Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations
Abstract
:1. Introduction
2. Preliminary Knowledge
2.1. Thermoelectric Material
2.2. Complex Stress Potential Functions
3. Thermoelectric-Bonded Materials
3.1. Modified Complex Stress Potential Function
3.2. HSIEs for a Crack in the Upper Part of Thermoelectric-Bonded Materials
3.3. HSIEs for Multiple Cracks in the Upper Part of Thermoelectric-Bonded Materials
4. Solutions for Crack Problems in Thermoelectric-Bonded Materials
4.1. Quadrature Formulas
4.2. Stress Intensity Factors
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COD | Crack Opening Displacement |
HSIEs | Hypersingular Integral Equations |
SIFs | Stress Intensity Factors |
, , , | Complex stress potential functions |
, , , | Upper part of complex potential functions |
, , , | Principal part of complex potential functions |
, , , | Complementary part of complex potential functions |
, , , | Lower part of complex potential functions |
, , | Stress components |
G | Shear modulus |
Poisson’s ratio | |
E | Young’s modulus |
Crack opening displacement function | |
Elastic constant | |
Stress Intensity Factors at crack tip | |
Dimensionless Stress Intensity Factors at crack tip |
References
- Nik Long, N.M.A.; Eshkuvatov, Z.K. Hypersingular integral equation for multiple curved cracks problem in plane elasticity. Int. J. Solids Struct. 2009, 46, 2611–2617. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.X.; Xu, W.; Yu, Y.; Wu, X.R. Weight Functions and Stress Intensity Factors for Two Unequal-Length Collinear Cracks in an Infinite Sheet. Eng. Fract. Mech. 2019, 209, 173–186. [Google Scholar] [CrossRef]
- Ghajar, R.; Hajimohamadi, M. Analytical calculation of stress intensity factors for cracks emanating from a quasi-square hole in an infinite plane. Theor. Appl. Fract. Mech. 2019, 99, 71–78. [Google Scholar] [CrossRef]
- Ghorbanpoor, R.; Nik Long, N.M.A.; Eshkuvatov, Z.K. Formulation for multiple curved crack problem in a finite plate. Malays. J. Math. Sci. 2016, 10, 253–263. [Google Scholar]
- Zhang, J.; Qu, Z.; Liu, W.; Wang, L. Automated numerical simulation of the propagation of multiple cracks in a finite plane using the distributed dislocation method. Comptes Rendus Mec. 2019, 347, 191–206. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Lin, X.Y.; Wang, X.Z. Numerical solution for curved crack problem in elastic half-plane using hypersingular integral equation. Philos. Mag. 2009, 89, 2239–2253. [Google Scholar] [CrossRef]
- Elfakhakhre, N.R.F.; Nik Long, N.M.A.; Eshkuvatov, Z.K. Stress intensity factor for an elastic half plane weakened by multiple curved cracks. Appl. Math. Model. 2018, 60, 540–551. [Google Scholar] [CrossRef]
- Kebli, B.; Baka, Z. Annular crack in an elastic half-space. Int. J. Eng. Sci. 2019, 134, 117–147. [Google Scholar] [CrossRef]
- Hamzah, K.B.; Nik Long, N.M.A.; Senu, N.; Eshkuvatov, Z.K.; Ilias, M.R. Stress intensity factors for a crack in bonded dissimilar materials subjected to various stresses. Univers. J. Mech. Eng. 2019, 7, 179–189. [Google Scholar] [CrossRef]
- Chai, H.; Lv, J.; Bao, Y. Numerical solutions of hypersingular integral equations for stress intensity factors of planar embedded interface cracks and their correlations with bimaterial parameters. Int. J. Solids Struct. 2020, 202, 184–194. [Google Scholar] [CrossRef]
- Hamzah, K.B.; Nik Long, N.M.A.; Senu, N.; Eshkuvatov, Z.K. Stress intensity factor for bonded dissimilar materials weakened by multiple cracks. Appl. Math. Model. 2020, 77, 585–601. [Google Scholar] [CrossRef]
