̄ ⊇ A1
∗̄ ∪ A2

∗̄.

Using these derivative operators, formal concepts and negative concepts are formed.
For X, Y ⊆ G and A, B ⊆ M:

(1) A formal concept is a pair (X, A), iff X∗ = A and A∗ = X;
(2) A negative concept (N-concept) is a pair (Y, B), iff Y∗̄ = B and B∗̄ = Y.
The partial-order relationship among formal concepts and N-concepts is defined as

follows, respectively. For formal concepts (X1, A1) and (X2, A2), N-concepts (Y1, B1) and
(Y2, B2) of the formal context (G, M, I):

(X1, A1) 6 (X2, A2)⇔ X1 ⊆ X2 ⇔ A2 ⊆ A1;

(Y1, B1) 6 (Y2, B2)⇔ Y1 ⊆ Y2 ⇔ B2 ⊆ B1.

All formal concepts and N-concepts generated from the formal context (G, M, I) com-
pose the formal concept lattice and the N-concept lattice under the above partial-order
relationships, respectively. The formal concept lattice and N-concept lattice of the formal
context (G, M, I) are denoted by FCL(G, M, I) and NCL(G, M, I), respectively.

On the basis of the partial-order 6, the definition of the covering relation ≺ is proposed.
For formal concepts (X1, A1) and (X2, A2), N-concepts (Y1, B1) and (Y2, B2) of the formal
context (G, M, I):

Mathematics 2023, 11, 3229 3 of 14

(X1, A1) ≺ (X2, A2)⇔ (X1, A1) 6 (X2, A2) and {(X3, A3) ∈ FCL(G, M, I)|(X1, A1) < (X3, A3) < (X2, A2)} = ∅;

(Y1, B1) ≺ (Y2, B2)⇔ (Y1, B1) 6 (Y2, B2) and {(Y3, B3) ∈ NCL(G, M, I)|(Y1, B1) < (Y3, B3) < (Y2, B2)} = ∅.

On the basis of the partial-order ≺, the definitions of lower neighbors (or children) and
upper neighbors (or parents) are proposed. For formal concepts (X1, A1) and (X2, A2),
N-concepts (Y1, B1) and (Y2, B2) of the formal context (G, M, I):

(1) If (X1, A1) ≺ (X2, A2), then (X1, A1) is called a lower neighbor (or a child) of (X2, A2)
or (X2, A2) is called an upper neighbor (or a parent) of (X1, A1);

(2) If (Y1, B1) ≺ (Y2, B2), then (Y1, B1) is called a lower neighbor (or a child) of (Y2, B2)
or (Y2, B2) is called an upper neighbor (or a parent) of (Y1, B1).

In addition, the notions of a granularity tree, cuts, and increasing the granularity sizes
are given. A granularity tree (g-tree) of attribute m is a rooted tree, in which each node of
the tree is labeled as a unique attribute name, and if, for any node v, the children of node v
are nodes v1, v2, · · · , vn, then {v∗1 , v∗2 , · · · , v∗n}must be a partition of v∗. For a set of nodes C
in the g-tree of attribute m, if, for each leaf node v0, there is only one node v ∈ C on the path
from the root m to v0, the set of nodes C is a cut at certain granularity sizes in the g-tree.
For two cuts in a given g-tree C1 and C2, if, for any v ∈ C1, there exists v′ ∈ C2 such that
v∗ ⊆ v′∗, C1 is called a refinement of C2, denoted by C1 6 C2. Increasing the granularity
sizes of an attribute m replaces the existing finer cut H f = {vi|i = 1, · · · , n f } (n f > 2) of
the attribute m with another coarser cut Hc = {v′j|j = 1, · · · , nc} (nc > 2) of the attribute m,

where H f and Hc are two different cuts in the g-tree of attribute m, and H f 6 Hc.

Example 1. Table 1 depicts a context T1 = (U, M), where a, b, and c are three one-valued
attributes and y is a many-valued attribute. The g-tree for attribute y is displayed in Figure 1. In the
g-tree, there are five cuts: {y}, {y′1, y′2}, {y′1, y3, y4}, {y1, y2, y′2}, and {y1, y2, y3, y4}. In Table 1,
the cut {y1, y2, y3, y4} is used. In Table 1, for attribute y, by replacing the finer cut {y1, y2, y3, y4}
with the coarser cut {y′1, y′2}, which increases the granularity sizes, the context T1 is transformed
into the context T2 (i.e., Table 2).

Figure 1. The g-tree for attribute y in Table 1.

Mathematics 2023, 11, 3229 4 of 14

Table 1. The context T1.

U a b c y

x1 1 0 1 y1
x2 0 1 0 y2
x3 0 0 1 y3
x4 1 0 1 y4

Table 2. The context T2.

U a b c y

x1 1 0 1 y′1
x2 0 1 0 y′1
x3 0 0 1 y′2
x4 1 0 1 y′2

For a formal context (G, M, I), before and after increasing the granularity sizes of
the attributes, the negative derivative operators, the N-concept lattices, the subconcept–
supconcept relations, and the covering relations are denoted by ∗ f , NCL f , 6 f , ≺ f , and ∗c,
NCLc, 6c, ≺c, respectively, hereafter.

For the finer cut H f and the coarser cut Hc of attribute m, there exists the attribute-value-
transformation function α : H f → Hc such that α(vi) = v′j. On the basis of the function

α : H f → Hc, the following mappings are defined:
β : P(H f)→ P(Hc) such that β(V) = {α(v) ∈ Hc|v ∈ V};
γ : Hc → P(H f) such that γ(v′j) = {v ∈ H f |α(v) = v′j};
δ : H f → P(H f) such that δ(v) = γ(α(v));
λ : P(H f)→ P(H f) such that λ(V) = {v ∈ H f |δ(v) ⊆ V, v ∈ V};
µ : P(H f)→ P(Hc) such that µ(V) = {δ(v) ∈ Hc|δ(v) ⊆ V, v ∈ V}.

3. Relationship between N-Concept Lattices before and after Increasing the
Granularity Sizes of Attributes

In this section, we discuss the relationship between N-concept lattices before and after
increasing the granularity sizes of the attributes. The following theorems are useful to
discuss the issue.

