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Abstract: Predicting the long-term lifetime of power MOSFET devices plays a central role in the
prevention of unprecedented failures for power MOSFETs used in safety-critical applications. The
various traditional model-based approaches and statistical and filtering algorithms for prognostics
have limitations in terms of handling the dynamic nature of failure precursor degradation data for
these devices. In this paper, a prognostic model based on LSTM and GRU is developed that aims
at estimating the long-term lifetime of discrete power MOSFETs using dominant failure precursor
degradation data. An accelerated power cycling test has been designed and executed to collect failure
precursor data. For this purpose, commercially available power MOSFETs passed through power
cycling tests at different temperature swing conditions and potential failure precursor data were
collected using an automated curve tracer after certain intervals. The on-state resistance degradation
data identified as one of the dominant failure precursors and potential aging precursors has been
analyzed using RNN, LSTM, and GRU-based algorithms. The LSTM and GRU models have been
found to be superior compared to RNN, with MAPE of 0.9%, 0.78%, and 1.72% for MOSFET 1; 0.90%,
0.66%, and 0.6% for MOSFET 5; and 1.05%, 0.9%, and 0.78%, for MOSFET 9, respectively, predicted at
40,000 cycles. In addition, the robustness of these methods is examined using training data at 24,000
and 54,000 cycles of starting points and is able to predict the long-term lifetime accurately, as evaluated
by MAPE, MSE, and RMSE metrics. In general, the prediction results showed that the prognostics
algorithms developed were trained to provide effective, accurate, and useful lifetime predictions and
were found to address the reliability concerns of power MOSFET devices for practical applications.

Keywords: LSTM; GRU; power cycling; power MOSFETs; long-term lifetime prediction; failure precursors

MSC: 62N05; 90B25

1. Introduction

Power electronics technology has shown tremendous advancements as an essential
component of power conversion and control processes to meet specific demands. Metal
Oxide Field Effect Transistors (MOSFETs) and Insulated Gate Bipolar Transistors (IGBTs)
have been used in a wide spectrum of power electronics systems. The application area
ranges from automotive and locomotive to avionics and aerospace and other space missions
as well as safety-critical operations. The proper functioning and health monitoring of these
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devices are of utmost importance to avoiding downtime, human safety, and the prevention
of catastrophic failures [1].

The discrete power devices or modules in power electronic devices will be exposed to
various stresses including electrical loading, thermal stresses, and mechanical vibration as
well as humidity and chemical stresses as operating or environmental conditions. These
stresses cause degradation or catastrophic failure, which affects the proper functioning
and hence the lifetime and reliability of electrical and electronic products and systems.
This has been the main driving force behind improving the reliability of power devices.
As part of this, the reliability requirement of safety and mission-critical applications such
as automotive, locomotive, and airplane applications oblige almost zero-defect or zero-
failure tolerance. Regardless of the efforts that significantly reduced the failure rates of
power devices, reliability remains the central focus in many application areas [2]. The
demand for uninterrupted and consistent power delivery, system availability, and the
safety of these critical applications has led to the need for advanced reliability assessment
techniques, and accurate prognostics have been instigated by [3,4]. This helps to optimize
design parameters and quality characteristics, which ultimately helps to minimize failure
tolerances and establish maintenance strategies [5,6].

Prognostics and health management (PHM) is an engineering method enabling the
diagnostics and prognostics of products and systems based on in situ health monitoring,
offline degradation patterns, and the identification of failure modes and mechanisms. There
are multiple failure modes of power MOSFETs that can be grouped as package structure
failure and precursor drift failure. Each failure mode can be caused by one or multiple
failure mechanisms. According to the literature, the common failure mechanisms in power
devices can be either chip-related (intrinsic) or package-related (extrinsic) [1,5].

Chip-related failures occur during the body diode and gate oxide degradation, while
package-related failures happen during bond wire failures (liftoff or fracture) and solder
layers degradation due to wear-out (degradation) or overstress [2,7]. In fact, the package-
related failures are due to thermomechanical stress caused by a mismatch in the coefficient
of thermal expansion of multilayer material. This mismatch, in turn, occurs when power
MOSFETs are subjected to thermal cycling stress. As the reliability of such power semicon-
ductor devices is greatly affected due to various failure mechanisms, lifetime prediction has
become a critical issue in avoiding catastrophic failures by taking early warning measures.
The lifetime prediction of power devices demands understanding the dominant failure
modes and mechanisms. Consequently, the first and most important task in the lifetime
prediction of power devices is the extraction of failure precursor data. Thereupon, the
extraction of dominant failure precursor parameters leads to the selection of an appropriate
prognostic method [1]. The main failure precursors often used for power MOSFETs are
on-state resistance (Rdson), threshold voltage (Vth), and junction temperature (Tj), while
collector–emitter voltage (VCE) and collector–emitter current (ICE) [8–11] are used for IGBTs.

The studies on PHM for power devices can be divided into three categories: physics-
based, data-driven, and fusion prognostic approaches. Physics-based models, also known
as model-based approaches, employ mathematical models or equations developed based on
the first principle of damage or degradation mechanisms observed with experiments. These
models utilize knowledge about the system’s or product’s lifecycle loading and failure
mechanisms to perform reliability modeling and lifetime assessment [12,13]. For example,
model-based approaches make use of junction temperature swings and cycles for failure
data based on empirical or analytical lifetime models such as the Coffin–Manson model,
the Bayerer model, the Norris–Landzberg model, and so on in the lifetime estimation of
power devices [1,14].

