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Abstract: Given several nonnegative matrices with a single pattern of allocation among their
zero/nonzero elements, the average matrix should have the same pattern, too. This is the first
tenet of the pattern-multiplicative average (PMA) concept, while the second one suggests the multi-
plicative (or geometric) nature of averaging. The original concept of PMA was motivated by the practice
of matrix population models as a tool to assess the population viability from long-term monitoring
data. The task has reduced to searching for an approximate solution to an overdetermined system
of polynomial equations for unknown elements of the average matrix (G), and hence to a nonlinear
constrained minimization problem for the matrix norm. Former practical solutions faced certain tech-
nical problems, which required sophisticated algorithms but returned acceptable estimates. Now, we
formulate (for the first time in ecological modeling and nonnegative matrix theory) the PMA problem
as an eigenvalue approximation one and reduce it to a standard problem of linear programing (LP).
The basic equation of averaging also determines the exact value of λ1(G), the dominant eigenvalue of
matrix G, and the corresponding eigenvector. These are bound by the well-known linear equations,
which enable an LP formulation of the former nonlinear problem. The LP approach is realized for
13 fixed-pattern matrices gained in a case study of Androsace albana, an alpine short-lived perennial,
monitored on permanent plots over 14 years. A standard software routine reveals the unique exact
solution, rather than an approximate one, to the PMA problem, which turns the LP approach into
‘’the best of versatile optimization tools”. The exact solution turns out to be peculiar in reaching
zero bounds for certain nonnegative entries of G, which deserves modified problem formulation
separating the lower bounds from zero.

Keywords: matrix population model; Androsace albana; life cycle graph; population projection matrix;
matrix average; constrained optimization; linear programming; exact solution

MSC: 15B48; 90C08; 90C26; 92D25; 92-10

1. Introduction

Pattern-multiplicative average (PMA) of nonnegative matrices is a concept motivated in
the field of matrix population models by the need to assess the viability of a local population
from the outcome of its long-term monitoring. Matrix population models represent a
wide and rapidly growing area of applications [1,2], where the theory of nonnegative
matrices applies to population dynamics [3]. When biologists study a population of a
plant or animal species and observe the population at discrete time moments, they classify
individuals according to an observable trait such as age, body size, ontogenetic stage, etc.,
and divide the entire range of trait values into certain discrete classes, thus dealing with a
discrete population structure [4]. It is expressed mathematically as a vector x(t) ∈ Rn

+ (n ≥ 2)
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representing the (absolute or relative) abundances of n class-specific groups of individuals,
whereafter the matrix population model is a system of first-order difference equations,

x(t + 1) = L(t) x(t), t = 0, 1, 2, . . ., (1)

linking the population vector at the next moment, t + 1, to that at the current one, t.
Matrix L(t) is therefore called the population projection matrix (PPM) [4], despite the

projection term having quite another meaning in matrix algebra [5]. All the matrix entries are
nonnegative and called vital rates as they have a certain demographic sense [4]. The pattern
of how zero/nonzero elements are arranged within the matrix is associated, in a unique
way, to what is called the life cycle graph (ibidem) as it bears the biological knowledge of how
the individuals grow/develop for one time step and provide for the population recruitment.

Being nonnegative, the PPM becomes a legal target for the Perron–Frobenius Theo-
rem [5,6], whereby a rich repertoire of model properties and population characteristics
can be obtained after the PPM has been calibrated from data [4,7]. In particular, the domi-
nant eigenvalue, λ1 > 0, of matrix L(t) serves as a “measure of how the local population
is adapted to the environment where and when the data have been mined to calibrate
the PPM” [8] (p. 1). When the data are of the “identified individuals” type [4], a great
advantage of MPMs is that the calibration can be performed just from two successive obser-
vations, thus meeting Equation (1) and yielding a time-dependent L(t). Correspondingly,
the adaptation measure, λ1, inherits the time dependence, and the great advantage turns
dialectically into a great problem or challenge when the task is to assess the adaptation
from a time series of observation data, hence from a finite set of one-step PPMs.