- Long, G.; Liu, Y.; Xu, W.; Zhou, P.; Zhou, J.; Xu, G.; Xiao, B. Analysis of crack problems in multilayered elastic medium by a consecutive stiffness method. Mathematics 2022, 10, 4403. [Google Scholar] [CrossRef]
- Salha, L.; Bleyer, J.; Sab, K.; Bodgi, J. A hybridized mixed approach for efficient stress prediction in a layerwise plate model. Mathematics 2022, 10, 1711. [Google Scholar] [CrossRef]
- Elfakhakhre, N.R.F.; Nik Long, N.M.A.; Eshkuvatov, Z.K. Numerical solutions for cracks in an elastic half-plane. Acta Mech. Sin. 2019, 35, 212–227. [Google Scholar] [CrossRef]
- Hamzah, K.B.; Nik Long, N.M.A.; Senu, N.; Eshkuvatov, Z.K. Numerical solution for crack phenomenon in dissimilar materials under various mechanical loadings. Symmetry 2021, 13, 235. [Google Scholar] [CrossRef]
- Aguirre-Mesa, A.M.; Restrepo-Velasquez, S.; Ramirez-Tamayo, D.; Montoya, A.; Millwater, H. Computation of two dimensional mixed-mode stress intensity factor rates using a complex-variable interaction integral. Eng. Fract. Mech. 2023, 277, 108981. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Xie, Y.J.; Li, X.F. Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction. Appl. Math. Model. 2019, 70, 328–349. [Google Scholar] [CrossRef]
- Hamzah, K.B.; Nik Long, N.M.A.; Senu, N.; Eshkuvatov, Z.K. Numerical solution for the thermally insulated cracks in bonded dissimilar materials using hypersingular integral equations. Appl. Math. Model. 2021, 91, 358–373. [Google Scholar] [CrossRef]
- Hobiny, A.; Abbas, I.A. A study on the thermoelastic interaction in two-dimension orthotropic materials under the fractional derivative model. Alex. Eng. J. 2023, 64, 615–625. [Google Scholar] [CrossRef]
- Lin, C.B.; Chen, S.C.; Lee, J.L. Explicit solutions of magnetoelastic fields in a soft ferromagnetic solid with curvilinear cracks. Eng. Fract. Mech. 2009, 76, 1846–1865. [Google Scholar] [CrossRef]
- Xiao, J.; Feng, G.; Su, M.; Xu, Y.; Zhang, F. Fracture analysis on periodic radial cracks emanating from a nano-hole with surface effects in magnetoelectroelastic materials. Eng. Fract. Mech. 2021, 258, 108115. [Google Scholar] [CrossRef]
- Mouley, J.; Sarkar, N.; De, S. Griffith crack analysis in nonlocal magneto-elastic strip using Daubechies wavelets. Waves Random Complex Media 2023, 1–19. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.L.; Wang, K.F. Dynamic response of cracked thermoelectric materials. Int. J. Mech. Sci. 2019, 160, 298–306. [Google Scholar] [CrossRef]
- Jiang, D.; Luo, Q.H.; Liu, W.; Zhou, Y.T. Thermoelectric field disturbed by two unequal cracks adjacent to a hole in thermoelectric materials. Eng. Fract. Mech. 2020, 235, 107163. [Google Scholar] [CrossRef]
- Zheng, M.; Gao, C.F. An arc-shaped crack in an electrostrictive material. Int. J. Eng. Sci. 2010, 48, 771–782. [Google Scholar] [CrossRef]
- Zhang, A.B.; Wang, B.L. Crack tip field in thermoelectric media. Theor. Appl. Fract. Mech. 2013, 66, 33–36. [Google Scholar] [CrossRef]
- Song, H.P.; Gao, C.F.; Li, J. Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stress. 2015, 38, 325–337. [Google Scholar] [CrossRef]
- Zhang, A.B.; Wang, B.L. Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Eng. Fract. Mech. 2016, 151, 11–21. [Google Scholar] [CrossRef]
- Yu, C.; Zou, D.; Li, Y.H.; Yang, H.B.; Gao, C.F. An arc-shaped crack in nonlinear fully coupled thermoelectric materials. Acta Mech. 2018, 229, 1989–2008. [Google Scholar] [CrossRef]
- Zhang, A.B.; Wang, B.L.; Wang, J.; Du, J.K. Two-dimensional problem of thermoelectric materials with an elliptic hole or a rigid inclusion. Int. J. Therm. Sci. 2017, 117, 184–195. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.B.; Yang, H.B.; Li, Y.H.; Song, K.; Gao, C.F. Closed-form solutions for a circular inhomogeneity in nonlinearly coupled thermoelectric materials. Zamm-J. Appl. Math. Mech. Angew. Math. Mech. 2019, 99, e201800240. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, B.L.; Li, J.E.; Wang, K.F. Thermoelectric and stress fields for a cracked thermoelectric media based on the electric field saturation model. Mech. Res. Commun. 2020, 104, 103479. [Google Scholar] [CrossRef]
- Song, K.; Song, H.P.; Schiavone, P.; Gao, C.F. Electric current induced thermal stress around a bi-material interface crack. Eng. Fract. Mech. 2019, 208, 1–12. [Google Scholar] [CrossRef]
- Sladek, J.; Sladek, V.; Repka, M.; Schmauder, S. Crack analysis of nano-sized thermoelectric material structures. Eng. Fract. Mech. 2020, 234, 107078. [Google Scholar] [CrossRef]
- Cui, Y.J.; Wang, B.L.; Wang, K.F.; Wang, G.G.; Zhang, A.B. An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device. Renew. Energy 2022, 182, 923–933. [Google Scholar] [CrossRef]
- Jiang, D.; Zhou, Y.T. Role of crack length, crack spacing and layer thickness ratio in the electric potential and temperature of thermoelectric bi-materials systems. Eng. Fract. Mech. 2022, 259, 108170. [Google Scholar] [CrossRef]
- Chan, Y.S.; Fannjiang, A.C.; Paulino, G.H. Integral equations with hypersingular kernels—Theory and applications to fracture mechanics. Int. J. Eng. Sci. 2003, 41, 683–720. [Google Scholar] [CrossRef] [Green Version]
- Dutta, B.; Banerjea, S. Solution of a hypersingular integral equation in two disjoint intervals. Appl. Math. Lett. 2009, 22, 1281–1285. [Google Scholar] [CrossRef] [Green Version]
- Ghorbanpoor, R.; Jafar, S.N.; Nik Long, N.M.A.; Majid, E. Stress intensity factor for multiple cracks in an infinite plate using hypersingular integral equations. Comput. Methods Differ. Equ. 2020, 8, 69–84. [Google Scholar]
- Elahi, M.R.; Mahmoudi, Y.; Salimi Shamloo, A.; Jahangiri Rad, M. A novel collocation method for numerical solution of hypersingular integral equation with singular right-hand function. Adv. Math. Physics 2023, 2023, 5845263. [Google Scholar] [CrossRef]
- Bergman, D.J.; Levy, O. Thermoelectric properties of a composite medium. J. Appl. Phys. 1991, 70, 6821–6833. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Hasebe, N. Stress-intensity factors for curved circular crack in bonded dissimilar materials. Theor. Appl. Fract. Mech. 1992, 17, 189–196. [Google Scholar] [CrossRef]
- Hamzah, K.B.; Nik Long, N.M.A.; Senu, N.; Eshkuvatov, Z.K. Stress intensity factor for multiple cracks in bonded dissimilar materials using hypersingular integral equations. Appl. Math. Model. 2019, 73, 95–108. [Google Scholar] [CrossRef]
- Mayrhofer, K.; Fischer, F.D. Derivation of a new analytical solution for a general two-dimensional finite-part integral applicable in fracture mechanics. Int. J. Numer. Method Eng. 1992, 33, 1027–1047. [Google Scholar] [CrossRef]
- Mason, T.C.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003. [Google Scholar]
- Kythe, P.K.; Schaferkotter, M.R. Handbook of Computational Methods for Integration; Chapman and Hall/CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Monegato, G. Numerical evaluation of hypersingular integrals. J. Comput. Appl. Math. 1994, 50, 9–31. [Google Scholar] [CrossRef] [Green Version]