In model-based approaches, filtering algorithms such as Kalman filtering (KF) and
particle filtering (PF) as well as Bayesian methods are usually employed to estimate model
parameters recursively by using measured data. Dusmez et al. [15] used the KF algorithm
for the lifetime estimation of thermally stressed MOSFETs, with an assumption of a linear
system with Gaussian noise, which is often idealistic. Patil et al. [9] used the particle
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filter algorithm in the lifetime prediction of IGBTs with emitter–collector current data.
Wu et al. [16] employed an improved PF algorithm on a thermally overstressed MOSFET
dataset. Although there is some progress in the model-based prognostics for power MOS-
FETs, physical models that describe the evolution of degradation are not accurate, as the
future operating condition is usually uncertain. In addition, it is challenging to formulate a
physical model that describes the degradation of power MOSFETs working under complex
and dynamic systems. Also, the popular methods for model parameter estimation, such as
PF, have the drawback of particle degeneracy, and KF assumes ideal system linearity with
Gaussian noise.

On the other hand, data-driven approaches implement algorithms and methods that
recognize patterns from large amounts of experimental or simulation data to drive empir-
ical degradation models. These methods do not require an explicit mathematical model
to describe the evolution of power MOSFET degradation. Recently, artificial intelligence
(AI) and machine learning algorithms benefited the power electronics sector due to their
immense potential in anomaly detection, diagnostics, and the prognostics of semiconductor
device degradation [17]. There are very few assumptions made about the underlying prin-
ciples governing the lifetime of power devices, as machine learning predictive algorithms
are trained with raw data performance indicators or precursors. Pugalenth, et al. [18]
employed a feed-forward neural network to model the reliability of power converters
using run-to-failure data. Although they are able to predict the future lifetime, vanilla
neural networks are not designed for sequential data and are less accurate. Zhao et al. [19]
derived composite precursor parameters and applied a genetic programming algorithm in
the lifetime prediction of power devices. Similarly, fusion prognostic approaches can be
employed in lifetime prediction, as they leverage the advantages of both data-driven and
model-driven methods.

In general, classical model-based approaches and statistical and filtering algorithms
have limitations in terms of handling the dynamic failure precursor (performance data)
degradation nature of power devices. Although there are some studies on lifetime pre-
diction, they are not often on the prognostics of power MOSFETs based on degradation
data collected under realistic working conditions and do not utilize advanced prognostic
approaches. Recently, the recurrent neural network (RNN) has been used to overcome
these shortcomings. The notion of time step introduced in RNNs makes it suitable for
sequential learning [20], including natural language processing, machine translation, image
captioning, genomic analysis, and so on [21]. Nevertheless, RNN also suffers from the
problem of gradient exploding or vanishing, which led to the introduction of the long
short-term memory (LSTM) algorithm. LSTM networks are a popular variant of RNN that
are able to address the shortcomings of traditional RNN due to their long-term memory
capacity. With their immense ability to predict long-term degradation dependency, deep
learning algorithms such as LSTM and GRU have been widely used for time-series data
prediction in LEDs, batteries, and other applications [22,23].

In this paper, a prognostic method based on LSTM and its variant GRU algorithm
is developed to estimate the lifetime of power devices. The study mainly focuses on the
long-term lifetime prediction of power MOSFETs using failure precursor data. An acceler-
ated aging test based on power cycling is conducted to gather electrical failure precursor
parameters for the power device test samples. The accelerated aging test designed in this
work is based on a power cycling test where power devices are supplied with electrical
power and exposed to a certain period of ON/OFF, which is suitable for mimicking real
application conditions. The on-state resistance degradation precursor will be used as the
long-term time-series data to train and validate the proposed LSTM and GRU models. The
failure precursors have been partitioned as training and testing sets for proposed neural
network structures to prevent information leakage in the developed model.

The remaining part of this paper is organized as follows: Section 2 describes the
prognostic model developed based on the deep learning algorithms RNN, LSTM, and GRU.
The experimental design and setup employed to gather the accelerated aging degradation
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data are described in Section 3. In Section 4, the experimental results, the details of data
analysis, as well as results and discussions are presented, and conclusions are drawn in
Section 5.

2. Description of the Proposed Theory and Methodology

In this section, an overview of the proposed methodologies will be discussed. The
proposed models and algorithms for modeling the degradation of power MOSFET device
test samples and deep learning-based reliability assessment and lifetime prediction are
introduced. The prognostic model developed based on the LSTM and GRU algorithms as
well as the model regularization and prediction accuracy metrics for the performance degra-
dation of power MOSFET test samples are presented. Figure 1 shows an overview of the
experimental design and setup for data collection, the prognostic model with LSTM/GRU
networks, and the long-term lifetime prediction and evaluation methodology.
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There are a few considerations that have to be addressed in the application of LSTM
for the long-term lifetime prediction of power MOSFETs. The first consideration is an
appropriate choice of training algorithms that are suitable for deep learning, as some of the
classical stochastic gradient descent- or batch gradient descent-based training algorithms
tend to be slower to converge to optimal solutions. The second issue is handling the
problem of overfitting, as it is one of the drawbacks of deep neural networks in general
and the LSTM algorithm in particular.