The historically first response to the challenge was grounded on the theory of random
sequences of vectors L(t) x(t), t→∞ [9–12], and it has led to what is now called the stochastic
growth rate of a population in a randomly changing environment (see [4] and refs therein).
Another more recent approach reverts the task just to averaging a given number, say M
(M ≥ 2), of one-step PPMs and calculating the dominant eigenvalue, λ1(G), of the average
matrix G. Letter “G” here bears a hint to the geometric (or multiplicative) nature of averaging,
and the hint will be revealed further in Section 2.2. This approach has led to a concept that
was proposed 5 years ago with regard to matrix population models [13], and the task of
averaging was reduced to a constrained nonlinear minimization problem for the matrix
norm [8,13] (see Section 2.3). The norm has however not appeared quite fit for global
optimization but required versatile optimization tools [14] to solve the problem.

This paper aims at expanding those “versatile optimization tools” with another tar-
get of optimization, namely, the deviation of λ1(Gopt) from the ideal calculable λ1(G)
(Section 2.4). The approach originates from the fact the ideal λ1(G) is known:

λ1(G) = (Prod)1/M, (2)

where Prod denotes the product of M one-step PPMs. This leads to a problem that ap-
pears to be formalizable as a standard problem of linear programming (LP), and hence
solvable by standard routines. The solution is exemplified by a case study of monitor-
ing a local population of an alpine short-lived perennial for 13 years [15] (Section 2.1).
Sections 2.3 and 2.4 contain, respectively, a short presentation of the published “versatile
optimization tools” and an in-depth one of the original LP approach. The outcomes of
both are presented in Section 3, enabling the comparison of results, which reveals a surpris-
ing contrast and induces certain comments (Section 4), in particular, on how general the
proposed LP technique might be.

2. Materials and Methods
2.1. Case Study

A local population of Androsace albana, an alpine short-lived perennial plant species,
was monitored on permanent sample plots once a year [15] for 14 years (2009–2022). Al-
though A. albana actually reproduces by seeds, the stage of dormant seeds was deliberately
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excluded from the life cycle graph by ontogenetic stages as the seed-related vital rates can-
not be reliably estimated in the field [16]. Later, we proved such an exclusion to be correct
within the integer-valued formalism [17], which can always be applied for the “identified
individuals” data. The life cycle graph looks, correspondingly, as shown in Figure 1, with
the “virtual” rather than real recruitment arcs. These three arcs ingo, respectively, to three
early stages because the newly recruited plants can be observed in any of them at the
moment of observation.

Mathematics 2023, 11, 3237 3 of 12 
 

 

Although A. albana actually reproduces by seeds, the stage of dormant seeds was deliber-
ately excluded from the life cycle graph by ontogenetic stages as the seed-related vital 
rates cannot be reliably estimated in the field [16]. Later, we proved such an exclusion to 
be correct within the integer-valued formalism [17], which can always be applied for the 
“identified individuals” data. The life cycle graph looks, correspondingly, as shown in 
Figure 1, with the “virtual” rather than real recruitment arcs. These three arcs ingo, re-
spectively, to three early stages because the newly recruited plants can be observed in any 
of them at the moment of observation. 

 

Figure 1. A. albana life cycle graph by ontogenetic stages: pl, plantules; j, juvenile plants; im, imma-
ture plants; v, adult vegetative plants; and g, generative plants. Dashed arrows correspond to “vir-
tual” reproduction (adapted from [15]). 

Now, we have x(t) ∈ ℝାହ , and the natural order of components in x(t) leads to the 
following PPM pattern: 

L = ⎣⎢⎢⎢
⎡0 0𝑑 0 0 00 0 𝑎𝑏𝑒 𝑓0 0 ℎ 0𝑘 𝑙 𝑐00 0 0 𝑚 0⎦⎥⎥⎥

⎤
;  a, b, …, l, m ≥ 0, (3)

with 10 vital rates to be calibrated. The calibration for 13 successive pairs of observation 
years results in 13 annual PPMs, L(t) = [lij(t)], presented in Table 1. Each of them obeys 
Equation (1). There are 6 annual PPMs with λ1(L(t)) > 1 and 7 of those with λ1(L(t)) < 1, so 
that even an “educated guess” of what should be λ1(G), the dominant eigenvalue of the 
average matrix, remains uncertain. 