Theorem 1. Let NCL f and NCLc be the N-concept lattices of a given formal context before and
after increasing the granularity sizes of an attribute m, respectively, and H f = {vi|i = 1, · · · , n f }
and Hc = {v′j|j = 1, · · · , nc} be the cuts of the attribute m before and after the increase. If (X, A) ∈
NCL f , then, for each v′ ∈ Hc, X ∩ v′∗

c
is an extent in NCLc.

Proof. It is obvious that increasing the granularity sizes of an attribute m is equal to
adding attributes in Hc and removing attributes in H f . In addition, for v′ ∈ Hc, we have
v′∗

c
=

⋂
α(v)=v′

v∗
f
. Thus, for each v′ ∈ Hc, X ∩ v′∗

c
must be an extent in NCLc if X is an

extent in NCL f .

Theorem 2. Let NCL f and NCLc be the N-concept lattices of a given formal context before and
after increasing the granularity sizes of an attribute m, respectively. If (X, A) is an N-concept in
NCLc, then X is an extent in NCL f .

Proof. We discuss two situations for any (X, A) ∈ NCLc:
(i) Assume A ∩ Hc = ∅. Obviously, A∗

c
= A∗

f
= X holds. Thus, we can obtain that X

is an extent in NCL f .

Mathematics 2023, 11, 3229 5 of 14

(ii) Assume A ∩ Hc 6= ∅. Since v′∗
c
=

⋂
α(v)=v′

v∗
f

holds for v′ ∈ Hc, we can obtain

(A ∩ Hc)∗
c
= Θ∗

f
, where Θ =

⋃
v′∈A∩Hc

γ(v′). Hence, A∗
c
= (A− Hc)∗

c ∩ (A ∩ Hc)∗
c
=

(A− Hc)∗
f ∩Θ∗

f
= ((A− Hc) ∪Θ)∗

f
= X. Consequently, X is an extent in NCL f .

Finally, we can conclude that X is an extent in NCL f for any (X, A) ∈ NCLc.

Based on Theorem 2, we can easily conclude the following theorem.

Theorem 3. Let NCL f and NCLc be the N-concept lattices of a given formal context before and
after increasing the granularity size of an attribute m, respectively. There does not exist new
N-concepts in NCLc.

3.1. Relationship between N-Concepts before and after Increasing the Granularity Sizes
of Attributes

We can describe N-concepts in N-concept lattices before and after increasing the granu-
larity sizes of attributes in terms of the following definition.

Definition 1. Let NCL f and NCLc be the N-concept lattices of a given formal context before
and after increasing the granularity sizes of an attribute m, respectively, and H f = {vi|i =
1, · · · , n f } and Hc = {v′j|j = 1, · · · , nc} be the cuts of the attribute m before and after the increase,
respectively. Then:

(1) If (X, A) ∈ NCL f and (X, A) ∈ NCLc, (X, A) is an old N-concept, denoted by
class(X, A) = “old”;

(2) If (X, A) ∈ NCL f and X is not an extent of any N-concept in NCLc, (X, A) is a deleted
N-concept, denoted by class(X, A) = “deleted”;

(3) if (X, A) ∈ NCL f with A ∩ H f 6= ∅ and (X, (A− H f) ∪ µ(A ∩ H f)) ∈ NCLc, (X, A)
is a tight N-concept, denoted by class(X, A) = “tight”.

Next, we give the necessary and sufficient conditions of each category.

Theorem 4. For an N-concept (X, A) ∈ NCL f , we have:

(1) (X, A) is an old N-concept if and only A ∩ H f = ∅;
(2) (X, A) is a deleted N-concept if and only if the following statements are true: (i) A∩H f 6= ∅;

(ii) there exists at least one N-concept (Y, C) among the parents of (X, A) in NCL f such that
(Y, C) satisfies the two conditions: C− H f = A− H f and λ(C ∩ H f) = λ(A ∩ H f);

(3) (X, A) is a tight N-concept if and only if the following statements are true: (i) A ∩ H f 6= ∅;
(ii) there does not exist such an N-concept (Y, C) among the parents of (X, A) in NCL f such
that (Y, C) satisfies the two conditions: C− H f = A− H f and λ(C ∩ H f) = λ(A ∩ H f).

Proof.

(1) (⇒) If (X, A) is an old N-concept, it is obvious that (X, A) is an N-concept in NCL f

and an N-concept in NCLc. Next, we prove A ∩ H f 6= ∅ by using reduction to
absurdity. Assume that A ∩ H f 6= ∅. According to the process of the proof in
Theorem 2, we can obtain A∗

c
= ((A− Hc) ∪Θ)∗

f
= X, where Θ =

⋃
v′∈A∩Hc

γ(v′).

Hence, Θ ⊆ X∗
f
= A, which contradicts Θ 6⊆ A. Hence, A ∩ H f = ∅.

(⇒) If (X, A) with A ∩ H f = ∅ is an N-concept in NCL f , A∗
c
= A∗

c
= X and X∗

c
=

X∗
f
= A hold. Hence, (X, A) is an N-concept in NCL f and an N-concept in NCLc. That is

to say, (X, A) is an old N-concept.

(2) (⇒) Firstly, by using reduction to absurdity, we prove that A ∩ H f 6= ∅. Assume that
A ∩ H f = ∅. Because the objects do not change before and after the increase, we can

Mathematics 2023, 11, 3229 6 of 14

obtain X = A∗
f
= A∗

c
. Furthermore, it follows that X is an extent in NCLc, which is

not consistent with class(X, A) = “deleted”. Hence, A ∩ H f 6= ∅.

Secondly, we prove the rest.
Because of A ∩ H f 6= ∅, we have X ⊆ (A ∩ H f)∗

f ⊆ λ(A ∩ H f)∗
f

and X 6⊆ (H f −
A ∩ H f)∗

f
. Since v′∗

c
=

⋂
α(v)=v′

v∗
f

holds for v′ ∈ Hc, we can obtain: µ(A ∩ H f)∗
c
=

λ(A ∩ H f)∗
f
; X ⊆ v′∗

c
holds when v′ ∈ µ(A ∩ H f); X 6⊆ v′∗

c
holds when v′ 6∈ µ(A ∩ H f).