Thus, a prognostic model based on the LSTM and GRU long-term lifetime prediction
algorithms is developed to address these challenges by incorporating three elements.
These are the LSTM/GRU algorithm architectures and network parameter training using
the Adam optimization method as well as the dropout to prevent overfitting problems
encountered in deep learning. Adaptive moment optimization (Adam) is an efficient
optimization algorithm that uses estimates of a gradient’s first and second moments to
adapt the learning rate for each neural network weight. This algorithm is often used instead
of the traditional stochastic gradient descent procedure, as it requires low memory and
combines the advantages of its predecessor, the adaptive gradient algorithm (AdaGrad),
and root mean square propagation (RMSProp) [24].

2.1. An Overview of RNN, LSTM, and GRU

As computing power grows, machine learning algorithms have become an essen-
tial part of many industrial and business sectors. The application of machine learning
algorithms has shown tremendous growth in the diagnostics, prognostics, anomaly de-
tection, and general reliability assessment of power electronic components and systems.
This is because machine learning algorithms are able to overcome the drawbacks of tradi-
tional model-based and statistical approaches in handling uncertainties in terms of noise
factors, unknown failure mechanisms, as well as dynamic environmental and loading
conditions [17].

2.1.1. Standard Recurrent Neural Networks (RNN) Architecture

In classical multilayer perceptron (MLP), also known as feed-forward neural networks,
information flows in one direction (i.e., forward propagation), which makes it not suitable
for time series data. Recurrent neural networks are variants of neural networks that are
suitable for sequence learning, as they allow for the use of the previous layer output as
the input to the current state in order to predict the future layer output [20]. This cell
architecture enables RNNs to have a state and thus a memory which is used to capture
information operations in previous states. A typical architecture for an RNN unrolled in
time t in the estimation of performance parameters (such as Rdson) for power MOSFETs is
shown in Figure 2.
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It can be noticed that the recurrent neuron is fed not only information from xt from
the current time step ti but also a hidden state ht−1 from the previous time step ti−1. Then,
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an output yt will be generated at the output layer along with an updated hidden state ht.
This process can generally be described mathematically, as follows:

ht = f (Whxt + Uhht−1 + bh) (1)

yt = f
(
Wyht + by

)
(2)

where f (.) is the activation function, Wh, Uh, and Wy are the weight matrices between the
hidden and input layer, the hidden layer and itself, as well as the output and hidden layers,
respectively, at adjacent time steps. Similarly, the vectors bh and by are bias parameters
added at hidden and output layers that enable the nodes to learn an offset [20]. Theoretically,
RNNs are thought to have the capability of handling long-term dependencies. Practically,
however, RNNs are able to look back 5–10 time steps [21], as they suffer from vanishing
or exploding gradients during the back-propagation of error signals. The LSTMs are
specifically designed to overcome such problems and are suitable for sequential time series
modeling, as discussed in the next section.

2.1.2. Long Short-Term Memory (LSTM) Algorithm Architecture

Long short-term memory (LSTM) is a special variant of RNN used in the area of
deep learning. Introduced by Hochreiter et al. [25], the LSTM is a powerful algorithm
for overcoming exploding and vanishing gradient problems observed with simple RNNs.
Due to this, LSTMs are found to be suitable for sequential time-series data analysis with
long-term dependencies. The network architecture of an LSTM cell is shown in Figure 3a. It
can be observed that an LSTM cell has three sigmoid (σ) activation functions which control
the flow of information and protect the input (it), forget ( ft), and output (ot) gates. These
sigmoid gates are activated by inputs from the current input layer xt as well as from the
hidden layer ht−1 at the previous time step, which enables the LSTM algorithm to function
as intended. The cell state (also called the internal state or memory), Ct, is used to preserve
information at the current time.
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The mathematical formulation for each gate and the operation of the LSTM algorithm
are described in this section. The first step is to identify which information to remember
and, on the other hand, to choose the information that has to be forgotten. This is executed
by the forget gate, which uses the sigmoid function. The sigmoid function takes the inputs
xt and ht−1 and outputs values between 0 and 1, where 0 represents discarding everything
and 1 represents preserving everything from the previous cell state.

ft = σ
(

W f xt + U f ht−1 + b f

)
(3)
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The second step is to decide what information to store in the cell state, which is
determined by the input gate layer with a sigmoid function, and candidate information can

be saved as
∼
Ct at new cell states as follows:

it = σ(Wixt + Uiht−1 + bi) (4)

∼
Ct = tanh(WCxt + UCht−1 + bC) (5)

Combining Equations (3) to (5), the values of old cell states Ct−1 can be updated as the
current cell state or cell memory Ct and calculated as follows:

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (6)

Third, the output gate layer determines what information to output as ot with the
sigmoid function and output hidden state ht, as follows:

ot = σ(Woxt + Uoht−1 + bo) (7)

ht = tanh(Ct)� ot (8)

In these equations, Wi, Ui; Wo, Uo and W f , U f are weight vectors for the input, output, and
foregate gate layers, respectively, and bi, bo, and b f are the biases for the input, output, and
forget gates between the current time t and previous time t− 1 in the LSTM network. The
symbol � is the unit by the element-wise product, also known as the Hadamard product.
In addition, σ and tanh are sigmoid and hyperbolic tangent activation functions that map
values between 0 and 1 and between −1 and 1, respectively. The values for the σ and tanh
functions are calculated by using:

σ(x) =
1

1 + e−x and tanh =
1− e−2x

1 + e−2x (9)

The standard LSTM and GRU algorithms have Bi-LSTM and Bi-GRU architecture
variants, which are the variants of the standard networks; they have forward and backward
propagation. This paper will not implement the Bi-LSTM and Bi-GRU variants in the deep
learning algorithm for sequential data modeling.