Table 1. Outcome of PPM calibration for A. albana based on 2009–2022 data (updating Table 2 from [15]). 

Census 
Year, t  

Matrix L(t): t → t + 1 λ1(L(t)) Vector x *, % 

2009 
j = 0 

L0 = 

⎣⎢⎢
⎢⎢⎢
⎢⎡ 0 0 0 0 30 13ൗ8 37ൗ 0 0 0 40 13ൗ2 37ൗ 22 110ൗ 28 99ൗ 0 3 13ൗ0 0 7 99ൗ 19 35ൗ 00 0 0 1 35ൗ 0 ⎦⎥⎥

⎥⎥⎥
⎥⎤
 0.5661 ⎣⎢⎢⎢

⎡10.6118.2016.9951.592.60 ⎦⎥⎥⎥
⎤
 

Figure 1. A. albana life cycle graph by ontogenetic stages: pl, plantules; j, juvenile plants; im,
immature plants; v, adult vegetative plants; and g, generative plants. Dashed arrows correspond to
“virtual” reproduction (adapted from [15]).

Now, we have x(t) ∈ R5
+, and the natural order of components in x(t) leads to the

following PPM pattern:

L =


0 0
d 0

0 0
0 0

a
b

e f
0 0

h 0
k l

c
0

0 0 0 m 0

; a, b, . . . , l, m ≥ 0, (3)

with 10 vital rates to be calibrated. The calibration for 13 successive pairs of observation
years results in 13 annual PPMs, L(t) = [lij(t)], presented in Table 1. Each of them obeys
Equation (1). There are 6 annual PPMs with λ1(L(t)) > 1 and 7 of those with λ1(L(t)) < 1, so
that even an “educated guess” of what should be λ1(G), the dominant eigenvalue of the
average matrix, remains uncertain.

Table 1. Outcome of PPM calibration for A. albana based on 2009–2022 data (updating Table 2
from [15]).

Census Year, t Matrix L(t): t→ t + 1 λ1(L(t)) Vector x *, %

2009
j = 0

L0=


0 0 0 0 30⁄13

8⁄37 0 0 0 40⁄13

2⁄37 22⁄110 28⁄99 0 3⁄13

0 0 7⁄99 19⁄35 0
0 0 0 1⁄35 0

 0.5661


10.61
18.20
16.99
51.59
2.60



2010
j = 1

L1 =


0 0 0 0 19⁄1

14⁄30 0 0 0 31⁄1
4⁄30 22⁄48 17⁄55 0 0⁄1
0 0 34⁄55 23⁄26 0
0 0 0 1⁄26 0

 1.2283


15.90
31.99
18.25
32.83
1.03
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Table 1. Cont.

