Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- and if and only if ;
- (ii)
- (iii)
- (i)
- and if and only if ;
- (ii)
- (iii)
3. Main Result
- Note:
- From now onwards, we consider as a complete bi-CVMS.
4. Applications
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Segre, C. Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici. Math. Ann. 1892, 40, 413–467. [Google Scholar] [CrossRef]
- Price, G.B. An Introduction to Multicomplex Spaces and Functions; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Long-Guang, H.; Xian, Z. Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 2007, 332, 1468–1476. [Google Scholar]
- Azam, A.; Fisher, B.; Khan, M. Common fixed point theorems in complex valued metric spaces. Num. Funct. Anal. Optimiz. 2011, 32, 243–253. [Google Scholar] [CrossRef]
- Okeke, G.A. Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces. Arab. J. Math. Sci. 2019, 25, 83–105. [Google Scholar] [CrossRef]
- Choi, J.; Datta, S.K.; Biswas, T.; Islam, N. Some fixed point theorems in connection with two weakly compatible mappings in bicomplex valued metric spaces. Honam Math. J. 2017, 39, 115–126. [Google Scholar] [CrossRef]
- Jebril, I.H.; Datta, S.K.; Sarkar, R.; Biswas, N. Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces. J. Interdiscip. Math. 2020, 22, 1071–1082. [Google Scholar] [CrossRef]
- Beg, I.; Datta, S.K.; Pal, D. Fixed point in bicomplex valued metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 717–727. [Google Scholar]
- Gnanaprakasam, A.J.; Boulaaras, S.M.; Mani, G.; Cherif, B.; Idris, S.A. Solving system of linear equations via bicomplex valued metric space. Demonstr. Math. 2021, 54, 474–487. [Google Scholar] [CrossRef]
- Tassaddiq, A.; Ahmad, J.; Al-Mazrooei, A.E.; Lateef, D.; Lakhani, F. On common fixed point results in bicomplex valued metric spaces with application. AIMS Math. 2023, 8, 5522–5539. [Google Scholar] [CrossRef]
- Albargi, A.H.; Shammaky, A.E.; Ahmad, J. Common fixed point results in bicomplex valued metric spaces with application. Mathematics 2023, 11, 1207. [Google Scholar] [CrossRef]
- Mlaiki, N.; Ahmad, J.; Al-Mazrooei, A.E.; Santina, D. Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Math. 2023, 8, 3897–3912. [Google Scholar] [CrossRef]
- Mani, G.; Gnanaprakasam, A.J.; George, R.; Mitrović, Z.D. The existence of a solution of a nonlinear Fredholm integral equations over bicomplex b-metric spaces. Gulf J. Math. 2023, 14, 69–83. [Google Scholar]
- Mani, G.; Gnanaprakasam, A.J.; Ege, O.; Fatima, N.; Mlaiki, N. Solution of Fredholm integral equation via common fixed point theorem on bicomplex valued b-metric space. Symmetry 2023, 15, 297. [Google Scholar] [CrossRef]
- Gu, Z.; Mani, G.; Gnanaprakasam, A.J.; Li, Y. Solving a system of nonlinear integral equations via common fixed point theorems on bicomplex partial metric space. Mathematics 2021, 9, 1584. [Google Scholar] [CrossRef]
- Klin-eam, C.; Suanoom, C. Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces. Abstr. Appl. Anal. 2013, 2013, 604215. [Google Scholar] [CrossRef] [Green Version]
- Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces. Comp. Math. Appl. 2012, 64, 1866–1874. [Google Scholar] [CrossRef] [Green Version]
- Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal Appl. 2012, 2012, 84. [Google Scholar] [CrossRef]
- Sitthikul, K.; Saejung, S. Some fixed point theorems in complex valued metric spaces. Fixed Point Theory Appl. 2012, 2012, 189. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Klin-eam, C.; Azam, A. Common fixed points for multivalued mappings in complex valued metric spaces with applications. Abstr. Appl. Anal. 2013, 2013, 854965. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, M.S.; Azam, A. Multivalued fixed points results via rational type contractive conditions in complex valued metric spaces. J. Int. Math. Virtual Inst. 2017, 7, 119–146. [Google Scholar]
- Azam, A.; Ahmad, J.; Kumam, P. Common fixed point theorems for multi-valued mappings in complex-valued metric spaces. J. Inequalities Appl. 2013, 578, 578. [Google Scholar] [CrossRef] [Green Version]
- Kutbi, M.K.; Ahmad, J.; Azam, A.; Hussain, N. On fuzzy fixed points for fuzzy maps with generalized weak property. J. Appl. Math. 2014, 2014, 549504. [Google Scholar] [CrossRef] [Green Version]
- Humaira, M.; Sarwar, G.; Kishore, N.V. Fuzzy fixed point results for φ contractive mapping with applications. Complexity 2018, 2018, 5303815. [Google Scholar] [CrossRef] [Green Version]
- Mukheimer, A.A. Some common fixed point theorems in complex valued b-metric spaces. Sci. World J. 2014, 2014, 587825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, N.; Shagari, M.S.; Azam, A. Fixed point theorems in complex valued extended b-metric spaces. Moroc. J. Pure Appl. Anal. 2019, 5, 140–163. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, R.; Shagari, M.S.; Azam, A.; Mohamed, O.K.S.K.; Bakery, A.A. Intuitionistic fuzzy fixed point theorems in complex valued b -metric spaces with applications to fractional differential equations. J. Funct. Spaces 2022, 2022, 2261199. [Google Scholar] [CrossRef]
- Humaira, M.; Sarwar, G.; Kumam, P. Common fixed point results for fuzzy mappings on complex-valued metric spaces with Homotopy results. Symmetry 2019, 11, 61. [Google Scholar] [CrossRef]
- Ullah, N.; Shagari, M.S. Fixed point results in complex valued extended b-metric spaces and related applications. Ann. Math. Comput. Sci. 2021, 1, 1–11. [Google Scholar]
- Carmel Pushpa Raj, J.; Arul Xavier, A.; Maria Joseph, J.; Marudai, M. Common fixed point theorems under rational contractions in complex valued extended b-metric spaces. Int. J. Nonlinear Anal. Appl. 2022, 13, 3479–3490. [Google Scholar]
- Işık, H. Existence of a common solution to systems of integral equations via fixed point results. Open Math. 2020, 18, 249–261. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdou, A.A.N. Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics 2023, 11, 3249. https://doi.org/10.3390/math11143249
Abdou AAN. Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics. 2023; 11(14):3249. https://doi.org/10.3390/math11143249
Chicago/Turabian StyleAbdou, Afrah Ahmad Noman. 2023. "Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces" Mathematics 11, no. 14: 3249. https://doi.org/10.3390/math11143249
APA StyleAbdou, A. A. N. (2023). Solving the Fredholm Integral Equation by Common Fixed Point Results in Bicomplex Valued Metric Spaces. Mathematics, 11(14), 3249. https://doi.org/10.3390/math11143249