2.1.3. Gated Recurrent Unit (GRU)

The gated recurrent unit (GRU) is another variation of an LSTM that has a simplified
neural network compared to LSTM. GRU was first introduced by Cho et al. [26] for machine
translation. It has been widely adopted in the prognostic application for degradation
modeling [22]. The GRUs are considered less computationally expensive, as they use fewer
training parameters, resulting in faster convergence and a good choice for smaller datasets.
On the other hand, LSTMs may work better for larger datasets, as they retain more temporal
information. The cell structure of GRU has only two gates (i.e., a forget gate and an update
gate), with no separate output gate, as shown in Figure 3b, and the equations are as follows:

rt = σ(Wrht−1 + Urxt + br) (10)

zt = σ(Wzht−1 + Uzxt + bz) (11)

∼
ht = tanh(W(rt � ht−1 + Uxt + bh)) (12)

ht = zt �
∼
ht + 1− zt � ht−1 (13)
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Here, rt and zt are the reset gate and update gate, respectively, while xt is the current input
for the cell at time t; ht−1 denotes the previous output of the hidden layer; and σ is the

sigmoid function.
∼
ht is the state candidate that uses the tanh function to scale the date for

the current state ht. The network architectures of the deep RNN, LSTM, as well as GRU can
be represented as shown in Figure 4.
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2.2. Training Algorithm for LSTM and Variants

A proper selection of a training algorithm is an important part of learning with neural
networks. The gradient descent or loss function has been a widely used optimization
algorithm. In addition, the LSTM algorithm has been trained using Root Mean Squared
Propagation (RMSProp) and the Adaptive Gradient (AdaGrad) version of gradient descent.
Whereas the former is an extension of the gradient descent or loss function, the latter uses a
decaying average of partial gradients in the adaptation of the step size for each parameter.
In this paper, Adam (adaptive moment estimation) optimization is used, as it helps to
realize the advantages of both RMSProp and AdaGrad and is hence considered the popular
optimization algorithm for most machine learning approaches.

2.3. Model Regularization to Overcome Overfitting

One of the common drawbacks of training neural network algorithms such as LSTM
is overfitting. The accuracy of a model will be in doubt, even if it shows overfitting, as
the model is trying to capture all the noise and outliers available in a dataset. In general,
overfitting is a scenario where the LSTM or GRU model tries to learn from the details
along with the noise in the data and tries to fit each data point on the curve, while the
model curves may not correspond to the patterns in the new data. To overcome overfitting,
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regularization is employed so that it prevents models from either overfitting or underfitting
by discouraging the learning of a more complicated or flexible model. Mainly, three types
of methods, namely, Lasso (L1), Ridge (L2), and dropout regularization, have been used to
prevent overfitting. A combination of L1 and L2, known as Elastic Net regression (L1/L2
regularization), can also be applied. L1 regularization sums up the absolute value of
weights to the network, and L2 regularization adds the sum of all squares of the weights in
the network. Recently, dropout regularization [27] has been found to be effective for neural
networks in preventing overfitting and, as a result, has been used in the prognostics of
batteries using LSTM [28].

2.4. Prediction of Long-Term Lifetime

Due to the thermal, electrical, mechanical, and humidity stress that discrete or module
devices are exposed to, their failure mechanism leads to degradation or device failure. As a
common phenomenon, the degradation failure mechanism dominates, and in the power
electronics industry, the failure threshold of power MOSFETs is when the on-state resistance
(∆Rds(on)) reaches up to 17% [1] of its initial or pristine state value. Other performance
parameters such as the threshold voltage (Vth) and drain current (Id) are also considered
failure precursors when the threshold values reach 20% [7] and five times (5×) [5] of their
initial values, respectively [29]. Thus, for power MOSFETs, the RUL can be estimated when
a certain failure precursor crosses the failure threshold.

RUL = TEOL − Tpred (14)

where TEOL is about a 17% increment from the pristine state Rdson value, considering
on-state resistance as the main failure precursor (degradation parameter); Tpred is the time
when the prediction started considering a certain portion (30%, 50%, or 70% of training
data) from degradation trend data.

The initial on-state resistance value at a pristine state is 37.137 mohm for DUT #1,
36.733 mohm for DUT #5, and 37.231 mohm for DUT #9; the respective failure threshold
will be 44.56 mohm, 42.98 mohm, and 43.56 mohm. However, the degradation value shows
that the failure precursor values of the devices have not crossed their failure threshold,
and thus, the prediction metrics of MAE, MSE, and RMSE will be suitable for long-term
lifetime prediction.

3. Experimental Setup and Data Collection

In this section, an overview of the experimental design, and setup for gathering failure
precursor parameters or degradation data and assessing the reliability of power devices is
presented. The experimental design mainly focuses on the determination of accelerated
power cycling conditions and the identification of potential failure precursors suitable
for degradation analysis and non-destructive failure analysis. This will be of benefit in
determining the main failure precursors that can be used for long-term lifetime prediction,
which ultimately helps to decide appropriate maintenance activities and enhance the quality
and reliability of such power devices.