Census Year, t Matrix L(t): t→ t + 1 λ1(L(t)) Vector x *, %

2011
j = 2

L2 =


0 0 0 0 49⁄1

1⁄19 0 0 0 85⁄1
6⁄19 35⁄45 21⁄43 0 25⁄1
0 0 10⁄43 48⁄57 0
0 0 0 4⁄57 0

 1.5779


17.20
30.40
39.39
12.45
0.55



2012
j = 3

L3 =


0 0 0 0 19⁄4

1⁄49 0 0 0 136⁄4
10⁄49 45⁄86 39⁄87 0 1⁄4
0 0 28⁄87 45⁄58 0
0 0 0 6⁄58 0

 1.2641


6.01

43.15
29.67
19.56
1.60



2014
j = 5

L5 =


0 0 0 0 4⁄3
0 0 0 0 19⁄3

2⁄16 2⁄98 6⁄34 0 0⁄3
0 0 4⁄34 16⁄50 0
0 0 0 4⁄50 0

 0.3988


11.71
56.64
11.69
17.46
3.50



2015
j = 6

L6 =


0 0 0 0 10⁄4
0 0 0 0 29⁄4
0 10⁄19 3⁄10 0 0⁄4
0 0 5⁄10 17⁄20 0
0 0 0 1⁄10 0

 1.0679


9.19

26.66
18.28
41.94
3.93



2016
j = 7

L7 =


0 0 0 0 3⁄2
0 0 0 0 8⁄2

2⁄10 5⁄29 5⁄13 0 0
0 0 8⁄13 20⁄22 0
0 0 0 1⁄22 0

 0.9611


5.26

14.04
6.02

71.30
3.37



2017
j = 8

L8 =


0 0 0 0 12⁄1
0 0 0 0 23⁄1
3⁄3 2⁄8 8⁄12 0 0
0 0 2⁄12 21⁄28 0
0 0 0 2⁄28 0

 1.1206


12.93
24.78
42.13
18.95
1.21



2018
j = 9

L9 =


0 0 0 0 13⁄2
0 0 0 0 38⁄2

1⁄12 1⁄23 0⁄13 0 0
0 0 1⁄13 22⁄23 0
0 0 0 1⁄23 0

 0.9617


13.23
38.65
2.89

43.27
1.96



2019
j = 10

L10 =


0 0 0 0 3⁄1
0 0 0 0 3⁄1

1⁄13 1⁄19 2⁄4 0 0
0 0 2⁄4 18⁄23 0
0 0 0⁄4 2⁄23 0

 0.8496


18.45
18.45
6.84

51.04
5.22



2020
j = 11

L11 =


0 0 0 0 8⁄2
1⁄3 0 0 0 9⁄2
2⁄3 2⁄3 2⁄4 0 0
0 0 2⁄4 13⁄19 0
0 0 0⁄4 5⁄19 0

 1.3008


15.88
21.94
31.49
25.53
5.16



2021
j = 12

L12 =


0 0 0 0 29⁄5
1⁄8 0 0 0 44⁄5
1⁄8 2⁄5 0 0 0
0 0 5⁄6 14⁄15 0
0 0 0⁄6 1⁄15 0

 1.1143


14.86
24.21
10.36
47.72
2.85


* To be explained in Section 2.4.
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2.2. Pattern-Multiplicative Average of Annual PPMs

The logic of PMA ensues from the following apparent observation: given the 13 annual
PPMs calibrated according to Equation (1) (Table 1), we have the initial population structure
projected to the terminal one,

x(2022) = L(2021) L(2020) . . . L(2009) x(2009),

by
Prod = L(2021) L(2020) . . . L(2009), (4)

the product of 13 annual PPMS in chronological order.

x(2022) = Prod x(2009). (5)

Because the average matrix ought to perform absolutely the same when raised to the
13th power, we have the following basic equation of averaging,

G13 = Prod, (6)

which justifies Equation (2) of the Introduction. As is noted ibidem, a routine extraction of
the 13th root from a given, even positive, Prod can hardly return a nonnegative matrix, nor
guarantee the fixed pattern (3) for the root.

A workaround leads to solving matrix Equation (6) as a system of scalar polynomial
equations for unknown matrix elements. In fact, there are 5 × 5 − 10 = 15 elements that are
prescribed to be zero by pattern (3), while the corresponding 15 scalar equations bind the
unknown elements too, in addition to the 10 equations for the 10 unknowns. It means that
Equation (6) is overdetermined as a system of scalar equations; hence, it may have an exact
solution only under special relations between the equations depriving those extra 15 ones
of their independence. There is no reason however to seek this kind of relation among the
PPMs, so that Equation (6), the basic equation of averaging, has no solution over the set of
the pattern (3) PPMs.

The simple and clear logic of PPM averaging thus faces a principal obstacle in matrix
algebra, and a workaround comes to an approximate solution.

