Next Article in Journal
Transient Dynamics in Counter-Rotating Stratified Taylor–Couette Flow
Next Article in Special Issue
Common Fixed Point Theorems for Novel Admissible Contraction with Applications in Fractional and Ordinary Differential Equations
Previous Article in Journal
Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations
Previous Article in Special Issue
A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces

by
Afrah Ahmad Noman Abdou
Department of Mathematics, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
Mathematics 2023, 11(14), 3249; https://doi.org/10.3390/math11143249
Submission received: 10 June 2023 / Revised: 12 July 2023 / Accepted: 13 July 2023 / Published: 24 July 2023

Abstract

:
The purpose of this research work is to explore the solution of the Fredholm integral equation by common fixed point results in bicomplex valued metric spaces. In this way, we develop some common fixed point theorems for generalized contractions containing point-dependent control functions in the context of bicomplex valued metric spaces. An illustrative and practical example is also given to show the novelty of the most important result.

1. Introduction

The theory of bicomplex numbers was constructed by Segre [1] in which the elements or idempotents play a significant role. These bicomplex numbers lengthen complex numbers accurately to quaternions. For a more in-depth analysis of bicomplex numbers, we point out reference [2] to the readers. In 2007, Long-Guang et al. [3] presented the notion of cone metric spaces (CMSs) as an expansion of traditional metric space (MS) and determined fixed point results for contractive mappings. Later on, Azam et al. [4] introduced the conception of a complex valued metric space (CVMS) as a particular case of a CMS. The idea to initiate a CVMS was invented to construct rational expressions which cannot be given in CMSs and consequently numerous results of this theory cannot be obtained in CMSs; thus, CVMSs form a particular class of CMS. Indeed, the concept of a CMS starts to originate the notion of Banach space that is not a division ring. However, we can investigate the extensions of numerous theorems in the theory of fixed points including divisions in CVMSs. Furthermore, this concept is also utilized to introduce the notion of complex-valued Banach spaces [5], which provide a lot of areas for supplemental exploration.
Choi et al. [6] initiated the concept of bicomplex valued metric spaces (bi-CVMSs) by combining the ideas of bicomplex numbers and CVMSs. They proved some common fixed point theorems for weakly compatible mappings. Subsequently, Jebril et al. [7] used the idea of this novel space and presented theorems for two self-mappings in the framework of bi-CVMSs. In 2021, Beg et al. [8] reinforced the conception of bi-CVMSs and proved extrapolated fixed point results. Afterwards, Gnanaprakasam et al. [9] presented results for a contractive-type condition in the framework of bi-CVMSs and explored the solution to linear equations. Recently, Asifa et al. [10] obtained common fixed point results in a bi-CVMS for contractions containing control functions of two variables. For further details in this direction, we refer the reader to [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31].
In this research article, we develop some common fixed point results in the context of bi-CVMSs for generalized contractions containing point-dependent control functions. We explore the solution of the Fredholm integral equation as an application.

2. Preliminaries

We represent C 0 as a set of real numbers, C 1 as a set of complex numbers and C 2 as a set of bicomplex numbers. Segre [1] defined a bicomplex number in the following way
ς = a 1 + a 2 i 1 + a 3 i 2 + a 4 i 1 i 2
where a 1 , a 2 , a 3 , a 4 C 0 , the independent units i 1 , i 2 are such that i 1 2 = i 2 2 = 1 and i 1 i 2 = i 2 i 1 , and C 2 is given as
C 2 = ς : ς = a 1 + a 2 i 1 + a 3 i 2 + a 4 i 1 i 2 : a 1 , a 2 , a 3 , a 4 C 0
that is
C 2 = ς : ς = z 1 + i 2 z 2 : z 1 , z 2 C 1
where z 1 = a 1 + a 2 i 1 C 1 and z 2 = a 3 + a 4 i 1 C 1 . If ς = z 1 + i 2 z 2 and ν = ω 1 + i 2 ω 2 , then the sum is
ς ± ν = z 1 + i 2 z 2 ± ω 1 + i 2 ω 2 = z 1 ± ω 1 + i 2 z 2 ± ω 2
and the product is
ς · ν = z 1 + i 2 z 2 · ω 1 + i 2 ω 2 = z 1 ω 1 z 2 ω 2 + i 2 z 1 ω 2 + z 2 ω 1 .
There are four idempotent members in C 2 , which are 0 , 1 , e 1 = 1 + i 1 i 2 2 and e 2 = 1 i 1 i 2 2 , out of which e 1 and e 2 are nontrivial such that e 1 + e 2 = 1 and e 1 e 2 = 0 . Every bicomplex number z 1 + i 2 z 2 can uniquely be demonstrated as the mixture of e 1 and e 2 , namely
ς = z 1 + i 2 z 2 = z 1 i 1 z 2 e 1 + z 1 + i 1 z 2 e 2 .
This description of ς is familiar, as the idempotent representation of ς and the complex coefficients ς 1   = z 1 i 1 z 2 and ς 2 = z 1 + i 1 z 2 are called idempotent components of ς .
An element ς = z 1 + i 2 z 2 C 2 is called invertible if ∃ ν C 2 in such a way that ς ν = 1 , and ν is said to be the multiplicative inverse of ς . Hence, ς is said to be the multiplicative inverse of ν .
An element ς = z 1 + i 2 z 2 C 2 is nonsingular if z 1 2 + z 2 2 0 and singular if z 1 2 + z 2 2 = 0 . The inverse of ς is defined as
ς 1 = ν = z 1 i 2 z 2 z 1 2 + z 2 2 .
Zero is the only member in C 0 which does not have an inverse (multiplicative) and in C 1 , 0 = 0 + i 0 is the only member that does not have an inverse (multiplicative). We represent the set of singular members of C 0 and C 1 by 0 and 1 , respectively. In C 2 , there are many elements which do not possess a multiplicative inverse. Let us denote the set of singular members of C 2 by 2 and thus 0 = 1 2 .
A bicomplex number ς = a 1 + a 2 i 1 + a 3 i 2 + a 4 i 1 i 2 C 2 is said to be degenerated if the matrix
a 1 a 2 a 3 a 4 2 × 2
is degenerated. Thus, ς 1 exists and · : C 2 C 0 + is given as
ς = z 1 + i 2 z 2 = z 1 2 + z 2 2 1 2 = z 1 i 1 z 2 2 + z 1 + i 1 z 2 2 2 1 2 = a 1 2 + a 2 2 + a 3 2 + a 4 2 1 2 ,
where ς = a 1 + a 2 i 1 + a 3 i 2 + a 4 i 1 i 2 = z 1 + i 2 z 2 C 2 .
The space C 2 with regard to the norm · : C 2 C 0 + . If ς , ν C 2 , then
ς ν 2 ς ν
holds instead of
ς ν ς ν .
Hence, C 2 is not Banach algebra. Let ς = z 1 + i 2 z 2 , ν = ω 1 + i 2 ω 2 C 2 , then we give
ς i 2 ν if and only if R e z 1 R e ω 1 and I m z 2 I m ω 2 .
This implies
ς i 2 ν
if one of these assertions hold:
( i ) z 1 = ω 1 , z 2 ω 2 ; ( ii ) z 1 ω 1 , z 2 = ω 2 ; ( iii ) z 1 ω 1 , z 2 ω 2 ; ( iv ) z 1 = ω 1 , z 2 = ω 2 .
Specifically, ς i 2 ν if and only if ς i 2 ν and ς ν , i.e., one of the conditions (i), (ii) and (iii) are satisfied. Furthermore, ς i 2 ν if only condition (iii) holds. For ς , ν C 2 , the following conditions hold,
(i) ς i 2 ν ς ν ;
(ii) ς + ν ς + ν ;
(iii) a ς a ν , where a is a non negative real number;
(iv) ς ν 2 ς ν ;
(v) ς 1 = ς 1 ;
(vi) ς ν = ς ν .
Azam et al. [4] defined the idea of a CVMS in this manner.
Definition 1
([4]). Let Q , ⪯ be a partial order on C and τ : Q × Q C 1 be a function such that
 (i) 
0 τ ( ς , ν ) and τ ( ς , ν ) = 0 if and only if ς = ν ;
 (ii) 
τ ( ς , ν ) = τ ( ν , ς ) ;
 (iii) 
τ ( ς , ν ) τ ( ς , ϕ ) + τ ( ϕ , ν ) ,
for all ς , ν , ϕ Q . Then, ( Q , τ ) is a CVMS.
Choi et al. [6] gave the bi-CVMS in this way.
Definition 2
([6]). Let Q , i 2 be a partial order on C 2 and τ : Q × Q C 2 be a function such that
 (i) 
0 i 2 τ ( ς , ν ) and τ ( ς , ν ) = 0 if and only if ς = ν ;
 (ii) 
τ ( ς , ν ) = τ ( ν , ς ) ;
 (iii) 
τ ( ς , ν ) i 2 τ ( ς , ϕ ) + τ ( ϕ , ν ) ,
for all ς , ν , ϕ Q . Then, ( Q , τ ) is a bi-CVMS.
Example 1
([8]).
Let Q = C 2 and ς , ν Q . Define τ : Q × Q C 2 by
τ ( ς , ν ) = z 1 ω 1 + i 2 z 2 ω 2
where ς = z 1 + i 2 z 2 and ν = ω 1 + i 2 ω 2 C 2 . Then, ( Q , τ ) is a bi-CVMS.
Lemma 1
([8]). Let ( Q , τ ) be a bi-CVMS and let ς o Q . Then, ς o converges to ς if and only if τ ( ς o , ς ) 0 as o .
Lemma 2
([8]). Let ( Q , τ ) be a bi-CVMS and let ς o Q . Then, ς o is a Cauchy sequence if and only if τ ( ς o , ς o + m ) 0 as o , where m N .

