GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks
Abstract
:1. Introduction
2. Related Work
2.1. Local Community Detection
2.2. Overlapping Community Detection
2.3. Local Overlapping Community Detection
3. Preliminaries
3.1. Problem Statement
3.2. The Common Neighbor Similarity
3.3. Community Fitness Function
3.3.1. f(C) Method
3.3.2. ω(vi) Method
3.3.3. F(v, s). Method
3.4. The Jaccard Coefficient for Community Merging
3.5. F-Score
4. Materials and Methods
4.1. Seeding Phase
Algorithm 1 Seeding Phase |
Input: Graph G = (V, E); Input: NL collection of nodes without community tags Output: Seed S 1 S← 2 while NL≠ do 3 for ∈ NL do 4 //Filter the nodes with the greatest similarity 5 = Perform C the expansion phase for {} 6 = + 7 //Iterate step 4 until no node with the greatest similarity 8 ←({} ∪ ) 9 end for 10 end while 11 12 return S |
4.2. Expansion Phase
Algorithm 2 Expansion Phase |
Input: Graph G = (V, E); Seed S Output: Community C 1 for s ∈ S do 2 Ne = neighbors of s 3 for ∈ Ne do 4 , , 5 end for 6 if ← or or then 7 add to C 8 end if 9 end for 10 return C |
4.3. Merge Phase
Algorithm 3 Merging Phase |
Input: Overlapping node set 1 for ∈ do 2 for ∈ do 3 //computing 4 5 end for 6 if >= 1/3 then 7 if then 8 merge C 9 end if 10 end if 11 end for |
4.4. Complexity Analysis
5. Results
5.1. Datasets
5.2. Synthetic Networks
- LFR dataset with N = 5000 and .
- LFR dataset with N = 5000, μ = 0.3
- LFR dataset with N = 5000, = 0.4
5.3. Real-World Networks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dourisboure, Y.; Geraci, F.; Pellegrini, M. Extraction and classification of dense communities in the web. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 461–470. [Google Scholar]
- Krause, A.E.; Frank, K.A.; Mason, D.M.; Ulanowicz, R.E.; Taylor, W.W. Compartments revealed in food-web structure. Nature 2003, 426, 282–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battle, L.; Heer, J. Characterizing exploratory visual analysis: A literature review and evaluation of analytic provenance in tableau. Comput. Graph. Forum 2019, 38, 145–159. [Google Scholar] [CrossRef]
- Visser, R.M. Dendrochronological Provenance Patterns. Network Analysis of Tree-Ring Material Reveals Spatial and Economic Relations of Roman Timber in the Continental North-Western Provinces. J. Comput. Appl. Archaeol. 2021, 4, 230–253. [Google Scholar] [CrossRef]
- Gao, W.; Luo, W.; Bu, C. Adapting the Top Leaders algorithm for dynamic social networks. J. Supercomput. 2020, 76, 7883–7905. [Google Scholar] [CrossRef]
- Whang, J.J.; Gleich, D.F.; Dhillon, I.S. Overlapping community detection using neighborhood-inflated seed expansion. IEEE Trans. Knowl. Data Eng. 2016, 28, 1272–1284. [Google Scholar] [CrossRef]
- Fortunato, S.; Hric, D. Community detection in networks: A user guide. Phys. Rep. 2016, 659, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Zhang, D.; Jiang, H.; Ni, L.; Hu, Y. Local community detection with the dynamic membership function. IEEE Trans. Fuzzy Syst. 2018, 26, 3136–3150. [Google Scholar] [CrossRef]
- Stanton, I.; Kliot, G. Streaming graph partitioning for large distributed graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 1222–1230. [Google Scholar]