2.3. Approximate PMA as a Nonlinear Constrained Minimization Problem

Any approximation invokes the question of how close the approximate solution is to
the exact one. Although the latter is unknown, the equivalent form of Equation (6),

G13 − Prod = 0, (7)

just illustrates the ideal, yet unreachable, closeness as a 5 × 5 matrix of zeros. Retaining
the same notation G = [gij] for the approximate average matrix, we can see the elements
of G13 as certain polynomials of the 5 × 13 = 65th degree. If we consider the quality of
approximation to be a scalar value, then it should be the error of approximation. The error
can be measured as the (squared) matrix norm, whereby we come to the following nonlinear
minimization problem:

Φ(G)→ min
B

Φ(G)=
∣∣∣∣∣∣G13 − Prod

∣∣∣∣∣∣2. (8)

Here, B < R10
+ defines the problem to be a constrained one as it represents the con-

straints that ensue from the logics of averaging: the average vital rates should not be less
nor greater than those fixed in observations. In matrix terms, it means that each entry of the
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annual PPM has to lie within the bounds defined by the minimal value and the maximal
one among the 13 annual values of that entry. In formal terms,

min
t

lij(t) ≤ gij ≤ max
t

lij(t), i, j = 1, . . . , 5 (9)

(see Table 2).

Table 2. Bounds for the 10 unknown variables ensuing from 13 annual PPMs (Table 1).

Minimal Vital Rate Maximal

4/3 a 49
3 b 85
0 c 25

0 d 7/15
0 e 1

1/49 f 7/9
0 h 2/3

6/95 k 5/6
8/25 l 22/23

1/35 m 5/15

So, we come to the constrained nonlinear minimization problem (8 and 9), where the
bounds of B are defined in Table 2. Both standard routines for global optimization [18] and
more sophisticated ones [14] can be applied for solving the problem (8 and 9).

2.4. Approximate PMA as an Eigenvalue-Constrained Optimization Problem

Noted in the Introduction, expression (2) is actually a simple algebraic consequence of
(6), the basic equation of averaging, that would be true if the exact solution existed. Since it
does not exist, another measure of approximation quality can be found by the following
speculations.

Suppose v is a dominant eigenvector of the average matrix G, i.e., we have

G v = λ1(G) v. (10)

Acting by operator G successively on both sides of Equation (10), we obtain

(G)2 v = λ1(G)2 v,
(G)3 v = λ1(G)3 v,

. . .,
(G)13 v = λ1(G)13 v.

(11)

In combination with the averaging Equations (6) and (11), it signifies that v is a
dominant eigenvector of the matrix product, Prod, too. Hereby, the other measure of an
approximation error is

|λ1(G) − ρ0|, where ρ0 = ρ(Prod) (12)

which can be calculated from the data presented in Table 1. The optimal solution should
be searched for among those matrices G that have the same eigenvector v. To exemplify
how matrices of a single pattern with different eigenvalues may have the same dominant
eigenvector is a student-level exercise (a hint to the solution in Appendix A).

To be unique, this eigenvector, v*, can, for instance, be expressed in percent and
calculated like the vectors x* presented in Table 1. It can thereafter serve as a constraint
in the search of approximation among various λ1 values associated with a single v*. (To
give an example of a matrix eigenvalue being nonlinear as a function of matrix elements is
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another exercise). Hence, we have a nonlinear minimization problem again. However, the
change of variables, a beloved mathematical trick,

y = |λ1(G) − ρ0|, (13)

turns the problem into a linear one. More specifically, it turns the task into the following
two linear problems: to maximize the λ1(G) when ρ0 ≥ λ1(G) and to minimize it when
λ1(G) ≥ ρ0.

Moreover, vector v* = [v1, v2, . . ., v5], the known positive eigenvector of G, and its
dominant eigenvalue λ1(G) are bound by definition to the matrix equation

Gv* = λ1(G)v*.

With due regard to the fixed pattern (3) and with omitting subscript 1 at λ1, this matrix
equation reduces to the five scalar linear equations for a, b, . . . , l, m, λ:

av5 − λv1 = 0,
bv5 + dv1 − λv2 = 0,

cv5 + ev1+ fv2+ hv3 − λv3 = 0,
kv3 + lv4 − λv4 = 0,

mv4 − λv5 = 0,
i.e., for the ten unknown entries of G and the 11th formal variable λ.

