A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems
Abstract
:1. Introduction
2. Preliminaries
- (1)
- ;
- (2)
- ;
- (3)
- .
3. Proposed Method
- (C1)
- ;
- (C2)
- , , and ;
- (C3)
Algorithm 1 An Inertial Viscosity Modified SP Algorithm (IVMSPA) |
Initialization: Let , , and be sequences of positive real numbers. Take , arbitrarily. Iterative steps: For calculate as follows: Step 1. Compute an inertial parameter Step 2. Compute |
- is a convex and differentiable function such that is Lipschitz-continuous with constant and are proper, lower-semicontinuous and convex functions;
- is strongly convex with a parameter such that is -Lipschitz continuous and .
Algorithm 2 An Inertial Bilevel Gradient Modified SP Algorithm (IBiG-MSPA) |
Initialization: Let , , , and be sequences of positive real numbers. Take , arbitrarily. Iterative steps: For calculate as follows: Step 1. Compute an inertial parameter Step 2. Compute |
4. Applications with Classification Problems
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Herreros, P.; Zhang, L.; Misra, P.; Arslan, E.; Mehta, S.; Grossmann, I.E. Mixed-integer bilevel optimization for capacity planning with rational markets. Comput. Chem. Eng. 2016, 86, 33–47. [Google Scholar] [CrossRef]
- Maravillo, H.; Camacho-Vallejo, J.; Puerto, J.; Labbé, M. A market regulation bilevel problem: A case study of the mexican petrochemical industry. Omega 2019, 97, 102–105. [Google Scholar] [CrossRef] [Green Version]
- Marcotte, P. Network design problem with congestion effects: A case of bilevel programming. Math. Program. 1986, 34, 142–162. [Google Scholar] [CrossRef]
- Migdalas, A. Bilevel programming in traffic planning: Models, methods and challenge. J. Glob. Optim. 1995, 7, 381–405. [Google Scholar] [CrossRef]
- Clark, P.A.; Westerberg, A.W. Bilevel programming for steady-state chemical process design–I. Fundamentals and algorithms. Comput. Chem. Eng. 1990, 14, 87–97. [Google Scholar] [CrossRef]
- Dempe, S. Foundations of Bi-Level Programming, 1st ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Bard, J.F. Coordination of a multidivisional organization through two levels of management. Omega 1983, 11, 457–468. [Google Scholar] [CrossRef]
- Dan, T.; Marcotte, P. Competitive facility location with selfish users and queues. Oper. Res. 2019, 67, 479–497. [Google Scholar] [CrossRef]
- Gabriel, S.A.; Conejo, A.J.; Fuller, J.D.; Hobbs, B.F.; Ruiz, C. Complementarity Modeling in Energy, 1st ed.; Springer: New York, NY, USA, 2012. [Google Scholar]
- Wogrin, S.; Pineda, S.; Tejada-Arango, D.A. Applications of bilevel optimization in energy and electricity markets. Bilevel Optim. 2020, 161, 139–168. [Google Scholar]
- Nimana, N.; Petrot, N. Incremental proximal gradient scheme with penalization for constrained composite convex optimization problems. Optimization 2019, 70, 1307–1336. [Google Scholar] [CrossRef]
- Janngam, K.; Suantai, S. An inertial modified S-Algorithm for convex minimization problems with directed graphs and their applications in classification problems. Mathematics 2022, 10, 4442. [Google Scholar] [CrossRef]
- Bussaban, L.; Suantai, S.; Kaewkhao, A. A parallel inertial S-iteration forward-backward algorithm for regression and classification problems. Carpathian J. Math. 2020, 36, 35–44. [Google Scholar] [CrossRef]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Bruck, R.E., Jr. On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 1977, 61, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 1979, 72, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, M.; Nowak, R. An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 2003, 12, 906–916. [Google Scholar] [CrossRef] [Green Version]
- Hale, E.; Yin, W.; Zhang, Y. A Fixed-Point Continuation Method for l1-Regularized Minimization with Applications to Compressed Sensing; Department of Computational and Applied Mathematics, Rice University: Houston, TX, USA, 2007. [Google Scholar]
- Liang, J.; Schonlieb, C.B. Improving fista: Faster, smarter and greedier. arXiv 2018, arXiv:1811.01430. [Google Scholar]
- Moudafi, A. Viscosity approximation method for fixed-points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.K. Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 2004, 298, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Jailoka, P.; Suantai, S. and Hanjing, A. A fast viscosity forward-backward algorithm for convex minimization problems with an application in image recovery. Carpathian J. Math. 2020, 37, 449–461. [Google Scholar] [CrossRef]
- Tan, B.; Zhou, Z.; Li, S. Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems. J. Appl. Math. Comput. 2022, 68, 1387–1411. [Google Scholar] [CrossRef]
- Beck, A.; Sabach, S. A first order method for finding minimal norm-like solutions of convex optimization problems. Math. Program. 2014, 147, 25–46. [Google Scholar] [CrossRef]
- Sabach, S.; Shtern, S. A first order method for solving convex bilevel optimization problems. SIAM J. Optim. 2017, 27, 640–660. [Google Scholar] [CrossRef] [Green Version]
- Shehu, Y.; Vuong, P.T.; Zemkoho, A. An inertial extrapolation method for convex simple bilevel optimization. Optim. Methods Softw. 2019, 2019, 1–19. [Google Scholar] [CrossRef]