3. Main Result

Proposition 1.
Let ( Q , τ ) be a bi-CVMS and J 1 , J 2 : ( Q , τ ) ( Q , τ ) . Let ς 0 Q . Define the sequence { ς o } by
ς 2 o + 1 = J 1 ς 2 o and ς 2 o + 2 = J 2 ς 2 o + 1
for all o = 0 , 1 , 2 ,
Assume that there exists α : Q × Q × Q [ 0 , 1 ) satisfying
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
for all ς , ν Q and some fixed element θ Q . Then,
α ς 2 o , ν , θ α ς 0 , ν , θ and α ς , ς 2 o + 1 , θ α ς , ς 1 , θ
for all ς , ν Q and o = 0 , 1 , 2 ,
Proof. 
Let ς , ν Q and o = 0 , 1 , 2 , Then, we obtain
α ς 2 o , ν , θ = α J 2 J 1 ς 2 o 2 , ν , θ α ς 2 o 2 , ν , θ = α J 2 J 1 ς 2 o 4 , ν , θ α ς 2 o 4 , ν , θ · · · α ς 0 , ν , θ .
Similarly, we have
α ς , ς 2 o + 1 , θ = α ς , J 1 J 2 ς 2 o 1 , θ α ς , ς 2 o 1 , θ = α ς , J 1 J 2 ς 2 o 3 , θ α ς , ς 2 o 3 , θ · · · α ς , ς 1 , θ .
Theorem 1.
Let Q , τ be a complete bi-CVMS and J 1 , J 2 : Q Q . If the functions α , π , κ , ϖ , ϰ : Q 3 [ 0 , 1 ) satisfy the conditions
(a)
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
π J 2 J 1 ς , ν , θ π ς , ν , θ and π ς , J 1 J 2 ν , θ π ς , ν , θ
κ J 2 J 1 ς , ν , θ κ ς , ν , θ and κ ς , J 1 J 2 ν , θ κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ ϰ ς , ν , θ
(b) α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ < 1 ,
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Let ς , ν Q . From (2), we have
τ J 1 ς , J 2 J 1 ς i 2 α ς , J 1 ς , θ τ ς , J 1 ς
+ π ς , J 1 ς , θ τ ς , J 1 ς + τ J 1 ς , J 2 J 1 ς
+ κ ς , J 1 ς , θ τ ς , J 1 ς τ J 1 ς , J 2 J 1 ς 1 + τ ς , J 1 ς
+ ϖ ς , J 1 ς , θ τ J 1 ς , J 1 ς τ ς , J 2 J 1 ς 1 + τ ς , J 1 ς
+ ϰ ς , J 1 ς , θ τ ς , J 1 ς τ ς , J 2 J 1 ς + τ J 1 ς , J 2 J 1 ς τ J 1 ς , J 1 ς 1 + τ ς , J 2 J 1 ς + τ J 1 ς , J 1 ς
which implies
τ J 1 ς , J 2 J 1 ς α ς , J 1 ς , θ τ ς , J 1 ς + π ς , J 1 ς , θ τ ς , J 1 ς + τ J 1 ς , J 2 J 1 ς + 2 κ ς , J 1 ς , θ τ ς , J 1 ς 1 + τ ς , J 1 ς τ J 1 ς , J 2 J 1 ς + 2 ϰ ς , J 1 ς , θ τ ς , J 1 ς τ ς , J 2 J 1 ς 1 + τ ς , J 2 J 1 ς ,
since τ ς , J 1 ς < 1 + τ ς , J 1 ς , so τ ς , J 1 ς 1 + τ ς , J 1 ς < 1 . Similarly, τ ς , J 2 J 1 ς < 1 + τ ς , J 2 J 1 ς , and thus τ ς , J 2 J 1 ς 1 + τ ς , J 2 J 1 ς < 1 . Hence, we have
τ J 1 ς , J 2 J 1 ς α ς , J 1 ς , θ τ ς , J 1 ς + π ς , J 1 ς , θ τ ς , J 1 ς + τ J 1 ς , J 2 J 1 ς + 2 κ ς , J 1 ς , θ τ J 1 ς , J 2 J 1 ς + 2 ϰ ς , J 1 ς , θ τ ς , J 1 ς .
Similarly,
τ J 1 J 2 ν , J 2 ν i 2 α J 2 ν , ν , θ τ J 2 ν , ν + π J 2 ν , ν , θ τ J 2 ν , J 1 J 2 ν + τ ν , J 2 ν
+ κ J 2 ν , ν , θ τ J 2 ν , J 1 J 2 ν τ ν , J 2 ν 1 + τ J 2 ν , ν
+ ϖ J 2 ν , ν , θ τ ν , J 1 J 2 ν τ J 2 ν , J 2 ν 1 + τ J 2 ν , ν
+ ϰ J 2 ν , ν , θ τ J 2 ν , J 1 J 2 ν τ J 2 ν , J 2 ν + τ ν , J 2 ν τ ν , J 1 J 2 ν 1 + τ J 2 ν , J 2 ν + τ ν , J 1 J 2 ν
which implies
τ J 1 J 2 ν , J 2 ν α J 2 ν , ν τ J 2 ν , ν + π J 2 ν , ν , θ τ J 2 ν , J 1 J 2 ν + τ ν , J 2 ν + 2 κ J 2 ν , ν τ J 2 ν , J 1 J 2 ν τ ν , J 2 ν 1 + τ J 2 ν , ν + 2 ϰ J 2 ν , ν , θ τ ν , J 2 ν τ ν , J 1 J 2 ν 1 + τ ν , J 1 J 2 ν .
Since τ ν , J 2 ν < 1 + τ J 2 ν , ν , so τ ν , J 2 ν 1 + τ J 2 ν , ν < 1 . Furthermore, τ ν , J 1 J 2 ν < 1 + τ ν , J 1 J 2 ν , and so τ ν , J 1 J 2 ν 1 + τ ν , J 1 J 2 ν < 1 . Thus,
τ J 1 J 2 ν , J 2 ν α J 2 ν , ν τ J 2 ν , ν + π J 2 ν , ν , θ τ J 2 ν , J 1 J 2 ν + τ ν , J 2 ν + 2 κ J 2 ν , ν τ J 2 ν , J 1 J 2 ν + 2 ϰ J 2 ν , ν , θ τ ν , J 2 ν .
Let ς 0 Q and the sequence { ς o } be defined by (1). By inequalities (3) and (4), we have
τ ς 2 o + 1 , ς 2 o = τ J 1 J 2 ς 2 o 1 , J 2 ς 2 o 1 α J 2 ς 2 o 1 , ς 2 o 1 , θ τ J 2 ς 2 o 1 , ς 2 o 1 + π J 2 ς 2 o 1 , ς 2 o 1 , θ τ J 2 ς 2 o 1 , J 1 J 2 ς 2 o 1 + τ ς 2 o 1 , J 2 ς 2 o 1 + 2 κ J 2 ς 2 o 1 , ς 2 o 1 , θ τ J 2 ς 2 o 1 , J 1 J 2 ς 2 o 1 + 2 ϰ J 2 ς 2 o 1 , ς 2 o 1 , θ τ ς 2 o 1 , J 2 ς 2 o 1 = α ς 2 o , ς 2 o 1 , θ τ ς 2 o , ς 2 o 1 + π ς 2 o , ς 2 o 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o 1 , ς 2 o + 2 κ ς 2 o , ς 2 o 1 , θ τ ς 2 o , ς 2 o + 1 + 2 ϰ ς 2 o , ς 2 o 1 , θ τ ς 2 o 1 , ς 2 o
By Proposition 1, we have
τ ς 2 o + 1 , ς 2 o α ς 0 , ς 2 o 1 , θ τ ς 2 o , ς 2 o 1 + π ς 0 , ς 2 o 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o 1 , ς 2 o + 2 κ ς 0 , ς 2 o 1 , θ τ ς 2 o , ς 2 o + 1 + 2 ϰ ς 0 , ς 2 o 1 , θ τ ς 2 o 1 , ς 2 o α ς 0 , ς 1 , θ τ ς 2 o , ς 2 o 1 + π ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o 1 , ς 2 o + 2 κ ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1 + 2 ϰ ς 0 , ς 1 , θ τ ς 2 o 1 , ς 2 o
for all o = 0 , 1 , 2 , . This implies that
τ ς 2 o + 1 , ς 2 o α ς 0 , ς 1 , θ + π ς 0 , ς 1 , θ + 2 ϰ ς 0 , ς 1 , θ 1 π ς 0 , ς 1 , θ 2 κ ς 0 , ς 1 , θ τ ς 2 o , ς 2 o 1 .
Similarly, we have
τ ς 2 o + 2 , ς 2 o + 1 = τ J 2 J 1 ς 2 o , J 1 ς 2 o = τ J 1 ς 2 o , J 2 J 1 ς 2 o α ς 2 o , J 1 ς 2 o , θ τ ς 2 o , J 1 ς 2 o + π ς 2 o , J 1 ς 2 o , θ τ ς 2 o , J 1 ς 2 o + τ J 1 ς 2 o , J 2 J 1 ς 2 o + 2 κ ς 2 o , J 1 ς 2 o , θ τ J 1 ς 2 o , J 2 J 1 ς 2 o + 2 ϰ ς 2 o , J 1 ς 2 o , θ τ ς 2 o , J 1 ς 2 o = α ς 2 o , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 + π ς 2 o , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o + 1 , ς 2 o + 2 + 2 κ ς 2 o , ς 2 o + 1 , θ τ ς 2 o + 1 , ς 2 o + 2 + 2 ϰ ς 2 o , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 α ς 0 , ς 1 τ ς 2 o , ς 2 o + 1 + 2 κ ς 0 , ς 1 τ ς 2 o + 1 , ς 2 o + 2