3.1. Description of Experimental Test Samples

The test sample considered in this study is a commercial power MOSFET with a
power rating of 600 V and a maximum current capacity of 49 A. The packaging is type
TO-247, which is designed for high-voltage applications with super-junction (SJ), which is
characterized by fast switching and has low conduction and switching losses. The pictorial,
schematic, as well as cross-sectional views of the test sample power MOSFET device are
presented in Figure 5.
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The main performance parameters of the power MOSFET test samples are given in
Table 1, as follows.

Table 1. Basic Performance Parameters of Test Samples.

Parameters Description of Parameters and Values

Vds @ Tjmax 650 V

Pulsed drain current ID,pulse 272 A

Continuous drain current (ID) 77.5 A @ TC = 25 ◦C
49 A @ TC = 100 ◦C

Eoss @ 400 V 22 µJ

Power Dissipation, Ptot 481 W @ TC = 25 ◦C

Body diode di/dt 300 A/µs

3.2. Experiment Design, Setup, and Data Collection

In this paper, an accelerated degradation test based on power cycling was conducted
on power MOSFETs, aimed at assessing the long-term lifetime of these devices at a discrete
level by investigating the impact of long-term thermal and electrical stresses on failure
precursor parameters or the degradation of performance. Comprehensive failure precursor
data are collected, which help to identify dominant parameters that can be explored in the
remaining useful life estimation of these devices at the accelerated test condition.

In this experiment, twelve samples of power MOSFETs from the same batch were
prepared in three groups with different junction temperature (Tj) swing scenarios. Each
degradation testing scenario consisted of four test samples, where each group was set for
a Tj swing of 45 ◦C, 100 ◦C, and 110 ◦C, in which the Tjmin and Tjmax range from 40 ◦C to
85 ◦C, 25 ◦C to 125 ◦C, and 25 ◦C to 135 ◦C, respectively. The design of the experiment for
the different Tj swing scenarios is based on the various working environments of power
MOSFETs, which can be related to real-world conditions. The test samples in all groups
were aged under a normal ambient temperature of 23 ± 2 ◦C for a total of 77,600 cycles.
The various static and dynamic electrical characteristics, which are considered as failure
precursors, were collected every 400 cycles, where a single cycle covers a time of 45 secs ON
(heating) and 90 secs OFF (cooling) with a power tester (MicReD PowerTester 1500 A). In
general, the experiment had two phases: accelerated aging and failure precursor parameters
testing, which continued until sufficient degradation data were obtained. An overview of
the overall experimental design for an accelerated degradation test, the experimental setup,
and the data collection procedure is shown in Figure 6.
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Figure 6. Experimental design and setup for data collection.

In general, the experimental design parameters, testing conditions, and a brief sum-
mary of the test duration, number of cycles, as well as failure precursors are shown in
Table 2.

Table 2. Test conditions for the experiment.

Terms Parameters Test Conditions

Testing duration Number of cycles/hours 77,600 cycles

Testing cycle ON/OFF time 135 s (45 s on and 90 s off)

Interval of precursor data collection

On-state resistance (Rds(on))

every 400 cycles

Threshold Voltage (Vgs(th))

Body Diode Voltage (Vsd)

Drain Current (Idss)

Capacitance (Ciss, Coss, Crss)

Testing conditions (input electrical and
thermal parameters)

Scenario 1: Tj = 40 ◦C to 85 ◦C
Scenario 2: Tj = 25 ◦C to 125 ◦C
Scenario 3: Tj = 25 ◦C to 125 ◦C

Current: ≤49 A rated current
Voltage: 8 V for 4 MOSFETs for

each scenario
14.2 V supplied for the PCB

Temperature Ambient Tc = 22 ± 3 ◦C

3.3. Failure Precursors Data Collection

The test samples are removed from the Powertester every 400 cycles and plugged into
the curve tracer, as shown in Figure 6, for parameter measurement. A total of nine electrical
parameters were measured during the power cycling-based accelerated degradation test
including the on-state resistance (Rdson), threshold voltage (Vth), body diode forward
voltage (Vsd), breakdown voltage (Vbr), drain current (Idss), drain-source on-state voltage
(Vdson), input, output, and reverse transfer capacitances (Ciss, Coss, and Crss), using a power
device analyzer (Keysight B1505 A). A change in a failure precursor parameter can be
attributed to various failure mechanisms that lead to a certain failure mode when they cross
a specified failure threshold that varies based on a specific application. More details on
the failure precursors of power MOSFETs will be reported in a separate study. The failure
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precursor chosen for this study is the on-state resistance, and the results for test samples 1,
2, 5, 6, 9, and 10 are shown in Figure 7.
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A specific failure precursor parameter can be used to develop failure models that
can capture the degradation trend. For instance, the change in on-state resistance (Rdson)
demonstrates the presence of die degradation and bond-wire lift-off, which could be caused
by a high electric field and thermal runaway [1]. Some failure modes can be caused by a
shift in one or multiple failure precursors, which makes the degradation modeling of power
devices challenging. The failure precursors will show either an increasing, decreasing,
or constant trend depending on the power-MOSFET response to dynamic thermal and
electrical stresses.