- Duan, P.; Zhang, Y. Alternated and multi-step inertial approximation methods for solving convex bilevel optimization problems. Optimization 2022, 2022, 1–30. [Google Scholar] [CrossRef]
- Jiang, R.; Abolfazli, N.; Mokhtari, A.; Hamedani, E.Y. A Conditional Gradient-based Method for Simple Bilevel Optimization with Convex Lower-level Problem. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics, Valencia, Spain, 25–27 April 2023; pp. 10305–10323. [Google Scholar]
- Thongsri, P.; Panyanak, B.; Suantai, S. A New Accelerated Algorithm Based on Fixed Point Method for Convex Bilevel Optimization Problems with Applications. Mathematics 2023, 11, 702. [Google Scholar] [CrossRef]
- Nakajo, K.; Shimoji, K.; Takahashi, W. Strong convergence to a common fixed point of families of nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal. 2007, 8, 11–34. [Google Scholar]
- Aoyama, K.; Kimura, Y. Strong convergence theorems for strongly nonexpansive sequences. Appl. Math. Comput. 2011, 217, 7537–7545. [Google Scholar] [CrossRef]
- Aoyama, K.; Kohsaka, F.; Takahashi, W. Strong convergence theorems by shrinking and hybrid projection methods for relatively nonexpansive mappings in Banach spaces. In Nonlinear Analysis and Convex Analysis, Proceedings of the 5th International Conference on Nonlinear Analysis and Convex Analysi, Hsinchu, Taiwan, 31 May–4 June 2007; Yokohama Publishers: Yokohama, Japan, 2009; pp. 7–26. [Google Scholar]
- Moreau, J.J. Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes Rendus Acad. Sci. Paris Ser. A Math. 1962, 255, 2897–2899. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Takahashi, W. Introduction to Nonlinear and Convex Analysis; Yokohama Publishers: Yokohama, Japan, 2009. [Google Scholar]
- Saejung, S.; Yotkaew, P. Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 2012, 75, 724–750. [Google Scholar] [CrossRef]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. Ussr Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Nesterov, Y. A method for solving the convex programming problem with convergence rate O(1/k2). Dokl. Akad. Nauk SSSR 1983, 269, 543–547. [Google Scholar]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2000, 235, 3006–3014. [Google Scholar] [CrossRef] [Green Version]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Ding, S.F.; Jia, W.K.; Su, C.Y.; Zhang, L.W. Research of neural network algorithm based on factor analysis and cluster analysis. Neural Comput. Appl. 2011, 20, 297–302. [Google Scholar] [CrossRef]
- Razavi, S.; Tolson, B.A. A new formulation for feedforward neural networks. IEEE Trans. Neural Netw. 2011, 22, 1588–1598. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, W.X. Stochastic state estimation for neural networks with distributed delays and Markovian jump. Neural Netw. 2012, 25, 14–20. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Rong, H.J.; Ong, Y.S.; Tan, A.H.; Zhu, Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008, 72, 359–366. [Google Scholar] [CrossRef]
- Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74, 155–163. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Smith, J.W.; Everhart, J.E.; Dickson, W.C.; Knowler, D.C.; Johannes, R.S. Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the Symposium on Computer Applications and Medical Care; IEEE Computer Society Press: New York, NY, USA, 1998; pp. 261–265. [Google Scholar]
- Lichman, M. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu (accessed on 20 October 2022).
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
Methods | Settings |
---|---|
IBiG-MSPA | , , , , |
BiG-SAM | , , |
iBiG-SAM | , , , , |
aiBiG-SAM | , , , |
Datasets | Features | Sample | |
---|---|---|---|
Testing Set | Training Set | ||
Diabetes | 9 | 230 | 538 |
Heart Disease UCI | 14 | 90 | 213 |
Iris | 4 | 45 | 105 |
Datasets | Number of Iterations () | Number of Hidden Nodes (M) |
---|---|---|
Diabetes | 200 | 100 |
Heart Disease UCI | 100 | 60 |
Iris | 300 | 30 |
Dataset | IBiG-MSPA | BiG-SAM | iBiG-SAM | aiBiG-SaM | ||||
---|---|---|---|---|---|---|---|---|
Ac.Train | Ac.Test | Ac.Train | Ac.Test | Ac.Train | Ac.Test | Ac.Train | Ac.Test | |
Diabetes | 77.11 | 81.08 | 71.98 | 76.13 | 72.34 | 76.58 | 70.88 | 73.42 |
Heart Disease UCI | 85.71 | 83.87 | 74.76 | 74.19 | 82.38 | 78.49 | 83.81 | 79.57 |
Iris | 99.05 | 100.00 | 94.29 | 95.56 | 94.29 | 95.56 | 94.29 | 95.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janngam, K.; Suantai, S.; Cho, Y.J.; Kaewkhao, A.; Wattanataweekul, R. A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems. Mathematics 2023, 11, 3241. https://doi.org/10.3390/math11143241
Janngam K, Suantai S, Cho YJ, Kaewkhao A, Wattanataweekul R. A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems. Mathematics. 2023; 11(14):3241. https://doi.org/10.3390/math11143241
Chicago/Turabian StyleJanngam, Kobkoon, Suthep Suantai, Yeol Je Cho, Attapol Kaewkhao, and Rattanakorn Wattanataweekul. 2023. "A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems" Mathematics 11, no. 14: 3241. https://doi.org/10.3390/math11143241
APA StyleJanngam, K., Suantai, S., Cho, Y. J., Kaewkhao, A., & Wattanataweekul, R. (2023). A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems. Mathematics, 11(14), 3241. https://doi.org/10.3390/math11143241