By Proposition 1, we have
τ ς 2 o + 2 , ς 2 o + 1 α ς 0 , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 + π ς 0 , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o + 1 , ς 2 o + 2 + 2 κ ς 0 , ς 2 o + 1 , θ τ ς 2 o + 1 , ς 2 o + 2 + 2 ϰ ς 0 , ς 2 o + 1 , θ τ ς 2 o , ς 2 o + 1 α ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1 + π ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1 + τ ς 2 o + 1 , ς 2 o + 2 + 2 κ ς 0 , ς 1 , θ τ ς 2 o + 1 , ς 2 o + 2 + 2 ϰ ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1
which implies that
τ ς 2 o + 2 , ς 2 o + 1 α ς 0 , ς 1 , θ + π ς 0 , ς 1 , θ + 2 ϰ ς 0 , ς 1 , θ 1 π ς 0 , ς 1 , θ 2 κ ς 0 , ς 1 , θ τ ς 2 o , ς 2 o + 1 = α ς 0 , ς 1 , θ + π ς 0 , ς 1 , θ + 2 ϰ ς 0 , ς 1 , θ 1 π ς 0 , ς 1 , θ 2 κ ς 0 , ς 1 , θ τ ς 2 o + 1 , ς 2 o .
Let λ = α ς 0 , ς 1 , θ + π ς 0 , ς 1 , θ + 2 ϰ ς 0 , ς 1 , θ 1 π ς 0 , ς 1 , θ 2 κ ς 0 , ς 1 , θ < 1 . Then, from (5) and (6), we have
τ ς o + 1 , ς o λ τ ς o , ς o 1
for all o N . Thus, deductively, we can set up a sequence { ς o } in Q such that
τ ς o + 1 , ς o λ τ ς o , ς o 1 λ 2 τ ς o 1 , ς o 2 · · · λ o τ ς 1 , ς 0 = λ o τ ς 0 , ς 1
for all o N . Now, for m > o , we obtain
τ ς o , ς m λ o τ ς 0 , ς 1 + λ o + 1 τ ς 0 , ς 1 + · · · + λ m 1 τ ς 0 , ς 1 λ o 1 λ τ ς 0 , ς 1 .
Now, by taking o , m , we obtain
τ ς o , ς m 0 .
Thus, the sequence ς o is Cauchy by Lemma 2. Since Q is complete, then ∃ ς * Q such that ς o ς * as o .
Now, from (2), we have
τ ς * , J 1 ς * i 2 τ ς * , J 2 ς 2 o + 1 + τ J 2 ς 2 o + 1 , J 1 ς *
= τ ς * , J 2 ς 2 o + 1 + τ J 1 ς * , J 2 ς 2 o + 1
i 2 τ ς * , ς 2 o + 2 + α ς * , ς 2 o + 1 , θ τ ς * , ς 2 o + 1 + π ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * + τ ς 2 o + 1 , J 2 ς 2 o + 1 + κ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς 2 o + 1 , J 2 ς 2 o + 1 1 + τ ς * , ς 2 o + 1 + ϖ ς * , ς 2 o + 1 , θ τ ς 2 o + 1 , J 1 ς * τ ς * , J 2 ς 2 o + 1 1 + τ ς * , ς 2 o + 1 + ϰ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς * , J 2 ς 2 o + 1 + τ ς 2 o + 1 , J 2 ς 2 o + 1 τ ς 2 o + 1 , J 1 ς * 1 + τ ς * , J 2 ς 2 o + 1 + τ ς 2 o + 1 , J 1 ς *
i 2 τ ς * , ς 2 o + 2 + α ς * , ς 2 o + 1 , θ τ ς * , ς 2 o + 1 + π ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * + τ ς 2 o + 1 , ς 2 o + 2 + κ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς 2 o + 1 , ς 2 o + 2 1 + τ ς * , ς 2 o + 1 + ϖ ς * , ς 2 o + 1 , θ τ ς 2 o + 1 , J 1 ς * τ ς * , ς 2 o + 2 1 + τ ς * , ς 2 o + 1 + ϰ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς * , ς 2 o + 2 + τ ς 2 o + 1 , ς 2 o + 2 τ ς 2 o + 1 , J 1 ς * 1 + τ ς * , ς 2 o + 2 + τ ς 2 o + 1 , J 1 ς * .
This implies that
τ ς * , J 1 ς * τ ς * , ς 2 o + 2 + α ς * , ς 2 o + 1 , θ τ ς * , ς 2 o + 1 + π ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * + τ ς 2 o + 1 , ς 2 o + 2 + 2 κ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς 2 o + 1 , ς 2 o + 2 1 + τ ς * , ς 2 o + 1 + 2 ϖ ς * , ς 2 o + 1 , θ τ ς 2 o + 1 , J 1 ς * τ ς * , ς 2 o + 2 1 + τ ς * , ς 2 o + 1 + 2 ϰ ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * τ ς * , ς 2 o + 2 + τ ς 2 o + 1 , ς 2 o + 2 τ ς 2 o + 1 , J 1 ς * 1 + τ ς * , ς 2 o + 2 + τ ς 2 o + 1 , J 1 ς * .
Letting o , we have
1 π ς * , ς 2 o + 1 , θ τ ς * , J 1 ς * 0 .
Since 1 π ς * , ς 2 o + 1 , θ 0 , then τ ς * , J 1 ς * = 0 . Thus, ς * = J 1 ς * . Now, we show that ς * is a fixed point of J 2 . By (2), we have
τ ς * , J 2 ς * i 2 τ ς * , J 1 ς 2 o + τ J 1 ς 2 o , J 2 ς *
i 2 τ ς * , J 1 ς 2 o + α ς 2 o , ς * , θ τ ς 2 o , ς * + π ς 2 o , ς * , θ τ ς 2 o , J 1 ς 2 o + τ ς * , J 2 ς * + κ ς 2 o , ς * , θ τ ς 2 o , J 1 ς 2 o τ ς * , J 2 ς * 1 + τ ς 2 o , ς * + ϖ ς 2 o , ς * , θ τ ς * , J 1 ς 2 o τ ς 2 o , J 2 ς * 1 + τ ς 2 o , ς * + ϰ ς 2 o , ς * , θ τ ς 2 o , J 1 ς 2 o τ ς 2 o , J 2 ς * + τ ς * , J 2 ς * τ ς * , J 1 ς 2 o 1 + τ ς 2 o , J 2 ς * + τ ς * , J 1 ς 2 o
i 2 τ ς * , ς 2 o + 1 + α ς 2 o , ς * , θ τ ς 2 o , ς * + κ ς 2 o , ς * , θ τ ς 2 o , ς 2 o + 1 τ ς * , J 2 ς * 1 + τ ς 2 o , ς * + π ς 2 o , ς * , θ τ ς 2 o , J 1 ς 2 o + τ ς * , J 2 ς * + ϖ ς 2 o , ς * , θ τ ς * , ς 2 o + 1 τ ς 2 o , J 2 ς * 1 + τ ς 2 o , ς * + ϰ ς 2 o , ς * , θ τ ς 2 o , ς 2 o + 1 τ ς 2 o , J 2 ς * + τ ς * , J 2 ς * τ ς * , ς 2 o + 1 1 + τ ς 2 o , J 2 ς * + τ ς * , ς 2 o + 1 .
This implies that
τ ς * , J 2 ς * τ ς * , ς 2 o + 1 + α ς 2 o , ς * , θ τ ς 2 o , ς * + π ς 2 o , ς * , θ τ ς 2 o , J 1 ς 2 o + τ ς * , J 2 ς * + 2 κ ς 2 o , ς * , θ τ ς 2 o , ς 2 o + 1 τ ς * , J 2 ς * 1 + τ ς 2 o , ς * + 2 ϖ ς 2 o , ς * , θ τ ς * , ς 2 o + 1 τ ς 2 o , J 2 ς * 1 + τ ς 2 o , ς * + 2 ϰ ς 2 o , ς * , θ τ ς 2 o , ς 2 o + 1 τ ς 2 o , J 2 ς * + τ ς * , J 2 ς * τ ς * , ς 2 o + 1 1 + τ ς 2 o , J 2 ς * + τ ς * , ς 2 o + 1 .
Letting o , we have 1 π ς 2 o , ς * , θ τ ς * , J 2 ς * 0 since 1 π ς 2 o , ς * , θ 0 . Hence, ς * = J 2 ς * . Thus, ς * is a common fixed point of J 1 and J 2 . We assume that there exists another common fixed point of J 1 and J 2 , that is,