Noting that (X, A) is a deleted N-concept, it follows that X ⊂ X∗
c∗c

and X∗
f
= (A− H f) ∪

(A ∩ H f). Hence, X ⊂ X∗
c∗c

= ((A− H f) ∪ µ(A ∩ H f))∗
c
= ((A− H f) ∪ λ(A ∩ H f))∗

f
.

Therefore, there exists an N-concept (Z, E) ∈ NCL f such that (Z, E) = (((A−H f)∪ λ(A∩
H f))∗

f
, ((A− H f) ∪ λ(A ∩ H f))∗

f ∗ f
), and (X, A) 6 f (Z, E).

Then, we prove that E satisfies the following conditions. Because of (A− H f) ∪ λ(A ∩
H f) ⊆ ((A− H f) ∪ λ(A ∩ H f))∗

f ∗ f
= (E− H f) ∪ (E ∩ H f) and (E− H f) ∪ (E ∩ H f) =

E ⊆ A = (A− H f) ∪ (A ∩ H f), we have A− H f ⊆ E− H f ⊆ A− H f and λ(A ∩ H f) ⊆
λ(E ∩ H f) ⊆ λ(A ∩ H f). That is to say, E− H f = A− H f and λ(E ∩ H f) = λ(A ∩ H f).

Finally, there must exist an N-concept (Y, C) ∈ NCL f such that (X, A) ≺ f (Y, C),
C− H f = A− H f and λ(C ∩ H f) = λ(A ∩ H f).

(⇐) Assume that A ∩ H f 6= ∅ and there exists one N-concept (Y, C) ∈ NCL f with
(X, A) ≺ f (Y, C) such that C − H f = A− H f and λ(C ∩ H f) = λ(A ∩ H f). Obviously,

Y ⊆ (A− H f)∗
f ∩ λ(A∩ H f)∗

f
holds. By the analysis in (⇒), it follows that X∗

c∗c
= ((A−

H f)∪ λ(A ∩ H f))∗
f
. Since (Y, C) is a parent of (X, A) and Y ⊆ (A− H f)∗

f ∩ λ(A ∩ H f)∗
f

holds, we can conclude that X ⊂ Y ⊆ (A− H f)∗
f ∩ λ(A ∩ H f)∗

f
= X∗

c∗c
. Thus, X is not

an extent in NCL f . That is to say, (X, A) is a deleted N-concept:

(3) It is easy to reach this conclusion according to (1) and (2) in Theorem 4.

Based on Theorem 4, we show the following definition and remark.

Definition 2. Let NCL f be the N-concept lattices of a given formal context before increasing
the granularity sizes of an attribute m and H f = {vi|i = 1, · · · , n f } be the cuts of the attribute
m before the increase. For two N-concepts (X, A) ∈ NCL f with class(X, A) = “deleted” and
(Y, C) ∈ NCL f with C− H f = A− H f and λ(C ∩ H f) = λ(A ∩ H f):

(1) (Y, C) is described as a destroyer of (X, A), and (X, A) is described as a victim of (Y, C);

(2) The N-concept (Z, E) ∈ NCL f with Z = ((A− H f) ∪ λ(A ∩ H f))∗
f

and E = ((A−
H f) ∪ λ(A ∩ H f))∗

f ∗ f
is described as a terminator of (X, A).

Remark 1. For two N-concepts (X, A) and (Y, C) in NCL f , if (X, A) is a deleted N-concept
and (Y, C) is a destroyer of (X, A), we have:

(1) The number of destroyers of (X, A) is either equivalent to one or more than one, and the set of
all the destroyers is denoted by Destroyers(X, A);

(2) The number of casualties of (Y, C) is either equivalent to one or more than one, and the set of
all the victims of (Y, C) is denoted by Victims(Y, C).

(3) The number of terminators of (X, A) is equivalent to one, and the only terminator of (X, A)
is denoted by terminator(X, A);

(4) The terminator of (X, A) is the maximum one among all the destroyers of (X, A).
Combining Definition 2 with Theorem 4 and Remark 1, we have the following theorem.

Theorem 5. For a deleted N-concept (X, A), we have:

(1) If (Z, E) is the terminator of (X, A), then (Z, E) must not be a deleted N-concept;
(2) If (Y, C) is a destroyer of (X, A) and (Y, C) is not the terminator of (X, A), then (Y, C) must

be a deleted N-concept.

Mathematics 2023, 11, 3229 7 of 14

(3) If (Y, C) is a destroyer of (X, A) and (Y, C) is not a deleted N-concept, then (Y, C) must be
the terminator of (X, A).

Proof.

(1) Since (Z, E) is the terminator of (X, A), we can obtain (Z, E) = (((A− H f) ∪ λ(A ∩
H f))∗

f
, ((A − H f) ∪ λ(A ∩ H f))∗

f ∗ f
) = (((A − H f) ∪ µ(A ∩ H f))∗

c
, ((A − H f) ∪

µ(A ∩ H f))∗
c∗c

). Obviously, (Z, E) must be an N-concept in NCLc. That is to say,
(Z, E) is not a deleted N-concept.

(2) Let (Z, E) be the terminator of (X, A). Obviously, (Z, E) = (((A − H f) ∪ λ(A ∩
H f))∗

f
, ((A− H f) ∪ λ(A ∩ H f))∗

f ∗ f
). Since (Z, E) is the maximum one among all

the destroyers of (X, A) and (Y, C) with (Y, C) 6= (Z, E) is a destroyer of (X, A), we
have E− H f = C− H f = A− H f and λ(E∩ H f) = λ(C ∩ H f) = λ(A∩ H f). Hence,
(Y, C) must be a deleted N-concept and (Z, E) is the terminator of (Y, C).

(3) It is easy to reach this conclusion according to (2) in Theorem 5.

3.2. Relationship between the Covering Relations before and after Increasing the Granularity Sizes
of Attributes

We can describe the covering relations in N-concept lattices before and after increasing
the granularity sizes of the attributes in terms of the following definition.