It can be noticed that the on-state resistance values non-monotonically increase as the
aging time increases, unlike other failure precursor parameters. This demonstrates the
presence of die degradation and bond-wire lift-off, which could be caused by a high electric
field and thermal runaway. This is potentially attributed to an increase in the drain-to-
source voltage (VDS). The increasing trend of on-state resistance for aged power MOSFETs
has also been reported in [8,30]. There is an obvious unit-to-unit variability among samples
under the same scenario, which may arise from manufacturing imperfections. On the
other hand, the degree of degradation shows that samples with higher temperature swings
(110 ◦C and 100 ◦C) have shown a higher degree of on-state resistance variation compared
with samples with a lower Tj (45 ◦C). From the comprehensive accelerated test, the on-state
resistance data are found to be representative of the degradation pattern in power MOSFETs
when exposed to long-term power cycling tests or applications. Based on this long-term
time series precursor data, the LSTM and GRU neural network can be used to predict the
future lifetime of power MOSFETs.

3.4. Data Preprocessing and Evaluation Metrics

In order to use the appropriate degradation data and apply the proposed algorithm to
long-term lifetime prediction, data preparation and preprocessing should be conducted.
The degradation data have passed through preliminary screening, the elimination of
outliers (checking data with 3-σ in a normal distribution), the removal of noise, as well as
normalization. The probability plot is used to assess whether the failure precursor data can
follow the normal distribution. Although it is not a requirement for the data to be within a
±3σ range, it will help the neural network learn and perform better.
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In this study, the simple moving average filter (MAF) is used to avoid noise in the
original data using Formula (15). In this equation, n is the total number of measured values,
k is the window size, xi is the original value, and xk is the data after filtering. Using a value
of k = 3, the filtered data used in the process of model training and prediction are plotted,
as shown in Figure 8.

xk =
1
k

n

∑
i=1−k+1

xi (15)
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In addition to noise removal, the input data have been normalized between the values
of [0, 1] to make them suitable for the algorithm using the following equation.

xN =
x− xmin

xmax − xmin
(16)

where xN is the normalized value, xmin is the minimum value, and xmax is the maxi-
mum value.

The relative prediction performance of the proposed algorithms compared to other
variants of deep learning methods can be compared quantitatively using three accuracy
metrics or indexes including the mean average error/mean absolute percentage error
(MAE/MAPE), mean squared error (MSE), and root mean squared error (RMSE), as given
in Equations (17)–(19). The MAPE and RMSE are preferred metrics due to their ability to
punish large errors with square roots [31].

MAE =
1
n
|ei| =

1
n

n

∑
i=1
|yi − ŷi| (17)

The mean squared error (MSE) is given as follows:

MSE =
1
n

n

∑
i=1

e2
i =

1
n

n

∑
i=1

(yi − ŷi)
2 (18)

The root mean squared error (RMSE) is also described as:

RMSE =

√
1
n

n

∑
i=1

e2
i =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (19)

where yi and ŷi denote real and predicted values, respectively, whereas ei represents the
error (the difference between yi and ŷi) values.
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4. Results and Discussion

In this section, an analysis of the on-state resistance degradation data for three samples
that represent different power cycling conditions is conducted to validate the proposed
algorithm. All the tests are implemented with Python 3.9 on a laptop equipped with an
AMD Ryzen 7-5800 H processor (16 MB cache, up to 4.4 GHz), 16 G DDR4 3200 memory, and
an NVIDIA GeForce RTX 3050 4 GB graphic card. All the proposed algorithms in this paper
including simple RNN, LSTM, as well as GRU have similar model arrangements, except
for the replacement of each particular algorithm for computation and a fair comparison of
the prediction results.

The proposed LSTM/GRU predictive algorithms are trained using the training set
and optimized according to their performance on the validation set. The performance of
each model at different prediction points was evaluated using only testing data that were
not included in the training process to prevent information leakage. The one-step and
multi-step prediction of long-term power MOSFET degradation data can be conducted.
The one-step ahead prediction is mainly suitable for online failure prediction, as all-failure
precursor measurements cannot be easily obtained while working. On the other hand,
a prediction of a long-term degradation trend suggested that LSTMs and variants are
suitable for reflecting on future degradation phases [32]. Thus, multi-step prediction is
used in the proposed LSTM algorithm and compared with the traditional simple RNN and
GRU methods.

4.1. Data Preprocessing, Parameter Setting, and Model Formation for the Models

The degradation data from power MOSFETs 1, 5, and 9 (selected one sample from each
testing condition) are used to validate the proposed algorithm. To make a fair comparison
of the different algorithms for validation, the model parameters are kept similar. The
configurations of the RNN, LSTM, and GRU models considered are as follows: an Adam
optimizer with a default learning rate = 0.001, two hidden layers with 128 and 64 neurons,
one output layer, an Adam optimizer, a training loss that the model minimizes, which is a
mean squared error, an epoch size = 100, and a batch size = 16, as shown in Table 3.

Table 3. Model Architecture and Summary.