ς / = J 1 ς / = J 2 ς /
but ς * ς / . Now, from (2), we have
τ ς * , ς / = τ J 1 ς * , J 2 ς / i 2 α ς * , ς / , θ τ ς * , ς /
+ π ς * , ς / , θ τ ς * , J 1 ς * + τ ς / , J 2 ς /
+ κ ς * , ς / , θ τ ς * , J ς * τ ς / , J 2 ς / 1 + τ ς * , ς /
+ ϖ ς * , ς / , θ τ ς / , J 1 ς * τ ς * , J 2 ς / 1 + τ ς * , ς /
+ ϰ ς * , ς / , θ τ ς * , J 1 ς * τ ς * , J 2 ς / + τ ς / , J 2 ς / τ ς / , J 1 ς * 1 + τ ς * , J 2 ς / + τ ς / , J 1 ς *
which implies that
τ ς * , ς / i 2 α ς * , ς / , θ τ ς * , ς /
+ ϖ ς * , ς / , θ τ ς / , ς * τ ς * , ς / 1 + τ ς * , ς / .
This yields that
τ ς * , ς / α ς * , ς / , θ τ ς * , ς / + 2 ϖ ς * , ς / , θ τ ς * , ς / τ ς * , ς / 1 + τ ς * , ς / α ς * , ς / , θ τ ς * , ς / + 2 ϖ ς * , ς / , θ τ ς * , ς / = α ς * , ς / , θ + 2 ϖ ς * , ς / , θ τ ς * , ς / ,
that is,
1 α ς * , ς / , θ + 2 ϖ ς * , ς / , θ τ ς * , ς / 0
As 1 α ς * , ς / , θ + 2 ϖ ς * , ς / , θ 0 , we have
τ ς * , ς / = 0 .
Thus, ς * = ς / .
Note:
From now onwards, we consider Q , τ as a complete bi-CVMS.
Corollary 1.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , π , κ , ϖ : Q 3 [ 0 , 1 ) satisfy the conditions
(a)
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
π J 2 J 1 ς , ν , θ π ς , ν , θ and π ς , J 1 J 2 ν , θ π ς , ν , θ
κ J 2 J 1 ς , ν , θ κ ς , ν , θ and κ ς , J 1 J 2 ν , θ κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ ϖ ς , ν , θ ;
(b) α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Take ϰ : Q × Q × Q [ 0 , 1 ) by ϖ ς , ν , θ = 0 in Theorem 1. □
Corollary 2.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , π , κ , ϰ : Q 3 [ 0 , 1 ) satisfy the conditions
(a)
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
π J 2 J 1 ς , ν , θ π ς , ν , θ and π ς , J 1 J 2 ν , θ π ς , ν , θ
κ J 2 J 1 ς , ν , θ κ ς , ν , θ and κ ς , J 1 J 2 ν , θ κ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ ϰ ς , ν , θ ;
(b) α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϰ ς , ν , θ < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Take ϖ : Q × Q × Q [ 0 , 1 ) by ϖ ς , ν , θ = 0 in Theorem 1. □
Corollary 3.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , π , ϖ , ϰ : Q 3 [ 0 , 1 ) satisfy the conditions
(a)
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
π J 2 J 1 ς , ν , θ π ς , ν , θ and π ς , J 1 J 2 ν , θ π ς , ν , θ
ϖ J 2 J 1 ς , ν , θ ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ ϰ ς , ν , θ ;
(b) α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Take κ : Q × Q × Q [ 0 , 1 ) by κ ς , ν , θ = 0 in Theorem 1. □
Corollary 4.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , κ , ϖ , ϰ : Q 3 [ 0 , 1 ) satisfy the conditions
(a)
α J 2 J 1 ς , ν , θ α ς , ν , θ and α ς , J 1 J 2 ν , θ α ς , ν , θ
κ J 2 J 1 ς , ν , θ κ ς , ν , θ and κ ς , J 1 J 2 ν , θ κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ ϰ ς , ν , θ ;
(b) α ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ς , ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Take π : Q × Q × Q [ 0 , 1 ) by π ς , ν , θ = 0 in Theorem 1. □
Corollary 5.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions π , κ , ϖ , ϰ : Q 3 [ 0 , 1 ) satisfy the conditions
(a) π J 2 J 1 ς , ν , θ π ς , ν , θ and π ς , J 1 J 2 ν , θ π ς , ν , θ
κ J 2 J 1 ς , ν , θ κ ς , ν , θ and κ ς , J 1 J 2 ν , θ κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ ϰ ς , ν , θ ;
(b) 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q and for fixed element θ Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Take α : Q × Q × Q [ 0 , 1 ) by α ς , ν , θ = 0 in Theorem 1. □
Example 2.
Let Q = [ 0 , 1 ] and τ : Q × Q C 2 be defined by
τ ( ς , ν ) = ( 1 + i 2 ) ς ν
for all ς , ν Q . Then, ( Q , τ ) is a complete bi-CVMS. Define J 1 , J 2 : Q Q by
J 1 ς = ς 4 and J 2 ς = ς 3 .
Consider
α , π , κ , ϖ , ϰ : Q × Q × Q [ 0 , 1 )
by
α ( ς , ν , θ ) = ς 4 + ν 5 + θ ,
π ( ς , ν , θ ) = ς 3 θ 3 64 + ν 3 125 ,
κ ( ς , ν , θ ) = ς 2 ν 2 θ 2 45 ,
ϖ ( ς , ν , θ ) = ς 2 θ 2 9 + ν 2 θ 2 16 ,
ϰ ( ς , ν , θ ) = ς 25 + ν 36 + θ 2
for all ς , ν Q and for fixed element θ Q . Then, evidently,
α ς , ν , θ + 2 π ( ς , ν , θ ) + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ( ς , ν , θ ) < 1 .
Now,
α J 2 J 1 ς , ν , θ = α J 2 ( ς 4 ) , ν , θ = α ς 12 , ν , θ = ς 48 + ν 5 + θ ς 4 + ν 5 + θ = α ς , ν , θ
α ς , J 1 J 2 ν , θ = α ς , J 1 ( ν 3 ) , θ = α ς , ν 12 , θ = ς 4 + ν 60 + θ ς 4 + ν 5 + θ = α ς , ν , θ
π J 2 J 1 ς , ν , θ = π J 2 ( ς 4 ) , ν , θ = π ς 12 , ν , θ = ς 3 θ 3 110592 + ν 3 125 ς 3 θ 3 64 + ν 3 125 = π ς , ν , θ
π ς , J 1 J 2 ν , θ = π ς , J 1 ( ν 3 ) , θ = π ς , ν 12 , θ = ς 3 θ 3 64 + ν 3 216000 ς 3 θ 3 64 + ν 3 125 = π ς , ν , θ
κ J 2 J 1 ς , ν , θ = κ J 2 ( ς 4 ) , ν , θ = κ ς 12 , ν , θ = ς 2 ν 2 θ 2 54540 ς 2 ν 2 θ 2 45 = κ ς , ν , θ
κ ς , J 1 J 2 ν , θ = κ ς , J 1 ( ν 3 ) , θ = κ ς , ν 12 , θ = ς 2 ν 2 θ 2 54540 ς 2 ν 2 θ 2 45 = κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ = ϖ J 2 ( ς 4 ) , ν , θ = ϖ ς 12 , ν , θ = ς 2 θ 2 1296 + ν 2 θ 2 16 ς 2 θ 2 9 + ν 2 θ 2 16 = ϖ ς , ν , θ
ϖ ς , J 1 J 2 ν , θ = ϖ ς , J 1 ( ν 3 ) , θ = ϖ ς , ν 12 , θ = ς 2 θ 2 9 + ν 2 θ 2 2304 ς 2 θ 2 9 + ν 2 θ 2 16 = ϖ ς , ν , θ .