- Lancichinetti, A.; Fortunato, S.; Kertész, J. Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 2009, 11, 033015. [Google Scholar] [CrossRef]
- Ni, L.; Luo, W.; Zhu, W. Local overlapping community detection. ACM Trans. Knowl. Discov. Data (TKDD) 2019, 14, 1–25. [Google Scholar] [CrossRef]
- Reid, F.; McDaid, A.; Hurley, N. Partitioning breaks communities. In Mining Social Networks and Security Informatics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 79–105. [Google Scholar]
- Baltsou, G.; Christopoulos, K.; Tsichlas, K. Local Community Detection: A. Survey. IEEE Access 2022, 10, 110701–110726. [Google Scholar] [CrossRef]
- Gupta, S.K.; Singh, D.P.; Choudhary, J. A review of clique-based overlapping community detection algorithms. Knowl. Inf. Syst. 2022, 64, 2023–2058. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Zhao, Q. Research status of community detection based on local expansion. J. Commun. 2019, 40, 149–162. [Google Scholar]
- Newman, M.E.J.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 26113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiTursi, D.J.; Ghosh, G.; Bogdanov, P. Local community detection in dynamic networks. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 847–852. [Google Scholar]
- Yin, H.; Benson, A.R.; Leskovec, J.; Gleich, D.F. Local higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 555–564. [Google Scholar]
- Meng, F.; Zhu, M.; Zhou, Y.; Zhou, R. Local community detection in complex networks based on maximum cliques extension. Math. Probl. Eng. 2014, 2014, 653670. [Google Scholar]
- Christopoulos, K.; Baltsou, G.; Tsichlas, K. Local Community Detection in Graph Streams with Anchors. Information 2023, 14, 332. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, W.; Zhuo, X. Community-CL: An Enhanced Community Detection Algorithm Based on Contrastive Learning. Entropy 2023, 25, 864. [Google Scholar] [CrossRef] [PubMed]
- Qing, H. Estimating the number of communities in weighted networks. Entropy 2023, 25, 551. [Google Scholar] [CrossRef]
- Yao, B.; Zhu, J.; Ma, P.; Gao, K.; Ren, X. A Constrained Louvain Algorithm with a Novel Modularity. Appl. Sci. 2023, 13, 4045. [Google Scholar] [CrossRef]
- Wan, Y.; Tan, X.; Shu, H. Finding and Evaluating Community Structures in Spatial Networks. ISPRS Int. J. Geo-Inf. 2023, 12, 187. [Google Scholar] [CrossRef]
- Chakraborty, T.; Kumar, S.; Ganguly, N.; Mukherjee, A.; Bhowmick, S. GenPerm: A unified method for detecting non-overlapping and overlapping communities. IEEE Trans. Knowl. Data Eng. 2016, 28, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Yang, P.; Shi, X. An overlapping community detection algorithm based on density peaks. Neurocomputing 2017, 226, 7–15. [Google Scholar] [CrossRef]
- Rezvani, M.; Liang, W.; Liu, C.; Yu, J.X. Efficient detection of overlapping communities using asymmetric triangle cuts. IEEE Trans. Knowl. Data Eng. 2018, 30, 2093–2105. [Google Scholar] [CrossRef]
- Palla, G.; Derényi, I.; Farkas, I.; Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435, 814–818. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Fan, J. Local optimization for clique-based overlapping community detection in complex networks. IEEE Access 2019, 8, 5091–5103. [Google Scholar] [CrossRef]