Definition 3. Let NCL f and NCLc be the N-concept lattices of a given formal context before and
after increasing the granularity sizes of an attribute m, respectively. Then:

(1) If (X, A) ≺ f (Y, C) and f̄ c(X, A) ≺c f̄ c(Y, C) hold, (X, A) ≺ f (Y, C)(or f̄ c(X, A) ≺c

f̄ c(Y, C)) is an old covering relation;
(2) If (X, A) ≺c (Y, C) and f̄ c−1

(X, A) 6≺ f f̄ c−1
(Y, C) hold, (X, A) ≺c (Y, C) is a new

covering relation;
(3) If (X, A) ≺ f (Y, C) holds and at least one of (X, A) and (Y, C) is a deleted N-concept,

(X, A) ≺ f (Y, C) is a deleted covering relation.

For (X, A) ∈ NCL f and (Y, C) ∈ NCL f with class(Y, C) 6= “deleted”, two mappings
are given by

f c : NCL f → NCLc, f c(X, A) = (X∗
c∗c

, X∗
c
),

f̄ c : NCL f − {(O, P) ∈ NCL f |class(O, P) = “deleted”} → NCLc, f̄ c(Y, C) = (Y, Y∗
c
).

Obviously, f c is not a bijection, but f̄ c is a bijection.
Let (X2, A2) ∈ NCL f with class(X2, A2) 6= “deleted”. If (X2, A2) is the terminator of a

certain N-concept, then we give the following remarks:

CAN◦(X2, A2) = {(X, A) ∈ NCL f |(X, A) < f (X2, A2), class(X, A) 6= “deleted”},

CAN(X2, A2) = {(X, A) ∈ NCL f |(X, A) ≺ f (X2, A2), class(X, A) 6= “deleted”}∪

{(X, A) ∈ NCL f |terminator(X′, A′) = (X2, A2), (X, A) ≺ f (X′, A′), class(X, A) 6= “deleted”},

CAN′(X2, A2) = {(X, A) ∈ NCL f |(X, A) < f (X′, A′), (X′, A′) ∈ CAN(X2, A2), class(X, A) 6= “deleted”},

CAN∗(X2, A2) = {(X, A) ∈ NCL f |(X, A) < f (X′, A′) < f (X2, A2), terminator(X′, A′) 6= (X2, A2), class(X, A) 6= “deleted”},

CAN3(X2, A2) = {(X, A) ∈ CAN(X2, A2)|∀(X′, A′) ∈ CAN(X2, A2), (X′, A′) 6 f (X, A)},

CAN�(X2, A2) = CAN3(X2, A2)− {(X, A) ∈ NCL f |(X, A) ≺ f (X2, A2), class(X, A) 6= “deleted”}.

The covering relations among transformed concepts are listed in the following two theorems.

Mathematics 2023, 11, 3229 8 of 14

Theorem 6. For (X2, A2) ∈ NCL f , if (X2, A2) is not the terminator of any N-concept, then
{(Z, E) ∈ NCLc|(Z, E) ≺c f̄ c(X2, A2)} = {(X, A) ∈ NCL f |(X, A) ≺ f (X2, A2)}.

Proof. At first, by using reduction to absurdity, we prove that (X1, A1) is not a deleted N-
concept if (X2, A2) is not the terminator of any N-concept and (X1, A1) is a child of (X2, A2)
in NCL f . Assume that (X1, A1) is a deleted N-concept, which implies A1 ∩ H f 6= ∅.
Obviously, there must exist an N-concept (X3, A3) in NCL f such that (X2, A2) < f (X1, A1),
and (X3, A3) is the terminator of (X1, A1). According to the definition of terminators, we
can obtain that A1− H f = A3− H f and λ(A1 ∩ H f) = λ(A3 ∩ H f). Because (X2, A2) with
class(X2, A2) 6= “deleted” is not the terminator of any N-concept and (X1, A1) is a child
of (X2, A2) in NCL f , which implies A2 ∩ H f = ∅, A2 ⊂ A1, we have A2 ⊂ A1. Hence,
A2 ⊂ A3, which means (X1, A1) < f (X3, A3) < f (X2, A2). That is to say, (X1, A1) cannot
be a child of (X2, A2) in NCL f , which is inconsistent with the fact that (X1, A1) is a child of
(X2, A2) in NCL f . Thus, (X1, A1) is not a deleted N-concept. Therefore, X1

∗c∗c
= X1 and

X3 = X3
∗c∗c

hold. In addition, since there do not exist new N-concepts in NCLc, f̄ c(X1, A1)
is a child of f̄ c(X2, A2) in NCLc. In summary, {(Z, E) ∈ NCLc|(Z, E) ≺c f̄ c(X2, A2)} =
{ f̄ c(X, A)|(X, A) ≺ f (X2, A2)} holds.

Theorem 7. For (X2, A2) ∈ NCL f , if (X2, A2) is the terminator of a certain N-concept, then
{(Z, E) ∈ NCLc|(Z, E) ≺c f̄ c(X2, A2)} = { f̄ c(X, A)|(X, A) ∈ CAN3(X2, A2)}.

Proof. Since there does not exist new N-concepts in NCLc, it is obvious that {(X, A) ∈
NCLc|(X, A) ≺c f̄ c(X2, A2)} ⊆ { f̄ c((X, A)|(X, A) ∈ CAN◦(X2, A2)}.

Let (X′, A′) be an N-concept CAN′(X2, A2). It is easily seen that there must exist
(X, A) ∈ CAN(X2, A2) such that (X′, A′) < f (X, A) < f (X2, A2), which implies
f̄ c(X′, A′) <c f̄ c(X, A) <c f̄ c(X2, A2). Hence, f̄ c(X′, A′) 6≺c f̄ c(X2, A2) holds.