Furthermore,
ϰ J 2 J 1 ς , ν , θ = ϰ J 2 ( ς 4 ) , ν , θ = ϰ ς 12 , ν , θ = ς 300 + ν 36 + θ 2 ς 25 + ν 36 + θ 2 = ϰ ς , ν , θ
ϰ ς , J 1 J 2 ν , θ = ϰ ς , J 1 ( ν 3 ) , θ = ϰ ς , ν 12 , θ = ς 25 + ν 432 + θ 2 ς 25 + ν 36 + θ 2 = ϰ ς , ν , θ .
Now, we prove the contractive condition in this way
τ ( J 1 ς , J 2 ν ) = τ ( ς 4 , ν 3 ) = ( 1 + i 2 ) ς 4 ν 3 = ( 1 + i 2 ) 3 ς 4 ν 12
i 2 ( 1 + i 2 ) 3 ς 3 ν 12
= 1 4 ( 1 + i 2 ) ς ν
i 2 13 20 ( 1 + i 2 ) ς ν
i 2 α ς , ν , θ τ ς , ν
+ π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς .
Hence, all the conditions of Theorem 1 are satisfied and 0 = J 1 0 = J 2 0 .
Remark 1.
If we replace α , π , κ , ϖ , ϰ : Q × Q × Q [ 0 , 1 ) with α , π , κ , ϖ , ϰ : Q × Q [ 0 , 1 ) by
α ς , ν , θ = α ς , ν ,
π ς , ν , θ = π ς , ν ,
κ ς , ν , θ = κ ς , ν ,
ϖ ς , ν , θ = ϖ ς , ν ,
ϰ ς , ν , θ = ϰ ς , ν ,
then we have following result.
Corollary 6.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , π , κ , ϖ , ϰ : Q 2 [ 0 , 1 ) satisfy the conditions
(a) α J 2 J 1 ς , ν α ς , ν and α ς , J 1 J 2 ν α ς , ν
π J 2 J 1 ς , ν π ς , ν and π ς , J 1 J 2 ν π ς , ν
κ J 2 J 1 ς , ν κ ς , ν and κ ς , J 1 J 2 ν κ ς , ν
ϖ J 2 J 1 ς , ν ϖ ς , ν and ϖ ς , J 1 J 2 ν ϖ ς , ν
ϰ J 2 J 1 ς , ν ϰ ς , ν and ϰ ς , J 1 J 2 ν ϰ ς , ν ;
(b) α ς , ν + 2 π ς , ν + 2 κ ς , ν + 2 ϖ ς , ν + 2 ϰ ς , ν < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν τ ς , ν + π ς , ν τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς , ν τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς , ν τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
If we define π , ϰ : Q × Q [ 0 , 1 ) by π ς , ν = ϰ ς , ν = 0 , then we achieve the key result presented by Tassaddiq et al. [10].
Corollary 7
([10]). Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , κ , ϖ : Q 2 [ 0 , 1 ) satisfy the conditions
(a) α J 2 J 1 ς , ν α ς , ν and α ς , J 1 J 2 ν α ς , ν
κ J 2 J 1 ς , ν κ ς , ν and κ ς , J 1 J 2 ν κ ς , ν
ϖ J 2 J 1 ς , ν ϖ ς , ν and ϖ ς , J 1 J 2 ν ϖ ς , ν ;
(b) α ς , ν + 2 κ ς , ν + 2 ϖ ς , ν < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς , ν τ ς , ν
+ κ ς , ν τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς , ν τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
for all ς , ν Q , then there exists a unique ς * Q such that J 1 ς * = J 2 ς * = ς * .
Remark 2.
By defining α , π , κ , ϖ , ϰ : Q × Q [ 0 , 1 ) as 0 in all possible combinations, one can obtain all the corollaries presented by Tassaddiq et al. [10] and a host of corollaries including the Banach contraction principle and Kannan’s fixed point theorem in the setting of a complete bi-CVMS.
Corollary 8.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If the functions α , π , κ , ϖ , ϰ : Q [ 0 , 1 ) satisfy the conditions
(a) α J 1 ς α ς and α J 2 ς α ς
π J 1 ς π ς and π J 2 ς π ς
κ J 1 ς κ ς and κ J 2 ς κ ς
ϖ J 1 ς ϖ ς and ϖ J 2 ς ϖ ς
ϰ J 1 ς ϰ ς and ϰ J 2 ς ϰ ς ;
(b) α ς + 2 π ς + 2 κ ς + 2 ϖ ς + 2 ϰ ς < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς τ ς , ν + π ς τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Define α , π , κ , ϖ , ϰ : Q × Q × Q [ 0 , 1 ) by
α ς , ν , θ = α ς ,
π ς , ν , θ = π ς ,
κ ς , ν , θ = κ ς ,
ϖ ς , ν , θ = ϖ ς ,
ϰ ς , ν , θ = ϰ ς .
Then, for all ς , ν Q and for a fixed element θ Q , we have
(a)
α J 2 J 1 ς , ν , θ = α J 2 J 1 ς α J 1 ς α ς = α ς , ν , θ and α ς , J 1 J 2 ν , θ = α ς = α ς , ν , θ
π J 2 J 1 ς , ν , θ = π J 2 J 1 ς π J 1 ς π ς = π ς , ν , θ and π ς , J 1 J 2 ν , θ = π ς = π ς , ν , θ
κ J 2 J 1 ς , ν , θ = κ J 2 J 1 ς κ J 1 ς κ ς = κ ς , ν , θ and κ ς , J 1 J 2 ν , θ = κ ς = κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ = ϖ J 2 J 1 ς ϖ J 1 ς ϖ ς = ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ = ϖ ς = ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ = ϰ J 2 J 1 ς ϰ J 1 ς ϰ ς = ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ = ϰ ς = ϰ ς , ν , θ ;
(b)
α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ = α ς + 2 π ς + 2 κ ς + 2 ϖ ς + 2 ϰ ς < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς τ ς , ν + π ς τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς .
= α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν + κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν + ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν + ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς .
Then, by Theorem 1, there exists ς * Q such that J 1 ς * = J 2 ς * = ς * .
Corollary 9.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If there exist constants α , π , κ , ϖ , ϰ [ 0 , 1 ) such that
α + 2 π + 2 κ + 2 ϖ + 2 ϰ < 1 and
τ J 1 ς , J 2 ν i 2 α τ ς , ν + π τ ς , J 1 ς + τ ν , J 2 ν
+ κ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
for all ς , ν Q , then there exists a unique ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Define α , π , κ , ϖ , ϰ : Q [ 0 , 1 ) by α · = α , π · = π , κ · = κ , ϖ · and ϰ · = ϰ in Corollary 8. □
If we consider π = ϰ = 0 in Corollary 9, then we obtain the key result of Gnanaprakasam et al. [9] in this manner.
Corollary 10