(14)

The 11th variable has its own bounds: as the dominant eigenvalue of the average
matrix, the unknown λ has to locate within the following bounds,

λ ∈
[

min
t

λ1(L(t)), max
t

λ1(L(t))
]

, t = 2009, . . . , 2021,

to be determined from Table 1. The two specific problems specify these bounds further:

λ ∈


[

min
t

λ1(L(t)), ρ0

]
i f λ ≤ ρ0;[

0, min
t

λ1(L(t))
]

i f λ ≥ ρ0.
(15)

Finally, we have the following problem formulation:

y→ min
p

yp(p = 1, 2);yp → min
x∈Bp

yp(x), (16)

where x = [a, b, . . ., l, m, λ]T, while the polygons Bp ⊂ R11
+ (p = 1, 2) are defined in (15) and the

equality-type constraints (14). The two inner problems (16) represent the standard LP ones
to be solved by standard software routines, such as the function linprog in MATLAB® [19]
(technical details in Appendix B).

3. Results
3.1. Case Study Outcome

Calibrated with absolute accuracy, 13 annual PPMs for A. albana are presented in
Table 1 with their dominant eigenvalues and corresponding eigenvectors.

3.2. Pattern-Multiplicative Averaging as an Approxiation Problem

The logics of approximate PMA have been implemented as problem settings in
Sections 2.3 and 2.4. Matrix Prod (4), the product of 13 annual PPMs, is too cumbersome to
be presented here in its original rational form. Its numerical form up to the 15th significant
digit is shown in Table 3 together with the dominant eigenvalue and the correspond-
ing eigenvector.
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Table 3. Numerical inputs for the optimization problems.

Matrix Prod λ1(G13), ρ0 Vector v*, %

0.021185585295608 0.039538528446472 0.086369212318887 0.321576284325812 0.312397941844407

0.31893645391
0.91584799085

29.2923

0.032875920640909 0.061354070510449 0.134019914355007 0.498983075380778 0.484789540051083 45.4532

0.003661007803335 0.006824023057585 0.014887199373520 0.055368303504470 0.054013601100565 5.0480

0.013845526439184 0.025919668563603 0.056669501627721 0.210813605518226 0.203676548113200 19.1962

0.000729124010650 0.001363464687049 0.002980796589266 0.011096313418442 0.010736266465211 1.0103

3.3. Minimizing the Approximation Error as a Matrix Norm

The solution to the constraint minimization problem (8) has been obtained in [14] by
the “versatile optimization tools” (Table 4) for the case of 12 annual PPMs. The quality of
approximation ranges from 0.002374 to 0.002379 as a function of the optimization method
(ibidem). In the format of Table 1, the obtained average matrices are presented in Table 4.

Table 4. Solutions to the PMA problem by various optimization techniques (adapted from [14]).

Optimization Method,
Loss Function Matrix G λ1(G) Approximation Error

Basin hopping,

Φ(G) =
∣∣∣∣∣∣G12–Prod

∣∣∣∣∣∣2
0 0 0 0 3.3309

0.8585 0.002374
0.4530 0 0 0 7.8767
0.0288 0.2936 0.1474 0 0

0 0 0.1726 0.7589 0
0 0 0 0.1034 0

Basin hopping,

Φ(G) =
∣∣∣∣∣∣G12–Prod

∣∣∣∣∣∣2 and
penalty for

constraint violations

0 0 0 0 3.3309

0.8585 0.002374
0.4533 0 0 0 7.8757
0.0287 0.22936 0.1474 0 0

0 0 0.1726 0.7589 0
0 0 0 0.1034 0

Basin hopping,
S(G) = Φ(G)/Ψ(G)′, where

Ψ(G) =
∥∥∥∑11

j=0 L12 . . . Lj+1

∥∥∥ 2

0 0 0 0 3.3348

0.8584 0.002379
0.4322 0 0 0 7.9666
0.0363 0.28976 0.1485 0 0.0022

0 0 0.1728 0.7587 0
0 0 0 0.1034 0

3.4. Eigenvalue-Constrained Optimization Problem

Solutions to the problem (14–16) are shown in Table 5.