Let (Y, C) be an N-concept CAN∗(X2, A2). It is easily seen that there must exist two
N-concepts (Y′, C′) and (Y′′, C′′) in NCL f such that (Y, C) < f (Y′, C′) < f (Y′′, C′′) < f
(X2, A2), terminator(Y′′, C′′) = (X2, A2) and terminator (Y′, C′) 6= (X2, A2). Hence, ac-
cording to the definition of terminators, we have (Y, C) < f terminator(Y′, C′) < f termin-
ator(Y′′, C′′) = (X2, A2), which implies that terminator(Y′, C′) is an N-concept in CAN(X2, A2)
or CAN′(X2, A2). That is to say, (Y, C) ∈ CAN′(X2, A2) holds. Thus, we can obtain
f̄ c(Y, C) 6≺c f̄ c(X2, A2) and CAN◦(X2, A2) = CAN(X2, A2) ∪ CAN′(X2, A2) ∪ CAN∗

(X2, A2).
In summary, {(X, A) ∈ NCLc|(X, A) ≺c f̄ c(X2, A2)} ⊆ { f̄ c((X, A)|(X, A) ∈ CAN(X2, A2)}.

Finally, we can easily conclude that {(Z, E) ∈ NCLc|(Z, E) ≺c f̄ c(X2, A2)} = { f̄ c(X, A)|(X, A) ∈
CAN3(X2, A2)}.

Theorem 8. Let NCL f and NCLc be the N-concept lattices of a given formal context before and
after increasing the granularity sizes of an attribute m, respectively. For two non-deleted N-concept
(X, A) and (Y, C) in NCL f , the:

(1) (Y, C) ≺ f (X, A) is an old covering relation, if and only if one of the following statements
is true: (i)(X, A) is not the terminator of any N-concept and ((Y, C) is an N-concept in
{(Y′, C′) ∈ NCL f |(Y′, C′) ≺ f (X, A)}; (ii) (X, A) is the terminator of a certain N-concept
and ((Y, C) is an N-concept in {(Y′, C′) ∈ NCL f |(Y′, C′) ≺ f (X, A), class(X, A) 6=

“deleted”} ∩ CAN3(X, A);
(2) f̄ c(Y, C) ≺c f̄ c(X, A) is a new covering relation, if and only if (X, A) is the terminator of a

certain N-concept and ((Y, C) is an N-concept in CAN�(X, A).

Example 2. Let us continue with Example 1. Two formal contexts T1 and T2 (i.e., Tables 3 and 4)
are obtained from T1 and T2 by the scaling approach. The concept lattices NCL(T1) and NCL(T2)
of T1 and T2 are displayed in Figure 2 and Figure 3, respectively. In Figures 2 and 3, old N-
concepts, deleted N-concepts, and tight N-concepts are the white, red, and blue nodes, respectively.

Mathematics 2023, 11, 3229 9 of 14

In Figures 2 and 3, old covering relations, deleted covering relations, and new covering relations are
the black, red, and green lines, respectively.

Table 3. The formal context T1.

U a b c y1 y2 y3 y4

x1 1 0 1 1 0 0 0
x2 0 1 0 0 1 0 0
x3 0 0 1 0 0 1 0
x4 1 0 1 0 0 0 1

Table 4. The formal context T2.

U a b c y′
1 y′

2

x1 1 0 1 1 0
x2 0 1 0 1 0
x3 0 0 1 0 1
x4 1 0 1 0 1

Figure 2. The N-concept lattice of Table 3.

Figure 3. The N-concept lattice of Table 4.

Mathematics 2023, 11, 3229 10 of 14

4. The NCL-Fold Algorithm

In this section, we propose a new algorithm (called the NCL-Fold algorithm i.e. Algorithm 1)
for increasing the granularity sizes of an attribute m, based on the relationship between
N-concept lattices before and after the increase as discussed in Section 3.

Algorithm 1 procedure NCL− Fold(H f , Hc, NCL).

1: Find the top N-concept (Xtop, Atop) in NCL
2: Process((Xtop, Atop), NCL, H f , Hc)
3: return NCL

The procedure NCL− Fold accepts three arguments: the cuts before and after increasing
the granularity sizes of attribute m H f and Hc and the N-concept lattice NCL of a formal
context before the increase. NCL− Fold updates the N-concept lattice NCL of a formal
context after the increase.

The procedure first finds the top N-concept (Xtop, Atop) in NCL (Line 1). Then, the
procedure invokes the following Algorithm 2 to process every N-concept (X, A) in NCL
(Line 2) and return updated NCL (Line 3).

Algorithm 2 procedure Process((X, A), NCL, H f , Hc).

1: for each child (Y, C) of (X, A)
2: if (Y, C) has not been processed
3: Process((Y, C), NCL, H f , Hc)
4: end if
5: end for
6: according to Theorem 4 and Definition 1, classify (X, A) and modify the intent of

(X, A)
7: if (X, A) is a deleted N-concept
8: mark (Z, E) as a destroyer and Victims(Z, E) = Victims(Z, E) ∪ {(X, A)} ∪Victims

(X, A), for every parent (Z, E) with Z− H f = A− H f and λ(E ∩ H f) = λ(A ∩ H f)
of (X, A)

9: end if
10: mark (X, A) as a terminator if (X, A) is not a deleted N-concept and is a destroyer
11: according to Definition 3 and Theorem 8, classify the covering relations relating to

(X, A), set the new covering relations, and remove the deleted covering relations
12: NCL = NCL−Victims(X, A)
13: Mark (X, A) as processed
14: return NCL

The procedure Process accepts four arguments: an N-concept (X, A), NCL, H f , and Hc.
Process traverses all N-concepts in a recursive way.

If a child (Y, C) of (X, A) is not visited, the algorithm recursively invokes Process using
the child (Y, C), NCL, H f , and Hc as arguments (Lines 1–5). Then, the N-concept (X, A)
is classified according to Theorem 4, and the intent of (X, A) is modified according to
Definition 1 (Line 6). In addition, for every parent (Z, E) of (X, A), if (Z, E) satisfies the
conditions of a destroyer, (Z, E) is marked as a destroyer and Victims(Z, E) is updated
by adding (X, A) and Victims(X, A) to Victims(Z, E) (Lines 7–9). If (X, A) satisfies the
conditions of a terminator, (Z, E) is marked as a terminator (Line 10). Next, according to
Definition 3 and Theorem 8, the covering relations relating to (X, A) are fixed (Line 11).
Of course, Victims(X, A) should be deleted from NCL (Line 12). Finally, (X, A) is marked
as processed, and the updated NCL is returned (Lines 13–14).