([9]). Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If there exist α , κ , ϖ [ 0 , 1 ) such that α + 2 κ + 2 ϖ < 1 and
τ J 1 ς , J 2 ν i 2 α τ ς , ν + κ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν + ϖ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν ,
for all ς , ν Q , then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Corollary 11.
Let J : Q , τ Q , τ be a self-mapping. If the functions α , π , κ , ϖ , ϰ : Q [ 0 , 1 ) satisfy the conditions
(a) α J ς α ς ,
π J ς π ς ,
κ J ς κ ς ,
ϖ J ς ϖ ς ,
ϰ J ς ϰ ς ;
(b) α ς + 2 π ς + 2 κ ς + 2 ϖ ς + 2 ϰ ς < 1 ;
(c)
τ J ς , J ν i 2 α ς τ ς , ν + π ς τ ς , J ς + τ ν , J ν
+ κ ς τ ς , J ς τ ν , J ν 1 + τ ς , ν
+ ϖ ς τ ν , J ς τ ς , J ν 1 + τ ς , ν
+ ϰ ς τ ς , J ς τ ς , J ν + τ ν , J ν τ ν , J ς 1 + τ ς , J ν + τ ν , J ς ,
for all ς , ν Q , then there exists a unique element ς * Q such that J ς * = ς * .
Proof. 
Take J 1 = J 2 = J in Corollary 8. □
Corollary 12.
Let J : Q , τ Q , τ be a self-mapping. If there exist α , π , κ , ϖ , ϰ [ 0 , 1 ) such that α + 2 π + 2 κ + 2 ϖ + 2 ϰ < 1 and
τ J ς , J ν i 2 α τ ς , ν + π τ ς , J ς + τ ν , J ν
+ κ τ ς , J ς τ ν , J ν 1 + τ ς , ν
+ ϖ τ ν , J ς τ ς , J ν 1 + τ ς , ν
+ ϰ τ ς , J ς τ ς , J ν + τ ν , J ν τ ν , J ς 1 + τ ς , J ν + τ ν , J ς ,
for all ς , ν Q , then there exists a unique element ς * Q such that J ς * = ς * .
Proof. 
Define α , π , κ , ϖ , ϰ : Q [ 0 , 1 ) by α · = α , π · = π , κ · = κ , ϖ · and ϰ · = ϰ in Corollary 11. □
Corollary 13.
Let J : Q , τ Q , τ be a self-mapping. If there exist α , π , κ , ϖ , ϰ [ 0 , 1 ) such that α + 2 π + 2 κ + 2 ϖ + 2 ϰ < 1 and
τ J n ς , J n ν i 2 α τ ς , ν + π τ ς , J n ς + τ ν , J n ν
+ κ τ ς , J n ς τ ν , J n ν 1 + τ ς , ν
+ ϖ τ ν , J n ς τ ς , J n ν 1 + τ ς , ν
+ ϰ τ ς , J n ς τ ς , J n ν + τ ν , J n ν τ ν , J n ς 1 + τ ς , J n ν + τ ν , J n ς ,
for all ς , ν Q , then there exists a unique element ς * Q such that J ς * = ς * .
Proof. 
By Corollary 12, we can obtain ς Q such that J n ς = ς . Now,
τ J ς , ς = τ JJ n ς , J n ς = τ J n J ς , J n ς
i 2 α τ J ς , ς + π τ J ς , J n J ς + τ ς , J n ς
+ κ τ J ς , J n J ς τ ς , J n ς 1 + τ J ς , ς
+ ϖ τ ς , J n J ς τ J ς , J n ς 1 + τ J ς , ς
+ ϰ τ J ς , J n J ς τ J ς , J n ς + τ ς , J n ς τ ς , J n J ς 1 + τ J ς , J n ς + τ ς , J n J ς
i 2 α τ J ς , ς + π τ J ς , J ς + τ ς , ς
+ κ τ J ς , J ς τ ς , ς 1 + τ J ς , ς
+ ϖ τ ς , J ς τ J ς , ς 1 + τ J ς , ς
+ ϰ τ J ς , J ς τ J ς , ς + τ ς , ς τ ς , J ς 1 + τ J ς , ς + τ ς , J ς
= α τ J ς , ς + ϖ τ ς , J ς τ J ς , ς 1 + τ J ς , ς
which implies that
τ J ς , ς α τ J ς , ς + 2 ϖ τ ς , J ς τ J ς , ς 1 + τ J ς , ς α τ J ς , ς + 2 ϖ τ ς , J ς = α + 2 ϖ τ ς , J ς
which is possible only whenever τ J ς , ς = 0 . Thus, J ς = ς .
Corollary 14
([8]). Let J : Q , τ Q , τ be a self-mapping. If there exist α , κ [ 0 , 1 ) such that α + 2 κ < 1 and for all ς , ν Q ,
τ J ς , J ν i 2 α τ ς , ν + κ τ ς , J ς τ ν , J ν 1 + τ ς , ν
then there exists a unique element ς * Q such that J ς * = ς * .
Proof. 
Take π = ϖ = ϰ = 0 in Corollary 12. □
Remark 3.
It is notable that (a) and (b) of Theorem 1 above can be weakened by the condition
α J 2 J 1 ς α ς
π J 2 J 1 ς π ς
κ J 2 J 1 ς κ ς
ϖ J 2 J 1 ς ϖ ς
ϰ J 2 J 1 ς ϰ ς
for all ς Q .
Corollary 15.
Let J 1 , J 2 : Q , τ Q , τ be self-mappings. If there exist α , π , κ , ϖ , ϰ : Q [ 0 , 1 ) such that for all ς , ν Q ,
(a) α J 2 J 1 ς α ς ,
π J 2 J 1 ς π ς ,
κ J 2 J 1 ς κ ς ,
ϖ J 2 J 1 ς ϖ ς ,
ϰ J 2 J 1 ς ϰ ς ;
(b) α ς + 2 π ς + 2 κ ς + 2 ϖ ς + 2 ϰ ς < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς τ ς , ν + π ς τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς ,
then there exists a unique element ς * Q such that J 1 ς * = J 2 ς * = ς * .
Proof. 
Define α , π , κ , ϖ , ϰ : Q × Q × Q [ 0 , 1 ) by
α ς , ν , θ = α ς ,
π ς , ν , θ = π ς ,
κ ς , ν , θ = κ ς ,
ϖ ς , ν , θ = ϖ ς ,
ϰ ς , ν , θ = ϰ ς .
Then, for all ς , ν Q , we have
(a)
α J 2 J 1 ς , ν , θ = α J 2 J 1 ς α J 1 ς α ς = α ς , ν , θ and α ς , J 1 J 2 ν , θ = α ς = α ς , ν , θ
π J 2 J 1 ς , ν , θ = π J 2 J 1 ς π J 1 ς π ς = π ς , ν , θ and π ς , J 1 J 2 ν , θ = π ς = π ς , ν , θ
κ J 2 J 1 ς , ν , θ = κ J 2 J 1 ς κ J 1 ς κ ς = κ ς , ν , θ and κ ς , J 1 J 2 ν , θ = κ ς = κ ς , ν , θ
ϖ J 2 J 1 ς , ν , θ = ϖ J 2 J 1 ς ϖ J 1 ς ϖ ς = ϖ ς , ν , θ and ϖ ς , J 1 J 2 ν , θ = ϖ ς = ϖ ς , ν , θ
ϰ J 2 J 1 ς , ν , θ = ϰ J 2 J 1 ς ϰ J 1 ς ϰ ς = ϰ ς , ν , θ and ϰ ς , J 1 J 2 ν , θ = ϰ ς = ϰ ς , ν , θ ;
(b)
α ς , ν , θ + 2 π ς , ν , θ + 2 κ ς , ν , θ + 2 ϖ ς , ν , θ + 2 ϰ ς , ν , θ = α ς + 2 π ς + 2 κ ς + 2 ϖ ς + 2 ϰ ς < 1 ;
(c)
τ J 1 ς , J 2 ν i 2 α ς τ ς , ν + π ς τ ς , J 1 ς + τ ν , J 2 ν
+ κ ς τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν
+ ϖ ς τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν
+ ϰ ς τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς
= α ς , ν , θ τ ς , ν + π ς , ν , θ τ ς , J 1 ς + τ ν , J 2 ν + κ ς , ν , θ τ ς , J 1 ς τ ν , J 2 ν 1 + τ ς , ν + ϖ ς , ν , θ τ ν , J 1 ς τ ς , J 2 ν 1 + τ ς , ν + ϰ ς , ν , θ τ ς , J 1 ς τ ς , J 2 ν + τ ν , J 2 ν τ ν , J 1 ς 1 + τ ς , J 2 ν + τ ν , J 1 ς .
Then, by Theorem 1, there exists a unique ς * Q such that J 1 ς * = J 2 ς * = ς * .