Model Number of Units Optimizer Training Loss Function Dropout Activation

RNN (128, 64) Adam Mean Squared Error 20% (0.2) relu

LSTM (128, 64) Adam Mean Squared Error 20% (0.2) relu

GRU (128, 64) Adam Mean Squared Error 20% (0.2) relu

4.2. Implementation of RNN/ LSTM/GRU Models and Prediction Results

After setting up the model parameters, the model is trained with training data, and
the future lifetime of power MOSFETs is predicted with three different prediction starting
points (cycles). These prediction starting points considered are the on-state resistance data
of the first 24,000 cycles (i.e., 30% of the full degradation path), 40,000 cycles (i.e., 50% of
the full lifetime), as well as 57,600 cycles (i.e., 70% of the full lifetime). The training and
testing partition of the degradation data is performed, as shown in Figure 9.

The long-term lifetime prediction of power MOSFETs with a starting point of 40,000 cy-
cles is carried out first, followed by 24,000 cycles and, finally, 57,600 cycles. This procedure
will be helpful in comparing the prediction performance of algorithms with multiple train-
ing and testing datasets. After training the proposed algorithms with 40,000 cycles of
on-state resistance degradation data, the model losses showed that RNN has faster conver-
gence compared to LSTM and GRU, whereas the training and testing losses are smaller for
the advanced model at the end of model training, as depicted in Figure 10.
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The multi-step ahead prediction results based on the on-state resistance degrada-
tion data for power MOSFET 1 at a starting point of 40,000 cycles (50% training and
50% testing split) using the RNN, LSTM, and GRU algorithms are carried out, as shown
in Figure 11.

It can be noted that the prediction accuracy of the LSTM and GRU is superior compared
to that of the simple RNN algorithm, with an MAPE of 0.9%, 0.78%, and 1.72%, respectively.
The prediction metrics results at 40,000 cycles, where the first 50% of the data are used
in model training, and at 24,000 as well as 54,000 cycles of training data are shown in
Figure 12. It can be noted that the LSTM and GRU performed better for the prediction
compared to the RNN as the results of MAPE manifested. Similarly, the distribution of the
prediction error from the estimated and testing data is plotted in Figure 11e and confirms
the prediction metrics results, with a wide base distribution error for RNN and a narrow
distribution for LSTM and GRU.

The difference in the performance of the proposed prognostics algorithms for MOSFET
1 can be easily observed by visualizing the MAPE, MSE, and RMSE of estimates at the
different starting points of measured data, as shown in Table 4.

In addition, the long-term lifetime prediction of the MOSFET 5 and 9 test samples from
two different conditions of junction temperature swing is performed at a 40,000 starting
point. The prediction results along with the distribution of the model prediction error
are shown in Figures 13a–d and 14a–d. In the prediction process, the training loss for
RNN converged faster compared to that of LSTM and GRU, which may be attributed to its
simplified cell architecture, as shown in Figures 15 and 16. Similarly, the on-state resistance
prediction error estimated from 40,000 cycles of the starting point of the training and testing
data values using the RNN, LSTM, and GRU prediction models is shown in Figure 13e.
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Table 4. Prognostic Performance (Prediction Error) Metrics Summary for MOSFET 1.

Model Starting Points MAPE MSE RMSE

RNN

24,000 0.0197 0.245 0.495

40,000 0.0172 0.699 0.832

57,600 0.0165 0.746 0.864

LSTMs

24,000 0.0079 0.203 0.451

40,000 0.009 0.366 0.459

57,600 0.0103 0.264 0.514

GRU

24,000 0.0092 0.236 0.485

40,000 0.0078 0.318 0.422

57,600 0.0103 0.268 0.518

4.3. Discussion Based on Lifetime Prediction Metrics and Model Robustness

As the prediction of long-term lifetime is conducted using the proposed method on
degradation data, the next logical procedure is to evaluate the model prediction error. The
model prediction error for such a regression type of the problem is mainly assessed using
MAPE, MSE, as well as RMSE. The robustness of the proposed method is tested by using
different proportions of training data or measurement cycles of failure precursors. Here,
the long-term lifetime of two test samples (MOSFET 9 and 5) is explored at 24,000 and
54,000 cycles of starting points with 30% and 70% training data and 70% and 30% testing
data, respectively, to demonstrate the robustness of the proposed algorithms.

Figure 17 presents the prediction plots and distribution of prediction error at 24,000 cy-
cles of a starting point for MOSFET 9 degradation data. It can be noted that the prediction
accuracy has decreased for the three models, as the algorithms used less training data. On
the other hand, the RNN model is less affected by the smaller dataset, as its capability is
also limited by shorter memories compared to the LSTM and GRU algorithms.
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Similarly, the prediction plots at 54,000 cycles of the starting point and the distribution
of prediction errors for MOSFET 5 degradation data are presented in Figure 18. The results
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showed that GRU and LSTM outperformed the simple RNN model. In addition, the overall
prediction accuracy of the three models increased as more training on-state resistance
degradation data were used, as compared to the fewer training data of 24,000 (30%) and
40,000 (50%) cycles.
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Although the prediction plots are displayed for the randomly selected test samples
1, 5, and 9 due to space limitations, all these prediction results are given as depicted in
Tables 4–7. Based on the long-term lifetime prediction, the model performance metrics
results with MAPE, MSE, and RMSE for MOSFETs 1, 5, and 9 at 24,000 cycles of (30% of a
full lifetime) starting points are shown in Table 5.

Table 5. Prediction performance of three models at 24,000 cycles of starting points.