Now, we analyze the time complexity of Algorithms 1 and 2.

Mathematics 2023, 11, 3229 11 of 14

Firstly, we analyze the time complexity of Algorithm 2. The time complexity of Steps
6–10 is O(maxparents|M|2), where maxparents is the maximum number of parents of N-
concepts in NCL and |M| is the number of attributes. The time complexity of Steps 11–12
is O(max2

can|M|2), where maxcan = max
(X,A)∈NCL

{|Can(X, A)|} and |M| is the number of

attributes. Consequently, the time complexity of Algorithm 2 is O(|NCL|(maxparents|M|2 +
max2

can|M|2)), where |NCL| is the number of N-concepts in NCL.
Secondly, we can easily see that the time complexity of Algorithm 1 is O(|NCL|

(maxparents|M|2 + max2
can|M|2)), as well.

5. Experimental Evaluation

In this section, the main task was to compare our dynamic updating method algorithm
NCL-Fold and the traditional method of directly constructing N-concept latices from
datasets using the idea of FastAddIntent [27] in Matlab (Version R2018b). The experimental
environment was a server equipped with the 64-bit operating system, Intel(R) Xeon(R)
Silver 4210R CPU, 2.40 GHz, 128 GB RAM.

In the experiments, we used contexts that were randomly generated datasets with
different fill ratios. The detailed information about the sixteen databases is shown in
Table 5. In these datasets, every object owns the same number of attributes according to the
fill ratios, and many-valued attribute y owns the same g-tree exhibited in Figure 4. In these
datasets, the domain of y is Cut 1 in Figure 4. Figure 5 depicts the running time of our
algorithm NCL-Fold and the traditional method on the sixteen random datasets from Cut 1
to Cut 2.

From Figure 5, we can see that: (i) NCL-Fold significantly outperformed the traditional
method in every case; (ii) the performance gap was bigger when the number of attributes,
fill ratios, and changes of granularity sizes were the same, respectively, and the number of
objects increased.

Table 5. The detailed information about the sixteen random datasets.

Database Objects Attributes Fill Ratios

T100×10,20% 100 9 (Boolean), 1 (discrete, but not Boolean) 20%
T100×10,30% 100 9 (Boolean), 1 (discrete, but not Boolean) 30%
T100×10,40% 100 9 (Boolean), 1 (discrete, but not Boolean) 40%
T100×10,50% 100 9 (Boolean), 1 (discrete, but not Boolean) 50%
T500×10,20% 500 9 (Boolean), 1 (discrete, but not Boolean) 20%
T500×10,30% 500 9 (Boolean), 1 (discrete, but not Boolean) 30%
T500×10,40% 500 9 (Boolean), 1 (discrete, but not Boolean) 40%
T500×10,50% 500 9 (Boolean), 1 (discrete, but not Boolean) 50%
T1000×10,20% 1000 9 (Boolean), 1 (discrete, but not Boolean) 20%
T1000×10,30% 1000 9 (Boolean), 1 (discrete, but not Boolean) 30%
T1000×10,40% 1000 9 (Boolean), 1 (discrete, but not Boolean) 40%
T1000×10,50% 1000 9 (Boolean), 1 (discrete, but not Boolean) 50%
T2000×10,20% 2000 9 (Boolean), 1 (discrete, but not Boolean) 20%
T2000×10,30% 2000 9 (Boolean), 1 (discrete, but not Boolean) 30%
T2000×10,40% 2000 9 (Boolean), 1 (discrete, but not Boolean) 40%
T2000×10,50% 2000 9 (Boolean), 1 (discrete, but not Boolean) 50%

Mathematics 2023, 11, 3229 12 of 14

Figure 4. The g-tree for the attribute y.

T
100×10,20%

T
500×10,20%

T
1000×10,20%

T
2000×10,20%

Datasets
(a) Results for datasets with the fill ratio 20%

0

5

10

15

20

ti
m

e
(s

e
c
o

n
d

s
)

NCL-Fold
traditional method

T
100×10,30%

T
500×10,30%

T
1000×10,30%

T
2000×10,30%

Datasets
(b) Results for datasets with the fill ratio 30%

0

5

10

15

20

ti
m

e
(s

e
c
o

n
d

s
)

NCL-Fold
traditional method

T
100×10,40%

T
500×10,40%

T
1000×10,40%

T
2000×10,40%

Datasets
(c) Results for datasets with the fill ratio 40%

0

5

10

15

20

25

ti
m

e
(s

e
c
o

n
d

s
)

NCL-Fold
traditional method

T
100×10,50%

T
500×10,50%

T
1000×10,50%

T
2000×10,50%

Datasets
(d) Results for datasets with the fill ratio 50%

0

5

10

15

20

25

30

35

ti
m

e
(s

e
c
o

n
d

s
)

NCL-Fold
traditional method

Figure 5. The running time of NCL-Fold and traditional method on Datasets 1–10 from Cut 1 to
Cut 2.

6. Conclusions

In this part, we present the main work of this paper and the future research work:
(1) The main work of this paper:
In this paper, we analyzed the relationship between N-concept lattices with increasing

the granularity sizes of attributes. Furthermore, we proposed a new algorithm (named
NCL-Fold) to update and maintain N-concept lattices with increasing the granularity sizes
of attributes. Finally, we conducted experiments, and the experimental results indicated
that NCL-Fold has good performance.

(2) Future research work:
Since changing the granularity sizes of attributes includes increasing the granularity

sizes of the attributes and decreasing the granularity sizes of the attributes, how to quickly
update N-concept lattices when decreasing the granularity sizes of the attributes could
be developed in future. In addition, based on our method, how to detect appropriate
granularity sizes of the attributes deserves to be studied in the future.

Author Contributions: Conceptualization, J.X.; Methodology, J.X.; Validation, L.Z. and J.Y.; Writing—
original draft preparation, J.X.; Writing—review and editing, L.Z. and J.Y.; Visualization, L.Z. and J.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Foundation for Fostering Talents in Kunming University
of Science and Technology (No. KKSY201902007).