4. Applications

Let C [ a , b ] represent the class of all real continuous functions defined on [ a , b ] and τ : C ( [ a , b ] ) × C ( [ a , b ] ) C 2 be defined as follows
τ ( ς , ν ) = max t [ a , b ] 1 + i ς t ν t
for all ς , ν C ( [ a , b ] ) and t [ a , b ] . Then, ( C ( [ a , b ] , R ) , τ ) is a complete bi-CVMS. Take the integral equations
ς ( t ) = a b K 1 ( t , s , ς ( s ) ) τ s + g ( t ) ,
ς ( t ) = a b K 2 ( t , s , ς ( s ) ) τ s + g ( t ) ,
where g : [ a , b ] R and K 1 , K 2 : [ a , b ] × [ a , b ] × R R are continuous for t [ a , b ] . In C 2 , we define i 2 in this way
ς t i 2 ν t ς ν .
Theorem 2.
Suppose there exists some fixed element θ Q such that the following condition
K 1 ( t , s , ς ( s ) ) K 2 ( t , s , ν ( s ) ) α ς , ν , θ ς ( s ) ν ( s )
holds for all ς , ν Q with ς ν and α : Q × Q × Q [ 0 , 1 ) . Then, (7) and (8) have a unique common solution.
Proof. 
Define J 1 , J 2 : Q Q by
J 1 ς ( t ) = 1 b a a b K 1 ( t , s , ς ( s ) ) τ s + g ( t ) ,
J 2 ς ( t ) = 1 b a a b K 2 ( t , s , ς ( s ) ) τ s + g ( t ) ,
for all t [ a , b ] . Consider
τ J 1 ς , J 2 ν = max t [ a , b ] 1 + i 2 J 1 ς ( t ) J 2 h ( t ) = max t [ a , b ] 1 + i 2 1 b a a b K 1 ( t , s , ς ( s ) ) τ s a b K 2 ( t , s , h ( s ) ) τ s
i 2 max t [ a , b ] 1 + i 2 1 b a a b K 1 ( t , s , ς ( s ) ) K 2 ( t , s , h ( s ) ) τ s
i 2 max t [ a , b ] 1 + i 2 α ς , ν , θ b a a b ς ( s ) ν ( s ) τ s .
Thus,
τ J 1 ς , J 2 ν i 2 α ς , ν , θ τ ( ς , ν ) .
Now, with π , κ , ϖ , ϰ : Q × Q × Q [ 0 , 1 ) defined by
π ς , ν , θ = κ ς , ν , θ = ϖ ς , ν , θ = ϰ ς , ν , θ = 0
for every ς , ν Q , all the hypotheses of Theorem 1 are fulfilled and the integral Equations (7) and (8) have a unique common solution. □