- Isida, M.; Noguchi, H. Arbitrary array of cracks in bonded half planes subjected to various loadings. Eng. Fract. Mech. 1993, 46, 365–380. [Google Scholar] [CrossRef]
M | SIFs | ||||||
---|---|---|---|---|---|---|---|
1.2 | 1.4 | 1.6 | 1.8 | 2.0 | |||
0.25 | 10 | 1.2241 | 1.1302 | 1.0888 | 1.0659 | 1.0517 | |
1.0835 | 1.0622 | 1.0498 | 1.0418 | 1.0365 | |||
15 | 1.2254 | 1.1316 | 1.0904 | 1.0677 | 1.0538 | ||
1.0862 | 1.0651 | 1.0531 | 1.0456 | 1.0408 | |||
20 | 1.2267 | 1.1330 | 1.0920 | 1.0695 | 1.0559 | ||
1.0888 | 1.0680 | 1.0564 | 1.0493 | 1.0451 | |||
22 | 1.2267 | 1.1330 | 1.0920 | 1.0695 | 1.0559 | ||
1.0888 | 1.0680 | 1.0564 | 1.0493 | 1.0451 | |||
2.00 | 10 | 0.9102 | 0.9499 | 0.9704 | 0.9835 | 0.9933 | |
0.9844 | 0.9966 | 1.0063 | 1.0148 | 1.0226 | |||
15 | 0.9139 | 0.9545 | 0.9761 | 0.9906 | 1.0019 | ||
0.9939 | 1.0082 | 1.0201 | 1.0310 | 1.0415 | |||
20 | 0.9175 | 0.9592 | 0.9819 | 0.9978 | 1.0108 | ||
1.0036 | 1.0199 | 1.0342 | 1.0476 | 1.0609 | |||
22 | 0.9175 | 0.9592 | 0.9819 | 0.9978 | 1.0108 | ||
1.0036 | 1.0199 | 1.0342 | 1.0476 | 1.0609 |
4 × | 10 | 196 | 5.2 × | 0.283 |
G2/G1 | M | SIFs and %ε | h/a | ||||
---|---|---|---|---|---|---|---|
1.2 | 1.4 | 1.6 | 1.8 | 2.0 | |||
0.25 | 20 | * | 1.2213 | 1.1274 | 1.0857 | 1.0623 | 1.0476 |
** | 1.2220 | 1.1280 | 1.0860 | 1.0630 | 1.0480 | ||
0.0573 | 0.0532 | 0.0276 | 0.0659 | 0.0362 | |||
* | 1.0783 | 1.0563 | 1.0432 | 1.0344 | 1.0281 | ||
** | 1.0790 | 1.0570 | 1.0430 | 1.0350 | 1.0280 | ||
0.0649 | 0.0662 | 0.0192 | 0.0580 | 0.0097 | |||
0.50 | 20 | * | 1.1111 | 1.0653 | 1.0444 | 1.0324 | 1.0249 |
** | 1.1120 | 1.0660 | 1.0450 | 1.0330 | 1.0250 | ||
0.0809 | 0.0657 | 0.0574 | 0.0581 | 0.0097 | |||
* | 1.0394 | 1.0289 | 1.0223 | 1.0179 | 1.0147 | ||
** | 1.0400 | 1.0290 | 1.0220 | 1.0180 | 1.0150 | ||
0.0577 | 0.0097 | 0.0294 | 0.0097 | 0.0296 | |||
2.00 | 20 | * | 0.9032 | 0.9410 | 0.9592 | 0.9699 | 0.9767 |
** | 0.9030 | 0.9410 | 0.9590 | 0.9700 | 0.9770 | ||
0.0221 | 0.0000 | 0.0209 | 0.0103 | 0.0307 | |||
* | 0.9656 | 0.9740 | 0.9795 | 0.9834 | 0.9863 | ||
** | 0.9660 | 0.9740 | 0.9790 | 0.9830 | 0.9860 | ||
0.0414 | 0.0000 | 0.0511 | 0.0407 | 0.0304 | |||
4.00 | 20 | * | 0.8291 | 0.8944 | 0.9266 | 0.9455 | 0.9579 |
** | 0.8290 | 0.8940 | 0.9270 | 0.9450 | 0.9580 | ||
0.0121 | 0.0447 | 0.0431 | 0.0529 | 0.0104 | |||
* | 0.9393 | 0.9535 | 0.9631 | 0.9701 | 0.9752 | ||
** | 0.9390 | 0.9540 | 0.9630 | 0.9700 | 0.9750 | ||
0.0319 | 0.0524 | 0.0104 | 0.0103 | 0.0205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Nordin, M.H.I.; Hamzah, K.B.; Khashi’ie, N.S.; Waini, I.; Nik Long, N.M.A.; Fitri, S. Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations. Mathematics 2023, 11, 3248. https://doi.org/10.3390/math11143248
Mohd Nordin MHI, Hamzah KB, Khashi’ie NS, Waini I, Nik Long NMA, Fitri S. Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations. Mathematics. 2023; 11(14):3248. https://doi.org/10.3390/math11143248
Chicago/Turabian StyleMohd Nordin, Muhammad Haziq Iqmal, Khairum Bin Hamzah, Najiyah Safwa Khashi’ie, Iskandar Waini, Nik Mohd Asri Nik Long, and Saadatul Fitri. 2023. "Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations" Mathematics 11, no. 14: 3248. https://doi.org/10.3390/math11143248
APA StyleMohd Nordin, M. H. I., Hamzah, K. B., Khashi’ie, N. S., Waini, I., Nik Long, N. M. A., & Fitri, S. (2023). Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations. Mathematics, 11(14), 3248. https://doi.org/10.3390/math11143248