Data Availability Statement: Publicly available datasets are not used in this study, and datasets in
this study are randomly generated.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 3229 13 of 14

References
1. Wille, R. Restructuring lattice theory: An approach based on hierarchies of concepts. In Ordered Sets; Rival, I., Ed.; Reidel:

Dordrecht, The Netherlands; Boston, MA, USA, 1982; pp. 445–470.
2. Aswani Kumar, C.; Srinivas, S. Mining associations in health care data using formal concept analysis and singular value

decomposition. J. Biol. Syst. 2010, 18, 787–807. [CrossRef]
3. Dias, S.; Vieira, N. Concept lattices reduction: Definition, analysis and classification. Expert Syst. Appl. 2015, 42, 7084–7097.

[CrossRef]
4. Kuznetsov, S. Machine learning and formal concept analysis. Lect. Notes Comput. Sci. 2004, 2961, 287–312.
5. Poelmans, J.; Ignatov, D.; Kuznetsov, S.; Dedene, G. Formal concept analysis in knowledge processing: A survey on applications.

Expert Syst. Appl. 2013, 40, 6538–6560. [CrossRef]
6. Yang, L.; Xu, Y. Decision making with uncertainty information based on lattice-valued fuzzy concept lattice. J. Univers. Comput. Sci.

2010, 16, 159–177.
7. Ganter, B.; Wille, R. Formal Concept Analysis: Mathematical Foundations; Springer: New York, NY, USA, 1999.
8. Bĕlohlávek, R.; Sklenăŕ, V.; Zackpal, J. Crisply generated fuzzy concepts. In Proceedings of Formal Concept Analysis; Springer:

Berlin/Heidelberg, Germany, 2005; pp. 269–284.
9. Burusco, A.; Fuentes Gonzalez, R. The study of the L-fuzzy concept lattice. Matheware Soft Comput. 1994, 1, 209–218.
10. Burusco, A.; Fuentes Gonzalez, R. The study of the interval-valued contexts. Fuzzy Sets Syst. 2001, 121, 439–452. [CrossRef]
11. Dubois, D.; Prade, H. Possibility theory and formal concept analysis: Characterizing independent sub-contexts. Fuzzy Sets Syst.

2012, 196, 4–16. [CrossRef]
12. Singh, P.; Aswani Kumar, C. Bipolar fuzzy graph representation of concept lattice. Inf. Sci. 2014, 288, 437–448. [CrossRef]
13. Singh, P. Processing linked formal fuzzy context using non-commutative composition. Inst. Integr. Omics Appl. Biotechnol. 2016,

7, 21–32.
14. Wang, L.; Liu, X. Concept analysis via rough set and AFS algebra. Inf. Sci. 2008, 178, 4125–4137. [CrossRef]
15. Yao, Y. A comparative study of formal concept analysis and rough set theory in data analysis. In Proceedings of the 4th

International Conference on Rough Sets and Current Trends in Computing (RSCTC 2004), Uppsala, Sweden, 1–5 June 2004;
pp. 59–68.

16. Yao, Y.; Mi, J.; Li, Z.; Xie, B. The construction of fuzzy concept lattices based on (θ, δ)-fuzzy rough approximation operators.
Fundam. Informaticae 2011, 111, 33–45. [CrossRef]

17. Krupka, M.; Las̆tovic̆ka, J. Concept lattices of incomplete data. In Proceedings of the International Conference on Formal Concept
Analysis, Leuven, Belgium, 7–10 May 2012; pp. 180–194.

18. Li, M.; Wang, G. Approximate concept construction with three-way decisions and attribute reduction in incomplete contexts.
Knowl. Based Syst. 2016, 91, 165–178. [CrossRef]

19. Li, J.; Mei, C.; Lv, Y. Incomplete decision contexts: Approximate concept construction, rule acquisition and knowledge reduction.
Int. J. Approx. Reason. 2013, 54, 149–165. [CrossRef]

20. Simiński, K. Neuro-rough-fuzzy approach for regression modelling from missing data. Int. J. Appl. Math. Comput. Sci. 2012, 22,
461–476. [CrossRef]

21. Hao, C.; Fan, M.; Li, J. Optimal scale selecting in multi-scale contexts based on granular scale rules. Pattem Recognit. Aitificial Intell.
2016, 29, 272–280. (In Chinese)

22. Ma, L.; Mi, J.; Xie, B. Multi-scaled concept lattices based on neighborhood systems. Int. J. Mach. Learn. Cybern. 2017, 8, 149–157.
[CrossRef]

23. Wu, W.; Leung, Y. Theory and applications of granular labeled partitions in multi-scale decision tables. Inf. Sci. 2011, 181,
3878–3897. [CrossRef]

24. Wu, W.; Leung, Y. Optimal scale selection for multi-scale decision tables. Int. J. Approx. Reason. 2013, 54, 1107–1129. [CrossRef]
25. Tang, Y.; Fan, M.; Li J. An information fusion technology for triadic decision contexts. Int. J. Mach. Learn. Cybern. 2016, 7, 13–24.

[CrossRef]
26. Godin, R.; Missaoui, R.; Alaoui, H. Incremental concept formation algorithms based on Galois (concept) lattices. Comput. Intell.

1995, 11, 246–267. [CrossRef]
27. Zou, L.; Zhang, Z.; Long, J. A fast incremental algorithm for constructing concept lattices. Expert Syst. Appl. 2015, 42, 4474–4481.

[CrossRef]
28. Zou, L.; Zhang, Z.; Long, J. A fast incremental algorithm for deleting objects from a concept lattice. Knowl.-Based Syst. 2015, 89,

411–419. [CrossRef]
29. Shao, M.; Leung, Y. Relations between granular reduct and dominance reduct in formal contexts. Knowl.-Based Syst. 2014, 65,

1–11. [CrossRef]
30. Wei, L.; Qi, J.; Zhang, W. Attribute reduction theory of concept lattice based on decision formal contexts. Sci. China Ser. F–Inf. Sci.