- Xu, H.; Ran, Y.; Xing, J. An Influence-Based Label Propagation Algorithm for Overlapping Community Detection. Mathematics 2023, 11, 2133. [Google Scholar] [CrossRef]
- Li, X.; Sun, Q. Detect Overlapping Community Based on the Combination of Local Expansion and Label Propagation. Algorithms 2021, 14, 237. [Google Scholar] [CrossRef]
- Lin, H.; Zhan, Y.; Zhao, Z.; Chen, Y.; Dong, C. Overlapping Community Detection Based on Attribute Augmented Graph. Entropy 2021, 23, 680. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, Q.; Qu, Q.; Rasool, A. An overlapping community detection approach in ego-splitting networks using symmetric nonnegative matrix factorization. Symmetry 2021, 13, 869. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, B.; Chang, F. Overlapping community detection of bipartite networks based on a novel community density. Future Internet 2021, 13, 89. [Google Scholar] [CrossRef]
- Gao, R.; Li, S.; Shi, X.; Liang, Y.; Xu, D. Overlapping community detection based on membership degree propagation. Entropy 2020, 23, 15. [Google Scholar] [CrossRef]
- Li, Y.; He, J.; Wu, Y.; Lv, R. Overlapping community discovery method based on two expansions of seeds. Symmetry 2020, 13, 18. [Google Scholar] [CrossRef]
- Tsung, C.K.; Ho, H.J.; Chen, C.Y.; Chang, T.W.; Lee, S.L. Detecting overlapping communities in modularity optimization by reweighting vertices. Entropy 2020, 22, 819. [Google Scholar] [CrossRef] [PubMed]
- Kamuhanda, D.; He, K. A nonnegative matrix factorization approach for multiple local community detection. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28–31 August 2018; pp. 642–649. [Google Scholar]
- Hollocou, A.; Bonald, T.; Lelarge, M. Multiple local community detection. ACM SIGMETRICS Perform. Eval. Rev. 2018, 45, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Xiao, Y.; Wang, H.; Lu, Y.; Wang, W. Online search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, NY, USA, 22–27 June 2013; pp. 277–288. [Google Scholar]
- Riolo, M.A.; Newman, M. Consistency of community structure in complex networks. Phys. Rev. E 2020, 101, 052306. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, G.; Nan, Y. Semi-Supervised Local Expansion Method for Overlapping Community Detection. J. Comput. Res. Dev. 2016, 53, 1376–1388. [Google Scholar]
- Jeub, L.G.S.; Mahoney, M.W.; Mucha, P.J.; Porter, M.A. A Local Perspective on Community Structure in Multilayer Networks; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Asmi, K.; Lotfi, D.; Abarda, A. The greedy coupled-seeds expansion method for the overlapping community detection in social networks. Computing 2022, 104, 295–313. [Google Scholar] [CrossRef]
- Xiao, M.; Meng, X.W.; Shi, Y.C. A Circuits Merging Community Discovery Algorithm Based on Mobile User Behaviors. J. Electron. Inf. Technol. 2012, 34, 2369–2374. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, G.; Xing, Y.; Zhou, R.; Wang, Z. Local Community Detection Algorithm Based on Minimal Cluster. Appl. Comput. Intell. Soft Comput. 2016, 2016, 3217612. [Google Scholar] [CrossRef] [Green Version]
- Lancichinetti, A.; Fortunato, S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 2009, 80, 016118. [Google Scholar] [CrossRef]
Om | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
GLOD | 0.9623 | 0.8386 | 0.7935 | 0.7647 | 0.7276 | 0.6953 | 0.6863 |
LOCD1 | 0.8118 | 0.7916 | 0.7673 | 0.7451 | 0.7123 | 0.683 | 0.6555 |
LOCD2 | 0.8275 | 0.7944 | 0.7847 | 0.759 | 0.7335 | 0.7019 | 0.6764 |
LOCD3 | 0.8128 | 0.791 | 0.7757 | 0.7539 | 0.7327 | 0.6983 | 0.6647 |
LOCD4 | 0.9299 | 0.8072 | 0.789 | 0.7409 | 0.7105 | 0.694 | 0.6606 |
LOCD5 | 0.9301 | 0.8174 | 0.7998 | 0.756 | 0.7279 | 0.7031 | 0.6719 |
LOCD6 | 0.9368 | 0.822 | 0.8038 | 0.7607 | 0.7344 | 0.7085 | 0.6765 |
(2, 1) OCS | 0.7007 | 0.4867 | 0.566 | 0.4625 | 0.4246 | 0.5275 | 0.5462 |
(3, 0.8) OCS | 0.6707 | 0.4376 | 0.5493 | 0.4476 | 0.406 | 0.5155 | 0.5584 |
(3, 0.9) OCS | 0.4116 | 0.3708 | 0.3764 | 0.3939 | 0.3986 | 0.4197 | 0.3945 |
MULTICOM | 0.238 | 0.2373 | 0.2329 | 0.2478 | 0.2417 | 0.2284 | 0.2261 |
Om | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
GLOD | 0.7894 | 0.6632 | 0.6864 | 0.6522 | 0.6397 | 0.6231 | 0.6095 |
LOCD1 | 0.7276 | 0.639 | 0.6618 | 0.693 | 0.6195 | 0.6372 | 0.6014 |
LOCD2 | 0.7329 | 0.6427 | 0.6523 | 0.687 | 0.6084 | 0.6414 | 0.5936 |
LOCD3 | 0.7265 | 0.6339 | 0.6487 | 0.6879 | 0.6035 | 0.6371 | 0.5931 |
LOCD4 | 0.6476 | 0.6165 | 0.6437 | 0.6026 | 0.5596 | 0.604 | 0.5717 |
LOCD5 | 0.6798 | 0.6348 | 0.6807 | 0.6124 | 0.5281 | 0.6047 | 0.5703 |
LOCD6 | 0.6731 | 0.634 | 0.682 | 0.616 | 0.5363 | 0.6103 | 0.5747 |
(2, 1) OCS | 0.2804 | 0.1712 | 0.3078 | 0.2517 | 0.3106 | 0.2563 | 0.2275 |
(3, 0.8) OCS | 0.2652 | 0.1459 | 0.3317 | 0.2113 | 0.3019 | 0.2848 | 0.2065 |
(3, 0.9) OCS | 0.1795 | 0.2213 | 0.2202 | 0.2413 | 0.293 | 0.24 | 0.2152 |
MULTICOM | 0.1689 | 0.1679 | 0.1557 | 0.1673 | 0.1722 | 0.1802 | 0.1674 |
Om | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
GLOD | 0.7174 | 0.6038 | 0.5543 | 0.5377 | 0.5371 | 0.5296 | 0.5291 |
LOCD1 | 0.3866 | 0.4544 | 0.4257 | 0.4527 | 0.4762 | 0.5136 | 0.5089 |
LOCD2 | 0.3836 | 0.4762 | 0.4003 | 0.4439 | 0.4662 | 0.4964 | 0.5024 |
LOCD3 | 0.3777 | 0.4529 | 0.3869 | 0.4293 | 0.4499 | 0.4826 | 0.4958 |
LOCD4 | 0.6434 | 0.5489 | 0.4902 | 0.5048 | 0.5157 | 0.515 | 0.524 |
LOCD5 | 0.7055 | 0.57 | 0.4817 | 0.4621 | 0.5492 | 0.4862 | 0.4635 |
LOCD6 | 0.7039 | 0.5715 | 0.4828 | 0.4633 | 0.5502 | 0.4889 | 0.4663 |
(2, 1) OCS | 0.3064 | 0.3053 | 0.2336 | 0.2646 | 0.2922 | 0.3599 | 0.3455 |
(3, 0.8) OCS | 0.2984 | 0.287 | 0.2145 | 0.2496 | 0.2862 | 0.3607 | 0.3341 |
(3, 0.9) OCS | 0.0491 | 0.0976 | 0.048 | 0.0499 | 0.0586 | 0.086 | 0.1212 |
MULTICOM | 0.1468 | 0.1642 | 0.146 | 0.1445 | 0.1466 | 0.1469 | 0.1482 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Zheng, Z.; Shi, Y.; Wang, B. GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks. Mathematics 2023, 11, 3284. https://doi.org/10.3390/math11153284
Song Y, Zheng Z, Shi Y, Wang B. GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks. Mathematics. 2023; 11(15):3284. https://doi.org/10.3390/math11153284
Chicago/Turabian StyleSong, Ying, Zhiwen Zheng, Yunmei Shi, and Bo Wang. 2023. "GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks" Mathematics 11, no. 15: 3284. https://doi.org/10.3390/math11153284
APA StyleSong, Y., Zheng, Z., Shi, Y., & Wang, B. (2023). GLOD: The Local Greedy Expansion Method for Overlapping Community Detection in Dynamic Provenance Networks. Mathematics, 11(15), 3284. https://doi.org/10.3390/math11153284