Table 5. Solutions to the PMA problem by the LP technique.

Inner Problem (16) Matrix G(x) λ1(G) Approximation Error

y1 → min
x∈B1

y1(x) ,

y1(x) = ρ0 − λ1(G(x))

0 0 0 0 26.5530

0.915847990853247 0
0 0 0 0 41.2023
0 0.2777 0.6667 0 0
0 0 0.0632 0.8992 0
0 0 0 0.0482 0

y2 → min
x∈B2

y2(x) ,

y2(x) = λ1(G(x))− ρ0

0 0 0 0 26.5530

0.915847990853247 1.1102 × 10−16
0 0 0 0 41.2023
0 0.2777 0.6667 0 0
0 0 0.0632 0.8992 0
0 0 0 0.0482 0

The solutions to the two optimization problems look indistinguishable within the
publication format allowed, and they are really different at the 16th decimal digit alone,
which may well be attributed to the computer round-off errors. It means that both problems
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have the same unique optimal solution, i.e., the corresponding vertex is in common of the
polygons B1 and B2.

4. Discussion and Conclusions

The case study practice has not motivated any logics of PMA beyond the population
structure projection from the initial vector to the terminal one, i.e., Equations (4) and (5).
Therefore, we deal here with single-objective problems alone (in the terminology of [20]).
Once having been formulated in mathematical terms [13], this objective comes immediately
to the difference norm as the distance between two matrices following the fundamental
of real analysis [21]. However, even the squared matrix norm has required “versatile opti-
mization tools” [14] to achieve even moderate approximation quality in the corresponding
nonlinear constrained minimization problem (Table 4).

Besides the moderate approximation quality, the basin-hopping global search, as an
essential part of the “versatile optimization tools”, leaves no chance for the results being
quantitatively reproducible as it is essentially stochastic [22]. In contrast, the LP approach
is essentially deterministic [23]; hence, the results in Section 3.4 can be reproduced any
number of times.

What does not contrast the LP approach to the PMA task is the eigenvalue optimization
problem being nonlinear, too. Because the matrix eigenvalue in general and the dominant
eigenvalue in particular are not linear as a function of matrix elements (see Appendix A),
the use of linear programming seems paradoxical at first glance. However, besides the trick
with a change of variables (13), the very nature of eigenvalue–eigenvector relations is linear,
resulting in the linear relationships among the matrix elements and the linear equality-type
constraints in the LP setting. The trick has nevertheless failed to cheat a software routine
formality, namely, to express the loss function as a linear combination of formal variables at
fixed coefficients (see Appendix B). The reason is quite evident: function (12) is not a linear
function, albeit consisting of two linear parts.

These two parts have logically resulted in the two adjacent LP problems differing in
the range (15) of the lambda alone. They both yield a single solution surprisingly coincident
with the ideal λ1(G) (Table 5). On the one hand, the theory of linear programming is known
to admit nonunique solutions [23]. On the other, different matrices might well have the
same dominant eigenvector (see Appendix A) in our practical case, too. Fortunately, the
solution returned by the routine has turned out to be unique, hence the unique, best solution
to the averaging problem.

Moreover, this best solution is absolutely accurate (Table 5), thus turning a solution
to the approximate PMA problem into the exact one and suggesting the best alternative
to our former ecological practice [8,15,16]. Therefore, it makes no sense to quantitatively
compare the outcomes of the “versatile optimization tools” and the LP approach—the
comparison should rather be qualitative, with an obvious conclusion, thus denying any
possible reproaches to comparing the case of 12 annual PPMs [14] with the current case of
13 PPMs.