Test Samples Indices RNN LSTM GRU

MOSFET #1

MAPE 0.0197 0.0079 0.0092

MSE 0.2452 0.2031 0.2356

RMSE 0.4952 0.451 0.4854

MOSFET #5

MAPE 0.0090 0.0066 0.0073

MSE 0.1948 0.1271 0.1309

RMSE 0.4413 0.3565 0.3618

MOSFET #9

MAPE 0.0075 0.0083 0.0074

MSE 0.1462 0.1681 0.1363

RMSE 0.3824 0.4099 0.3692

As shown in Table 6, the MAPE prediction error metrics at 40,000 cycles of the starting
point are 1.72%, 0.90%, and 0.78% for MOSFET 1; 0.94%, 0.6%, and 0.6% for MOSFET 5; and
1.05%, 0.91%, and 0.78% for MOSFET 9 using the RNN-, LSTM-, and GRU-based models,
respectively. Similarly, the MSE and RMSE results for the model performance metrics are
given in the same chart. These results showed that the LSTM- and GRU-based prognostic
models performed better compared to the simple RNN-based model. In addition, the
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prediction error decreased compared to the previous scenario, where training data of only
24,000 cycles of starting points was used.

Table 6. Prediction performance of three models at 40,000 cycles of starting points.

Test Sample Indices RNN LSTM GRU

MOSFET #1

MAPE 0.0172 0.009 0.0078

MSE 0.6992 0.3664 0.3178

RMSE 0.832 0.459 0.422

MOSFET #5

MAPE 0.0090 0.0066 0.0060

MSE 0.2250 0.1174 0.1017

RMSE 0.4743 0.3426 0.3189

MOSFET #9

MAPE 0.0105 0.0091 0.0078

MSE 0.2831 0.2048 0.1569

RMSE 0.5321 0.4525 0.3961

Table 7. Prediction performance of three models at 54,000 cycles of starting points.

Test Sample Indices RNN LSTM GRU

MOSFET #1

MAPE 0.0165 0.0103 0.0103

MSE 0.7458 0.2641 0.2678

RMSE 0.8636 0.5139 0.5175

MOSFET #5

MAPE 0.0103 0.0074 0.0065

MSE 0.1811 0.1697 0.245

RMSE 0.4256 0.4119 0.3528

MOSFET #9

MAPE 0.0107 0.0089 0.0065

MSE 0.2706 0.1952 0.1035

RMSE 0.5202 0.443 0.3217

Lastly, the MAPE, MSE, and RMSE prediction error metrics at 54,000 cycles of starting
points for MOSFET 1, 5, and 9 are given in Table 7. The long-term lifetime prediction results
for MOSFET 9 show MAPE results of 1.07%, 0.89%, and 0.65% with RNN, LSTM, and GRU,
respectively. These prediction results show that the model’s prediction accuracy increases
as it receives more training data compared to 24,000 and 4000 cycles of starting points, and
GRU- and LSTM-based models predict better compared to the RNN model.

It is worth noting that the prediction errors with more training data (such as 70%) are
smaller and closer to the actual or measured value compared with the models using less
training (such as 30%) data, as shown in Tables 5 and 7, respectively. This is interesting,
as the prediction uncertainty increases with an increase in the long-term prediction curve
and less training data. Overall, the prediction metrics values of the proposed LSTM and
GRU methods showed accurate and precise long-term estimation, which shows a reliable
multistep-ahead prediction for power MOSFET degradation precursor parameters.

In general, the long-term lifetime prognostics results showed that the proposed algo-
rithms are suitable for dealing with failure precursor degradation analysis problems for
power MOSFETs. The LSTM and GRU performed better compared to the simple RNN
model for long-term lifetime predictions. It is also worth noting that the convergence speed
of RNN and GRU is faster than that of LSTM in model training, which is attributed to the
simpler internal cell structure of RNN followed by GRU relative to LSTM networks.



Mathematics 2023, 11, 3283 22 of 23

5. Conclusions

In this study, data-driven deep learning algorithms based on LSTM and GRU are used
to predict the future degradation pattern and, hence, the lifetime of power MOSFET devices.
As one of the dominant performance parameters, the on-state resistance failure precursor
data of these devices are considered in the implementation of the proposed algorithm. To
demonstrate the proposed LSTM and GRU models, the on-state resistance data from an
accelerated degradation test based on power cycling were collected at different junction
temperature swings of 45 ◦C, 100 ◦C, and 110 ◦C. The adaptive moment estimation (Adam)
optimizer is used to update network weights. Dropout regularization (0.2) is employed
to prevent overfitting, and a learning rate of 0.0001 is set during data training for the
constructed neural network models.

The accuracy of prognostic models based on the RNN, LSTM, and GRU algorithms
is evaluated using the MAPE, MSE, and RMSE prediction metrics. The prediction results
based on the proposed LSTM and GRU showed an accurate and precise lifetime prediction
compared to the classic RNN algorithm. It is also worth noting that the convergence speed
of RNN and GRU is faster than that of LSTM in model training, which is attributed to the
simpler cell structures. The robustness of the proposed approaches is verified by using
30% and 70% of the measured data for model training in addition to the 50% training and
testing setup, which shows the adaptability of the model for power device degradation
trends. In general, the LSTM and GRU models are found to be effective for degradation
assessment and long-term lifetime predictions for power devices based on failure precursor
data. With an online data acquisition system, prognostic models can be employed in the
condition monitoring of power devices.
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