2008, 51, 910–923. [CrossRef]
31. Li, J.; Mei, C.; Lv, Y. Knowledge reduction in decision formal contexts. Knowl.-Based Syst. 2011, 24, 709–715. [CrossRef]
32. Li, J.; Mei, C.; Lv, Y. Knowledge reduction in real decision formal contexts. Inf. Sci. 2012, 189, 191–207. [CrossRef]
33. Li, J.; Mei, C.; Aswani Kumar, C.; Zhang, X. On rule acquisition in decision formal contexts. Int. J. Mach. Learn. Cybern. 2013, 4,

721–731. [CrossRef]

http://doi.org/10.1142/S0218339010003512
http://dx.doi.org/10.1016/j.eswa.2015.04.044
http://dx.doi.org/10.1016/j.eswa.2013.05.009
http://dx.doi.org/10.1016/S0165-0114(00)00059-2
http://dx.doi.org/10.1016/j.fss.2011.02.008
http://dx.doi.org/10.1016/j.ins.2014.07.038
http://dx.doi.org/10.1016/j.ins.2008.07.004
http://dx.doi.org/10.3233/FI-2011-552
http://dx.doi.org/10.1016/j.knosys.2015.10.010
http://dx.doi.org/10.1016/j.ijar.2012.07.005
http://dx.doi.org/10.2478/v10006-012-0035-4
http://dx.doi.org/10.1007/s13042-016-0521-3
http://dx.doi.org/10.1016/j.ins.2011.04.047
http://dx.doi.org/10.1016/j.ijar.2013.03.017
http://dx.doi.org/10.1007/s13042-015-0411-0
http://dx.doi.org/10.1111/j.1467-8640.1995.tb00031.x
http://dx.doi.org/10.1016/j.eswa.2015.01.044
http://dx.doi.org/10.1016/j.knosys.2015.07.022
http://dx.doi.org/10.1016/j.knosys.2014.03.006
http://dx.doi.org/10.1007/s11432-008-0067-4
http://dx.doi.org/10.1016/j.knosys.2011.02.011
http://dx.doi.org/10.1016/j.ins.2011.11.041
http://dx.doi.org/10.1007/s13042-013-0150-z

Mathematics 2023, 11, 3229 14 of 14

34. Shao, M.; Leung, Y.; Wu, W. Rule acquisition and complexity reduction in formal decision contexts. Int. J. Approx. Reason. 2014,
55, 259–274. [CrossRef]

35. Wei, L.; Li, T. Rules acquisition in consistent formal decision contexts. In Proceedings of the 11th International Conference on
Machine Learning and Cybernetics (ICMLC’12) Xi’an, China, 15–17 July 2012; pp. 801–805.

36. Wu, W.; Leung, Y.; Mi, J. Granular computing and knowledge reduction in formal contexts. IEEE Trans. Knowl. Data Eng. 2009, 21,
1461–1474.

37. Qi, J.; Wei, L.; Yao, Y. Three-way formal concept analysis. In Proceedings of the 2014 International Conference on Rough Sets and
Knowledge Technology, Shanghai, China, 24–26 October 2014; pp. 732–741.

38. Qi, J.; Qian, T.; Wei, L. The connections between three-way and classical concept lattices. Knowl.-Based Syst. 2016, 91, 143–151.
[CrossRef]

39. Qian, T.; Wei, L.; Qi, J. Constructing three-way concept lattices based on apposition and subposition of formal contexts.
Knowl.-Based Syst. 2017, 116, 39–48. [CrossRef]

40. Wang, W.; Qi, J. Algorithm for constructing three-way concepts. J. Xidian Univ. 2017, 44, 71–76.
41. Yang, S.; Lu, Y.; Jia, X.; Li, W. Constructing three-way concept lattice based on the composite of classical lattices. Int. J.

Approx. Reason. 2020, 121, 174–186. [CrossRef]
42. Yao, Y. Three-way decisions with probabilistic rough sets. Inf. Sci. 2010, 180, 341–353. [CrossRef]
43. Yao, Y. Three-way decision and granular computing. Int. J. Approx. Reason. 2018, 103, 107–123. [CrossRef]
44. Yu, H.; Li, Q.; Cai, M. Characteristics of three-way concept lattices and three-way rough concept lattices. Knowl.-Based Syst. 2018,

146, 181–189. [CrossRef]
45. Li, J.; Xu, W.; Qian, Y. Concept learning via granular computing: A cognitive viewpoint. Inf. Sci. 2015, 298, 447–467. [CrossRef]
46. Li, J.; Huang, C.; Qi, J.; Qian, Y.; Liu, W. Three-way cognitive concept learning via multi-granularity. Inf. Sci. 2017, 378, 244–263.

[CrossRef]
47. Bĕlohlávek, R.; De Baets, B.; Konecny, J. Granularity of attributes in formal concept analysis. Inf. Sci. 2014, 260, 149–170. [CrossRef]
48. Hashemi, R.; Agostino, S.; Westgeest, B.; Talburt, J. Data granulation and formal concept analysis. In Proceedings of the Processing

NAFIPS—04. IEEE Annual Meeting of the Fuzzy Information, Banff, AB, Canada, 27–30 June 2004; Volume 1, pp. 79–83.
49. Zou, L.; Zhang, Z.; Long, J. An efficient algorithm for increasing the granularity levels of attributes in formal concept analysis.

Expert Syst. Appl. 2016, 46, 224–235. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ijar.2013.04.011
http://dx.doi.org/10.1016/j.knosys.2015.08.006
http://dx.doi.org/10.1016/j.knosys.2016.10.033
http://dx.doi.org/10.1016/j.ijar.2020.03.007
http://dx.doi.org/10.1016/j.ins.2009.09.021
http://dx.doi.org/10.1016/j.ijar.2018.09.005
http://dx.doi.org/10.1016/j.knosys.2018.02.007
http://dx.doi.org/10.1016/j.ins.2014.12.010
http://dx.doi.org/10.1016/j.ins.2016.04.051
http://dx.doi.org/10.1016/j.ins.2013.10.021
http://dx.doi.org/10.1016/j.eswa.2015.10.026

	Introduction
	Preliminaries
	Relationship between N-Concept Lattices before and after Increasing the Granularity Sizes of Attributes
	Relationship between N-Concepts before and after Increasing the Granularity Sizes of Attributes
	Relationship between the Covering Relations before and after Increasing the Granularity Sizes of Attributes

	The NCL-Fold Algorithm
	Experimental Evaluation
	Conclusions
	References