The only “spoon of tar” in this “barrel of honey” is due to certain zeros in the optimal
solution, i.e., zero entries to the average matrix G. While there are in total 4 vital rates that
have zero minimal values among the 13 annual ones (Table 2), 3 of them, namely, for c, d,
e, (Figure 1), are reached by the “ideal” solution (Table 5). The shares of c = 0, d = 0, and
d = 0 in the set of 13 annual PPMs (Table 1) are equal, respectively, to 9/13, 7/14, and 1/13
(Appendix C). Whether the average matrix should take into account the most frequent
zeros or all of them is a dialectical issue. The paradigm of biological diversity in general
and the concept of polyvariant ontogeny [24,25] in particular dictate retaining all the links in
the life cycle graph (Figure 1), hence the absence of occasional zeros in the average matrix.

Therefore, an optimistic mathematical hypothesis is that the same absolute result can
be obtained in the eigenvalue-constrained optimization problem when we substitute the
minimal positive bounds for the zero ones. Testing this hypothesis might be an object of
further studies.
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Note also that the LP technique presented in Section 2.4 for a specific case study is
general enough to be applied for any finite set of irreducible nonnegative fixed-pattern
matrices, the specificity being only confined to the bounds and equality-type constraints.
While the task is always to find the best approximation, the supertask is to motivate younger
mathematicians to give a theoretical explanation of why the best approximation turns into
the exact solution.
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Appendix A

Exercise 1. Exemplify how matrices with a fixed pattern and different eigenvalues may
have the same dominant eigenvector. Hint: Consider an imprimitive Leslie matrix with the
pattern of

L =

0 0 c
a 0 0
0 b 0

 (A1)

and double it.
Exercise 2. Exemplify the matrix eigenvalue being nonlinear as a function of matrix

elements. Hint: See matrix (A1).

Appendix B

Using MATLAB®, we have logically reformulated the LP problem in matrix terms
and in the terms of problems (14)–(16). The corresponding solver linprog [19] finds the
minimum in a problem specified by

min
x

yTx suchthat


A·x ≤ b,

Aeq·x = beq,
lb ≤ x ≤ ub.

(A2)

Here, vectors x, y ∈ R11
+ are defined as

x = [a, b, . . ., l, m, λ]T, yT = [0, 0, . . ., 0, 1]; (A3)

matrix A and vector b represent the inequality-type constraints (empty in our case), Aeq
and beq the equality-type constraints:


1.0103 0 0 0 0

0 1.0103 0 29.2923 0
0 0 0 0 29.2923
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0

45.4531 5.0480 0 0 0
0 0 5.0480 19.1962 0
0 0 0 0 19.1962

−29.2923
−45.4531
−5.0480
−19.1962
−1.0103

,


0
0
0
0
0

; (A4)

and vectors lb and ub, the lower and upper bounds, respectively, for x, are given in Table 2,
lacking them for λ, the last component. Extracted from Table 1, these bounds for λ1(G) are

0.3988 ≤ λ ≤ 1.5779.
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Specified in accordance with (15), these bounds split to

0.3988 ≤ λ ≤ ρ0 and ρ0 ≤ λ ≤ 1.5779, (A5)

where ρ0 is given in Table 3. Correspondingly, the pair of lb and ub split to the follow-
ing ones,

lb, ub1 and lb2, ub, (A6)

where
ub111 = lb211 = ρ0 (A7)

Following (A2)–(A7) and the syntax of linprog [19], we input the following two calls:

[xopt1, yval1] = linprog(y1, [], [], Aeq, beq, lb, ub1);

[xopt2, yval2] = linprog(y2, [], [], Aeq, beq, lb2, ub),

which return what is shown in Table 5.

Appendix C

To determine how many zeros there are among particular entries into a fixed place,
say (3, 5), at all the 13 given matrices, we first arrange them as a 3D MATLAB® array [26]
named All13L. Second, we calculate the frequency of zeros at that place by means of the
built-in MATLAB® function nnz [27] and the following line:

>> sym(13 - nnz(All13L(3, 5, :)))/13,
ans = 9/13.

Similar lines for the places of (2, 1) and (3, 1) return, respectively, 7/13 and 1/13.
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