5. Conclusions

Complex-valued metric spaces and their several generalizations allow us to consider the distances between points in a set, either classically or non-classically. In this draft, we have obtained common fixed-point results for rational contractions involving point-dependent control functions in bi-CVMSs. In this way, we have derived the key results of Beg et al. [8], Gnanaprakasam et al. [9] and Tassaddiq et al. [10] from our results. We apply our result to solve the Fredholm integral equation as an application.
For future work, one can expand the notion of bi-CVMSs to hypercomplex-valued metric spaces. Moreover, the results established in this paper can be lengthened to set-valued mappings. Some integral and differential inclusions can be explored to apply fixed-point theorems for set-valued mappings in the framework of bi-CVMSs.

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-DR-5). The author, therefore, thanks the University of Jeddah for its technical and financial support.

Data Availability Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Segre, C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
  2. Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
  3. Long-Guang, H.; Xian, Z. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar]
  4. Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Num. Funct. Anal. Optimiz. 2011, 32, 243–253. [Google Scholar] [CrossRef]
  5. Okeke, G.A. Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces. Arab. J. Math. Sci. 2019, 25, 83–105. [Google Scholar] [CrossRef]
  6. Choi, J.; Datta, S.K.; Biswas, T.; Islam, N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Math. J. 2017, 39, 115–126. [Google Scholar] [CrossRef]
  7. Jebril, I.H.; Datta, S.K.; Sarkar, R.; Biswas, N. Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. J. Interdiscip. Math. 2020, 22, 1071–1082. [Google Scholar] [CrossRef]
  8. Beg, I.; Datta, S.K.; Pal, D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 717–727. [Google Scholar]
  9. Gnanaprakasam, A.J.; Boulaaras, S.M.; Mani, G.; Cherif, B.; Idris, S.A. Solving system of linear equations via bicomplex valued metric space. Demonstr. Math. 2021, 54, 474–487. [Google Scholar] [CrossRef]
  10. Tassaddiq, A.; Ahmad, J.; Al-Mazrooei, A.E.; Lateef, D.; Lakhani, F. On common fixed point results in bicomplex valued metric spaces with application. AIMS Math. 2023, 8, 5522–5539. [Google Scholar] [CrossRef]
  11. Albargi, A.H.; Shammaky, A.E.; Ahmad, J. Common fixed point results in bicomplex valued metric spaces with application. Mathematics 2023, 11, 1207. [Google Scholar] [CrossRef]
  12. Mlaiki, N.; Ahmad, J.; Al-Mazrooei, A.E.; Santina, D. Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Math. 2023, 8, 3897–3912. [Google Scholar] [CrossRef]
  13. Mani, G.; Gnanaprakasam, A.J.; George, R.; Mitrović, Z.D. The existence of a solution of a nonlinear Fredholm integral equations over bicomplex b-metric spaces. Gulf J. Math. 2023, 14, 69–83. [Google Scholar]
  14. Mani, G.; Gnanaprakasam, A.J.; Ege, O.; Fatima, N.; Mlaiki, N. Solution of Fredholm integral equation via common fixed point theorem on bicomplex valued b-metric space. Symmetry 2023, 15, 297. [Google Scholar] [CrossRef]
  15. Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space. Mathematics 2021, 9, 1584. [Google Scholar] [CrossRef]
  16. Klin-eam, C.; Suanoom, C. Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces. Abstr. Appl. Anal. 2013, 2013, 604215. [Google Scholar] [CrossRef] [Green Version]
  17. Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comp. Math. Appl. 2012, 64, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
  18. Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal Appl. 2012, 2012, 84. [Google Scholar] [CrossRef]
  19. Sitthikul, K.; Saejung, S. Some fixed point theorems in complex valued metric spaces. Fixed Point Theory Appl. 2012, 2012, 189. [Google Scholar] [CrossRef] [Green Version]
  20. Ahmad, A.; Klin-eam, C.; Azam, A. Common fixed points for multivalued mappings in complex valued metric spaces with applications. Abstr. Appl. Anal. 2013, 2013, 854965. [Google Scholar] [CrossRef] [Green Version]
  21. Abdullahi, M.S.; Azam, A. Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces. J. Int. Math. Virtual Inst. 2017, 7, 119–146. [Google Scholar]
  22. Azam, A.; Ahmad, J.; Kumam, P. Common fixed point theorems for multi-valued mappings in complex-valued metric spaces. J. Inequalities Appl. 2013, 578, 578. [Google Scholar] [CrossRef] [Green Version]
  23. Kutbi, M.K.; Ahmad, J.; Azam, A.; Hussain, N. On fuzzy fixed points for fuzzy maps with generalized weak property. J. Appl. Math. 2014, 2014, 549504. [Google Scholar] [CrossRef] [Green Version]
  24. Humaira, M.; Sarwar, G.; Kishore, N.V. Fuzzy fixed point results for φ contractive mapping with applications. Complexity 2018, 2018, 5303815. [Google Scholar] [CrossRef] [Green Version]
  25. Mukheimer, A.A. Some common fixed point theorems in complex valued b-metric spaces. Sci. World J. 2014, 2014, 587825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  26. Ullah, N.; Shagari, M.S.; Azam, A. Fixed point theorems in complex valued extended b-metric spaces. Moroc. J. Pure Appl. Anal. 2019, 5, 140–163. [Google Scholar] [CrossRef] [Green Version]
  27. Tabassum, R.; Shagari, M.S.; Azam, A.; Mohamed, O.K.S.K.; Bakery, A.A. Intuitionistic fuzzy fixed point theorems in complex valued b -metric spaces with applications to fractional differential equations. J. Funct. Spaces 2022, 2022, 2261199. [Google Scholar] [CrossRef]
  28. Humaira, M.; Sarwar, G.; Kumam, P. Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results. Symmetry 2019, 11, 61. [Google Scholar] [CrossRef]
  29. Ullah, N.; Shagari, M.S. Fixed point results in complex valued extended b-metric spaces and related applications. Ann. Math. Comput. Sci. 2021, 1, 1–11. [Google Scholar]
  30. Carmel Pushpa Raj, J.; Arul Xavier, A.; Maria Joseph, J.; Marudai, M. Common fixed point theorems under rational contractions in complex valued extended b-metric spaces. Int. J. Nonlinear Anal. Appl. 2022, 13, 3479–3490. [Google Scholar]
  31. Işık, H. Existence of a common solution to systems of integral equations via fixed point results. Open Math. 2020, 18, 249–261. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Abdou, A.A.N. Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics 2023, 11, 3249. https://doi.org/10.3390/math11143249

AMA Style

Abdou AAN. Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics. 2023; 11(14):3249. https://doi.org/10.3390/math11143249

Chicago/Turabian Style

Abdou, Afrah Ahmad Noman. 2023. "Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces" Mathematics 11, no. 14: 3249. https://doi.org/10.3390/math11143249

APA Style

Abdou, A. A. N. (2023). Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics, 11(14), 3249. https://doi.org/10.3390/math11143249

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop