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Abstract: The high penetration of renewable energy resources’ (RESs) and electric vehicles’ (EVs)
demands to power systems can stress the network reliability due to their stochastic natures. This can
reduce the power quality in addition to increasing the network power losses and voltage deviations.
This problem can be solved by allocating RESs and EV fast charging stations (FCSs) in suitable
locations on the grid. So, this paper proposes a new approach using the red kite optimization
algorithm (ROA) for integrating RESs and FCSs to the distribution network through identifying their
best sizes and locations. The fitness functions considered in this work are: reducing the network
loss and minimizing the voltage violation for 24 h. Moreover, a new version of the multi-objective
red kite optimization algorithm (MOROA) is proposed to achieve both considered fitness functions.
The study is performed on two standard distribution networks of IEEE-33 bus and IEEE-69 bus. The
proposed ROA is compared to dung beetle optimizer (DBO), African vultures optimization algorithm
(AVOA), bald eagle search (BES) algorithm, bonobo optimizer (BO), grey wolf optimizer (GWO),
multi-objective multi-verse optimizer (MOMVO), multi-objective grey wolf optimizer (MOGWO),
and multi-objective artificial hummingbird algorithm (MOAHA). For the IEEE-33 bus network, the
proposed ROA succeeded in reducing the power loss and voltage deviation by 58.24% and 90.47%,
respectively, while in the IEEE-69 bus it minimized the power loss and voltage deviation by 68.39%
and 93.22%, respectively. The fetched results proved the competence and robustness of the proposed
ROA in solving the problem of integrating RESs and FCSs to the electrical networks.

Keywords: electric vehicles; charging stations; renewable energy; red kite optimization algorithm

MSC: 90C31

1. Introduction

Recently, there has been a rapid growth in the use of fossil fuel sources, especially
in electric power generation plants and the transportation sector. These sources increase
environmental pollution as they emit greenhouse gas; they also cause global warming [1].
Therefore, many countries are looking to replace gasoline vehicles with clean energy
cars, known as electric vehicles (EVs), to reduce the amount of pollution [2]. EVs are
environmentally friendly, but have different economic costs than gasoline ones. EVs have
advanced batteries and power electronic devices that enable them to be installed to grids
as controllable loads. The integration of EVs to power systems faces great challenges
like violation of transmission line thermal constraints due to overload; this may cause a
voltage drop in some sensitive buses. Also, the uncertainties associated with these vehicles
represent challenges to: the distribution network operator, as the sources of uncertainties
are time rounding; the amount of daily energy consumption; the range of driving; and
the EV battery capacity [3]. When EVs charge from public charging stations, mostly fast
charging stations (FCSs) are utilized by demanding high power from the grid to reduce the
required charging duration to meet the required battery state-of-charge (SOC). However,
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the high demand required by these stations causes negative effects on the distribution
network, as they increase the network power losses and voltage deviations. However, to
reduce the demand on the grid, renewable energy sources (RESs) can be installed to supply
the excess loads during peak time. Identifying the optimal allocations of RESs and FCSs
in the distribution network is mandatory to minimize their associated negative effects.
Improvement of the power generation from RESs is essential; various technologies have
been presented to improve the power quality of renewable energy sources integrated in the
microgrid [4,5].

Many reported approaches have been implemented to identify the best allocations and
sizes on both RESs and FCSs. Amer et al. [6] presented a planning model to evaluate the
sizes and sites of FCSs in addition to wind turbines in distribution networks. The authors
considered the stochastic features of RESs, FCSs, and residential EV loads. In [7], parking
lots and capacitor allocations have been identified in the electrical distribution network
via a biogeography-based optimizer (BBO) to compensate the system reactive power. A
multi-objective problem was introduced and solved via hybrid and grey wolf optimizers
(GWO) and the particle swarm optimizer (PSO) to allocate FCSs, and shunt capacitors
and distributed generators (DGs) [8]. Reducing the cost of power loss, minimizing the
voltage fluctuation, reducing the development costs of FCSs, minimizing the costs of
EV energy consumption, and reducing the costs of DGs have been considered as targets.
Bayram et al. [9] determined the allocations of parking lots via a combinatorial optimization
algorithm and the two-stages stochastic programming model. A comprehensive review of
allocating the EV rapid charging stations based on economic benefits has been conducted
by Gupta et al. [10]. A planning method for penetrating FCSs in the electrical distribution
network has been presented in [11] to find the optimal operators, traffic conditions, vehicles,
power grids, and drivers. Moreover, the authors used real-time data for the practical third
ring of Beijing. In [12], the non-dominated sorting genetic algorithm II (NSGA-II) was
presented to evaluate the places and sizes of FCSs and DGs installed in the electrical
distribution network. The considered targets are mitigating the EV user loss, minimizing
the power loss, reducing the cost of FCS development, and enhancing the voltage shape. A
FCS connected to the grid has been simulated in [13] such that the harmonic currents were
minimized. Moreover, an energy management strategy has been presented via integrating
the photovoltaic (PV) generation system. Pal et al. [14] identified the best allocations of FCSs
and solar DGs in addition to battery storage system in the electrical distribution network
using the hybrid Harris hawks optimizer and GWO. The targets are mitigating the energy
loss, investment costs, operating and maintenance costs, and the voltage violation index.
Moreover, the number of charging ports, FCSs’ capacities, and the captured power via EVs
have been evaluated. A planning model of FCS has been introduced and solved by binary
PSO to minimize the costs of construction, operating and maintenance, trips to the station,
and power loss [15]. In [16], optimal places and capacities of FCSs and RESs integrated
to the distribution network have been identified when considering the uncertainties of
renewable-based generators. Also, the capacitated deviation flow refueling location-based
model has been presented to cover the EVs’ charging demands on transportation network.
Amer et al. [17] developed a stochastic program to evaluate the optimal locations and
sizes of small wind turbines connected to FCSs in urban and suburban areas. Moreover, a
worthiness metric has been employed to classify the FCS candidate sites according to the
EV drivers’ attractiveness. The EV charging station place was evaluated in the electrical
network and covered by the transportation network using HHO and differential evolution
(DE) [18]. The targets are mitigating the voltage fluctuation, minimizing the energy loss, and
reducing the cost of land for maximizing the service to EV with minimized founding costs.
A quantum-behaved Gaussian mutational dragonfly algorithm (QGDA) has been employed
to conduct the best planning of capacitors and EV charging stations in the distribution
network [19]. The authors in [20] reviewed various configurations of charging station
designs, and the different modes of renewable DGs were summarized. Ahmad et al. [21]
solved the problem of sitting solar-operated charging stations integrated to the grid using
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an improved chicken swarm optimizer where the network voltage profile was enhanced
while the power loss and operating cost were minimized. Moreover, the authors used a
stochastic method to forecast the EV demand and the neural network to predict the power
generated from the solar PV plant. The places of charging stations integrated to the grid
have been evaluated via the hybrid metaheuristic approach comprising the chicken swarm
optimizer (CSO) and the teaching learning-based optimizer (TLBO) [22]. A solar hybrid EV
charging station has been presented to mitigate the dependence on the main grid [23]. The
authors used a stochastic model to forecast the EV arrival time, battery SOC, and charging
demand. Moreover, a stochastic firefly algorithm (SFA) has been used as a maximum power
point tracker (MPPT) for the solar system to extract its maximum power. Furthermore,
SFA has been employed to solve multi-objective planning to mitigate the investment cost
and enhance the charging profit. In [24], the sizing problem of EV charging stations
has been solved via optimization frameworks to reduce the charging station investment
cost and provide a certain quality of service to the client. The locations of FCSs in the
distribution network have been identified via solving multi-objective problems using a
transient search optimizer (TSO) to mitigate the active and reactive losses and enhance the
network voltage stability [25]. A model with two stages for optimizing charging stations
and charging schedules has been presented by Yi et al. [26] to achieve complete satisfaction
among members of society. The load demand and starting point of the trip have been
predicted via Monte Carlo simulations in the first phase while a binary PSO has been
employed in the second one to find the optimal path of the trip. In [27], the state-of-the-
art features for many design approaches of FCSs have been reviewed in addition to the
future challenges of each one. Zhou et al. [28] presented a model to calculate the charging
station’s total operating cost which is divided into economic and environmental costs.
Also, the locations of these stations in Irish regions have been identified using a genetic
algorithm (GA) where the total cost is reduced. A black widow optimizer (BWO) has
been used to identify the optimal places of charging stations and renewable DGs in the
distribution system with the aid of model predictive control (MPC) that simulates the
actual SOC of storage batteries [29]. Many methods conducted in optimizing the charging
station have been reviewed and categorized according to the fitness functions, algorithms,
constraints, modeling of EV uncertainties, and DG integration [30]. In [31], FCSs, solar
PV, and storage batteries have been installed in distribution networks with sizes and
locations decided by hybrid NSGA-II and Fuzzy satisfaction. The authors considered many
targets, like system power loss, voltage violation, flow of served EVs, costs of investment,
operation and maintenance of PV, and charging stations. The planning of charging station
location and battery-swapping stations have been presented as multi-objective problems
to mitigate the total cost, enhance the satisfaction of user, and reduce the EV’s consumed
energy [32]. A hybrid approach combining the student psychology optimizer and the
AdaBoost algorithm has been introduced to allocate the EV charging station linked to
distribution generation such that the peak power and voltage regulation are mitigated [33].
Al Wahedi et al. [34] implemented a techno-economic analysis via the HOMER software for
renewable-based charging stations to evaluate its optimal configuration in different cities
in Qatar. Excessive review of different nature-inspired optimizers employed in solving
the problem of FCS placement has been presented in [35]. The optimal planning of FCSs
has been expressed as a multi-objective problem with multi-criteria decision-making [36].
Minimizing the total charging time and cost is the main target of the work presented
in [37] to model the vehicle charging via a bi-level optimizer. The optimal locations of EV
parking lots in smart distribution systems have been identified using a hybrid metaheuristic
algorithm to reduce the network loss and voltage fluctuation [38]. Moreover, the cost of EV
charging/discharging and the cost of purchased power from the grid are considered in the
presented problem. Fathy et al. [39] presented a competition over resource (COR) approach
to determine the optimal sites and sizes of EV parking lots in the electrical distribution
system. The authors considered the cost of reliability enhancement, investment cost, and
the cost of power loss improvement as the targets to be minimized. Table 1 outlines most
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of the reported methods to integrate RESs and FCSs in electrical networks, the reader can
observe the following items:

• Most of the reported works used metaheuristic optimization algorithms to integrate
RESs and FCSs to the network.

• Many of these methods lack accuracy due to the fall in local optimal solution in
addition to the slow convergence rate of some approaches.

• Also, the reported hybrid algorithms were complicated to implement and required
excessive effort and time.

• Many researchers ignored the installation of distributed generators (DGs) and they
relied mainly on the grid as the source of energy.

The authors considered all these shortages in the reported methods and covered them
via the following contributions:

• A new methodology incorporating the simple and efficient red kite optimization
algorithm (ROA) is proposed to evaluate the optimal capacities and places of RESs
and FCSs in distribution networks.

• The considered fitness functions are: reducing the network active loss and minimizing
the voltage deviation.

• A multi-objective red kite optimization algorithm (MOROA) is proposed to reduce
both targets.

• The proposed approach competency is proved through the obtained results.

The paper is outlined as follows: Section 2 explains the model of th considered system;
the form of the optimization problem is presented in Section 3; the basics of ROA are
introduced in Section 4; the proposed ROA-based methodology is explained in Section 5;
the results and discussions are presented in Section 6; and Section 7 handles the conclusions.
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Table 1. Outlines of most reported methods to integrate the RESs and FCSs in electrical networks.

Author Year DG Type Objective Algorithm Metaheuristic Remarks

Amer et al. [6] 2020
√

wind

- Maximize the revenues of both
wind DGs and FCS.

- Minimize the total associated costs.
Genetic algorithm

√ The genetic algorithm has a
slow convergence rate

Sachan et al. [7] 2020 × -- - Minimize total losses. Biogeography-based
optimizer

√ The installation of DGs
is ignored

Mohanty et al. [8] 2022
√

NA

- Minimize the cost of power loss.
- Minimize the voltage violations.
- Minimize the EV energy

consumption cost.
- Minimize the cost of DGs.

GWO-PSO
√

The presented hybrid
algorithm is complicated

and requires excessive effort
for implementation

Zeng et al. [9] 2020
√

wind Maximize the overall profit of
parking lots Genetic algorithm

√ The genetic algorithm has a
slow convergence rate

Kong et al. [11] 2019
√

NA Minimize the costs of construction
and operation

Iterative
optimization

algorithm
× The authors considered fast

charging stations for all EVs

Battapothula
et al. [12] 2019

√
NA

- Minimize the EV user loss
- Minimize the power loss
- Minimize the cost of FCS

development
- Enhance the network voltage profile

NSGA-II
√ NSGA-II is very complicated

in construction
and implementation

Khan et al. [13] 2019
√

PV Minimize the net power exchange
between the charging station and grid

Constant
current-constant

voltage
×

An energy management
strategy between DG,

charging station, and grid
has been implemented
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Table 1. Cont.

Author Year DG Type Objective Algorithm Metaheuristic Remarks

Pal et al. [14] 2021
√

Solar

- Minimize the energy loss
- Minimize voltage violations
- Minimize investment, operation,

and maintenance costs

Harris hawks
optimizer and GWO

√ Both HHO and GWO are
easy to trap in local optima

Wu et al. [15] 2021 × --

- Minimize the costs of construction,
operation, and maintenance

- Minimize the EV travel cost
- Minimize the power loss cost

Binary PSO
√ PSO can not avoid the local

optima and has a low
convergence rate

aSa’adati et al. [16] 2021
√ Wind

and solar
Minimize the costs of investment and

energy losses CFRLM ×

The authors ignored the
driving range uncertainty
and the EV’s SOC during

arrival at the
transportation network

Amer et al. [17] 2021
√

wind

- Maximizing the FCS and DG profits
gained from FCSs

- Minimize the network energy losses
Genetic algorithm

√ The genetic algorithm has a
slow convergence rate

Pal et al. [18] 2021 × --

- Minimize of the energy loss
- Minimize the voltage violation
- Minimize the land cost

DE and HHO
√ The authors ignored the

installation of DGs

Rajesh et al. [19] 2021
√

NA

- Minimize the total losses
- Minimize the network

voltage violation

Quantum-behaved
Gaussian mutational
dragonfly algorithm

√ The employed approach is
difficult and requires large

computational time
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Table 1. Cont.

Author Year DG Type Objective Algorithm Metaheuristic Remarks

Ahmad et al. [21] 2021
√

Solar
- Improve the voltage profile
- Mitigate the power loss

Improved chicken
swarm optimizer

√
Many steps are followed in
the presented approach that

make it complicated
in implementation

Deb et al. [22] 2021 × -- Minimize the overall cost of
FSC construction CSO-TLBO

√
The optimal sites of

swapping stations and EV
charging have not
been considered

Goswami et al. [23] 2021
√

Solar
- Minimize the investment cost
- Maximize the charging station profit

Stochastic firefly
algorithm

√
Firefly suffers from high

complexity, computational
time, and slow

convergence speed

Khaksari et al. [24] 2021 × -- Minimize the investment cost of FCS Gurobi optimization ×

Gurobi optimization is
limited to the complexity of
the handled problem. Also,
it is not fast enough to solve

complex problems

Bhadoriya et al. [25] 2022
√

NA Mitigate the total active power loss Transient search
optimizer

√
TDO may trap in local

optima during handling
complex problems with

high dimensions

Yi et al. [26] 2022 × -- Minimize the annual cost paid by the car
owners and investors Binary PSO

√ PSO falls in local optima and
has a slow convergence rate

Zhou et al. [28] 2022 × -- Minimize the total social cost Genetic algorithm
√ The genetic algorithm has a

slow convergence rate

Aljehane et al. [29] 2022
√

RESs Reduce the charging time and cost Black widow
optimizer

√ BWO can not avoid the local
optima and has a slow rate

of convergence

Kumar et al. [31] 2022 × -- Mitigate the investment cost, power loss,
and voltage deviation

Fuzzy optimized
via NSGA-II

√ NSGA-II is very complicated
in construction

and implementation
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Table 1. Cont.

Author Year DG Type Objective Algorithm Metaheuristic Remarks

Zu et al. [32] 2022 × --

- Reduce the total cost
- Enhance the user satisfaction
- Mitigate the EV’s consumed energy

CPLEX and YALMIP
languages ×

The solver needs high
memory for solving
complex problems

Thangaraju [33] 2022
√

NA Minimize the annualized costs
Student psychology

optimizer and
AdaBoost algorithm

√
Large consumed time is

required for implementing
the student

psychology optimizer

Al Wahedi et al. [34] 2022
√

Wind and PV Minimize investment and operating costs HOMER ×

Detailed inputs, data, and
time are mandatory to
obtain adequate results

from HOMER

Erdogan et al. [36] 2021 × -- Minimize the overall cost of
charging station

Multi-objective
optimization (MOO) NA

The presented MOO method
is not clear, also the authors

did not consider
DG installation

Ma et al. [37] 2021 × -- Minimize the daily charging time
Surrogate

optimization
algorithm

√ The surrogate optimization
algorithm has a slow

convergence rate

Ahmadi et al. [38] 2021
√

Wind and PV Minimize the loss and voltage fluctuation

- Genetic PSO
- Genetic

imperialist
competitive
algorithm
(GICA)

√
Excessive computational

time is required by
both employed

hybrid approaches

Fathy et al. [39] 2020 × --

- Enhance the network reliability
- Reduce the investment cost
- Minimize the cost of power loss

Competition over
resource

√ The authors did not consider
the installation of DGs
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2. The Considered System Model

The integration of renewable-based DGs and EVs in the distribution network is con-
sidered in this work. This section presents the models of the photovoltaic (PV) system,
wind turbines (WT), and electric vehicles (EVs).

2.1. Model of the PV System

The PV system transforms light to electrical energy, and has many methods employed
in producing electrical energy from sunlight irradiance. It composes a series of cells to
produce the required voltage. The generation of the PV system relies on temperature and
solar radiation striking its surface, so it is essential to consider both terms while studying the
PV system’s behavior. Normal operating cell temperature (NOCT) is used as an indicator
of cell temperature that can be computed as follows [40]:

Tc = Ta +
NOCT − 20◦

0.8
·G (1)

where Ta is ambient temperature and G is irradiance.
The cell generated power can be expressed as

Pc = P × [η × (Tc − 25◦)] (2)

where P is the cell rated power and η is the efficiency of the solar cell. The PV panel
generated power can be obtained via multiplying the cell output power by the number of
cells as follows:

PPanel = ncell × Pc (3)

where ncell denotes the number of cells in the panel. The used temperature and solar
radiation daily profiles are shown in Figure 1 [41].
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2.2. Model of a Wind Turbine

The wind turbine (WT) output power depends on the wind speed and wind direction
in addition to the geography site of installation and wind density. The extracted power
from WT can be written as follows:
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PWT(t) =


0 V < Vcut−in or V > Vcut−o f f

Pr
WT

(
PWT0−Pr

WT
Vcut−o f f −Vr

)
(V(t)− Vr) Vr < V ≤ Vcut−o f f

Pr
WT

(
V(t)−Vcut−in
Vr−Vcut−in

)3
Vcut−in ≤ V ≤ Vcut−o f f

(4)

where Pr
WT is the WT rated power, Vcut−in, Vr, and Vcut−o f f are the cut-in, rated, and cut-off

speeds of the turbine, respectively, V is wind speed, and PWT0 is WT power at the cut-off
speed. The WT output power can be calculated as [42]

PWind−total = nWT × PWT (5)

where nWT denotes wind turbine number. The wind speed daily profile is given in
Figure 2 [41].
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2.3. Model of an Electric Vehicle

In order to model the EVs, three elements should be considered which are the expected
mileage per day, the consumed energy per mile, and the wait time spent in the station. The
first one can be simulated through lognormal distribution [43]; the lognormal distribution
probability density function (PDF) can be computed as

f (x) =
1√

2πσx
exp

(
− (ln(x)− µ)2

2σ2

)
, x > 0 (6)

where x is a random number with one variance and zero mean, µ and σ denote the location
and scaling parameters, respectively, and they can be calculated as follows:

µ = ln

 m√
1 + v

m2

, σ =

√
ln
(

1 +
v

m2

)
(7)

where m and v represent the standard deviation and mean created via historical data. The
expected mileage per day can be expressed as follows:

Md = e(µm+σm×
√
−2×lnc1×cos(2πc2)) (8)
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where σm and µm are the parameters of lognormal probability distribution, respectively,
and c1 and c2 are random variables that follow the normal distribution; they are in the
range of [0, 1]. The values of σm and µm can be calculated with the aid of the standard
deviation (σmd) and mean (µmd) of EV mileage statistical data as follows:

µm = ln

 µ2
md√

µ2
md + σ2

md

, σm =

√√√√ln

(
1 +

σ2
md

µ2
md

)
(9)

The second important parameter that should be considered while modeling the EV is
the consumed energy per mile, it can be computed as [44]

Em = α × Kb
EV (10)

where α and b represent the EV model constant coefficients and KEV is the total energy
supplied via battery. The EV can travel the maximum mileage (MdMax) with a fully charged
battery through the following formula:

MdMax =
BCap

Em
(11)

where BCap is the battery capacity, and the charging demand can be computed as follows:

Ed =

{
BCap Md ≥ MdMax

Md × Em Md < MdMax
(12)

A Gaussian distribution can be used to calculate the waiting time spent in the station
as follows [45]:

ta = µa + σa·x1, td = µd + σd·x2 (13)

tdur = td − ta (14)

where ta, td, and tdur are arrival, departure, and charging duration times, respectively, σa,
σd, µa, µd are standard deviations and means of entrance/leaving of EV to/from the station,
and x1 and x2 are random numbers with one variance and zero mean.

The required state of charge (SOCdesired) of EV battery can be calculated as follows [44]:

SOCdesired = min

{(
SOCinit +

Ed
BCap

)
,

(
SOCinit +

tdur
BCap

·rch

)}
(15)

where SOCinit and rch are the battery’s initial state of charge and charging rate, respectively.
In this study, four EVs with specifications given in Table 2 are considered [44]. The layout
of the considered model is shown in Figure 3.

Table 2. The specifications of the four considered EVs.

Vehicle Model Honda Accord Toyota Prius Chevrolet Volt Ford Fusion

Consumed power 29 kW/mile 29 kW/mile 36 kW/mile 34 kW/mile
Distance with battery

capacity 13 miles 11 miles 37 miles 21 miles

Capacity of battery 6.6 kWh 4.4 kWh 16 kWh 7.6 kWh
Maximum rate of charge 6.6 kW 3.5 kW 3.5 kW 3.5 kW
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3. Form of Optimization Problem

In this section, the objective function and constraints are established to allocate and
seize the renewable energy DGs and EV charging stations. Minimizing the total power
loss of the network and reducing the voltage violation are the two considered objective
functions. The accompanied constraints are supply-demand balance, limits of bus voltage,
thermal constraint, generation limits, and constraints related to EVs.

3.1. Network Power Loss

The active power loss of the network is considered as the first target, it can be written
as follows:

f1 = Minimize Ploss (16)

Ploss = ∑24
t=1 ∑nb

i=1 ∑nb
j>1 Yij

(
V2

i,t + V2
j,t + 2Vi,tVj,tcos

(
δi,t − δj,t

))
(17)

where nb is the number of branches, Vi,t and Vj,t are the magnitudes of voltage at buses
i and j during time t, respectively, δi,t and δj,t are the voltages’ angles at buses i and j,
respectively, and Yij is the admittance of feeder i − j. The mitigation of the network losses
is the required target from the distribution system operator perspective.

3.2. Network Voltage Violation

The second target is reducing the network voltage violation; the penetrations of RESs
and FCSs to the grid may increase the capacity of supply part, this helps in reducing the
losses and enhancing the voltage violation. This can be expressed as follows:

f2 = Minimize ∑24
t=1 ∑nb

i=1|1 − Vi,t| (18)

3.3. Constraints

Balance of supply-demand, limits of bus voltage, thermal limits, generation limits,
and constraints related to EVs are five constraints considered in the formulated problem.
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3.3.1. Supply-Demand Balance

This constraint is given by load flow analysis, the supplied power at each bus should
be equal to the demand power plus the power losses of the branches connected to this bus.
This can be written as follows:

Pgi,t − Pdi,t = Pchi,t + |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣cos
(
δi,t − δj,t − θij

)
(19)

Qgi,t − Qdi,t = |Vi,t|∑nb
j=1

∣∣Yij
∣∣∣∣Vj,t

∣∣sin
(
δi,t − δj,t − θij

)
(20)

where Pgi,t, Pdi,t, and Pchi,t are the generated, demand, and EV charged active powers at bus
i during time t, respectively, Qgi,t and Qdi,t are the generated and demand reactive powers
at bus i during time t, respectively, and θij is the angle of Yij.

3.3.2. Bus Voltage Constraint

During integrating charging station and RESs, the bus voltage should be kept inside
its normal limits as follows:

Vmin ≤ Vi,t ≤ Vmin (21)

δmin ≤ δi,t ≤ δmin (22)

where min and max denote minimum and maximum values.

3.3.3. Thermal Constraint

Integrating the EV to the grid increases the transmission line power flow, therefore the
temperature of lines will raise, the power flow should not exceed the allowable range, this
can be written as follows:

|Si,t| ≤ |Si
max|, i = 1, 2, . . . , nb (23)

where Si,t is the power flow in line i at time t while Si
max is the maximum allowable flow in

line i.

3.3.4. Generation Limit

The generated power from renewable energy DGs should be in its normal limits
as follows:

PRES
min ≤ PRESi,t ≤ PRES

max (24)

where PRESi,t is the output power from RES installed at bus i during time t, and PRES
min

and PRES
max denote the minimum and maximum generated powers from RES, respectively.

3.3.5. EV Constraint

The power required by the EV should be inside min and max limits as follows:

PEV
min ≤ PEVi,t ≤ PEV

max (25)

where PEVi,t is the output power from EV connected to bus i at time t, and PEV
min and

PEV
max represent the minimum and maximum required powers by EV, respectively.

4. The Basics of the Red Kite Optimization Algorithm

The red kite optimization algorithm (ROA) is a novel metaheuristic approach intro-
duced by Gahruei et al. [46]; it was inspired by the red kites’ social life. The red kites usually
build nests near lakes and wooded areas that are suitable for hunting. They live together,
with random movements, and are affected by each other’s positions during flight, and
they use high speed while hunting. They have voices, called the sound of unity, that have
been generated in times like finding good bait, water source, migration, and birth. Also,
the sounds that occur in times of danger such as enemy attack, death of another animal,
earthquake, and storm are known as the sound of danger. To simulate the behavior of a



Mathematics 2023, 11, 3305 14 of 30

red kite in finding food, each bird can be defined through its position, value of evaluation
function, amount of displacement of points, sound of danger (in the direction of the indi-
vidual component), sound of unity (in the direction of the social component), new position
of the bird, and new evaluation function. In order to obtain good results, the metaheuristic
algorithm must first navigate the problem search space well to prevent trapping in local
optima. Then it gradually moves from the exploration to exploitation phase and exploits
the best solution in the last iterations. ROA has three main stages which are explained
as follows:

1. The first stage—the initial position of the birds: In this stage, according to Equation
(26), the position of red kites can be initialized randomly as,

Posi,j(t) = lb + rand × (ub − lb), i = 1, 2, . . . , n and j = 1, 2, . . . , d (26)

where Posi,j(t) is ith red kite’s position at iteration t, lb and ub are lower and upper
boundaries, respectively, n is size of population, d denotes problem dimension, and
rand is a random number in [0, 1].

2. The second stage—selection of the leader: Selecting the leader is obtained according
to Equation (27):

−−−→
Best(t) =

−−−→
Posi(t) i f fi(t) < fbest(t) (27)

where Best(t) denotes position of the best bird in iteration t, Posi(t) denotes the
position of ith red kite in iteration t, fi(t) is value of the bird evaluation function
in iteration t, and fbest(t) is the value of the evaluation function of the best bird in
iteration t.

3. The third stage—the movement of the birds: It is considered that red kites must
gradually move from exploration phase to exploitation stage through considering
decreasing coefficient (D) according to Equation (28).

D =

(
exp
(

t
t _max

)
− t

t _max

)−10
(28)

where t is the current iteration and t _max denotes the maximum iteration.

The birds update their positions through Equations (29) and (30):

−−−−−−−−→
posnew

i (t + 1) =
−−−→
Posi(t) +

−−−−−−−→
Pmi(t + 1) (29)

−−−−−→
Pmi(t + 1) = D(t)×

−−−→
Pmi(t) +

−−−→
SC(t) ⊙

(−−−−−→
Posrws(t)−

−−−→
Posi(t)

)
+
−−−→
UC(t) ⊙

(−−−→
Best(t)−

−−−→
Posi(t)

)
(30)

where Posrws(t) is the bird position selected by roulette wheel in iteration t, posnew
i (t + 1)

denotes the new position of the bird, and SC and UC are random vectors of social and
individual components, respectively. After updating the position, it is important to check
the search space boundaries, this can be conducted using Equation (31) as,

−−−−−−−−→
posnew

i
(
t + 1

)
= max

(
min

(−−−−−−−−→
posnew

i
(
t + 1

)
+ ub

)
, lb
)

(31)

The new temporary position will be replaced if the evaluation function is improved.
In such case, Posi(t + 1) is equal to posnew

i (t + 1). As mentioned, SC and UC are random
vectors of social and individual components, they represent the voice of unity and danger
of each bird, and they are obtained according to the following relation:
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
−−−−−→
SC(t + 1) =

→
r1

−−−−−→
UC(t + 1) =

→
r2

i f rand ≤ 0.5


−−−−−→
SC(t + 1) =

→
r3

−−−−−→
UC(t + 1) =

→
r1

Otherwise (32)

where
→
r1 is a random vector in [1, 2],

→
r2 is a random vector in [1, 3], and

→
r3 is a random

vector in [0, 1].
In the ROA, based on the current position of each bird, the position of a neighbor

is randomly chosen via a roulette wheel and the best solution found so far. In the early
iterations, the value of D(t) is close to one for exploring and searching new spaces. In the
movement based on the individual component, the red kite explores new spaces based on
its position and that of a randomly selected neighbor. The social component also leads the
algorithm to global optimum. Gradually, as the algorithm moves from the initial iterations
to intermediate iterations, the coefficient D(t) decreases to achieve balance between the
exploration and exploitation phases. In the final iterations, this coefficient tends to zero and
the algorithm exploits searching for the best solution among the obtained good solutions.
The ROA is characterized by its ease in structure and execution, also it has few controlling
parameters and a high convergence rate. The flowchart of the ROA is shown in Figure 4.Mathematics 2023, 11, x FOR PEER REVIEW 3 of 11 
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5. The Proposed ROA-Based Methodology

This work proposes a new approach of the ROA to identify the optimal sites and sizes
of RESs and FCSs in a radial distribution network. The considered objective functions are
selected based on the distributor operator’s point of view, and are mitigating the network
power loss and minimizing the voltage fluctuation. Also, a new multi-objective ROA is
proposed to achieve both targets. The assigned memory of the problem is divided into
four vectors that represent the locations and sizes of RESs and FCSs as shown in Figure 5.
The process of updating followed in the ROA using Equations (29) and (30) is adapted
such that the first and third vectors of the variables have integer numbers assigned to the
best sites of both RESs and FCSs. The most key features that characterize the proposed
ROA are simplicity of the construction, need of few controlling parameters, and balance
between exploration and exploitation phases. These features enhance the convergence
rate of the algorithm and prevent falling in local optima. All these merits encourage the
authors to apply the ROA in solving the presented problem. The proposed ROA pseudo
code assigned to solve the single objective problem is given in Algorithm 1.

Algorithm 1 The proposed ROA pseudo code to solve the single objective optimization problem.

1: Define the ROA parameters like max iteration (t_max), size of population (n), d, lb, ub, and
number of runs (n_run).
2: Input the load data and line data of the network under study.
3: Conduct load flow analysis and keep the voltage fluctuation and power loss.
4: Formulate the initial population using Equation (26).
5: for i = 1: n
6: Integrate Posi in the network, where Posi is the probable solution from the population.
7: Conduct power flow for the network with integrating Posi.
8: Compute the initial evaluation function ( fi(Posi)).
9: end for
10: while k > n_run do
11: for t > t_max do
12: for i = 1: n
13: Calculate the values of SC, UC, and D using Equations (28) and (32).
14: Calculate the red kites’ new positions using Equations (19) and (30).
15: Check the positions’ limits using Equation (31).
16: Compute the new objective function ( f t

i
(

posnew
i
)
.

17: if f t
i
(

posnew
i
)

> ( f t−1
i (Posi)

18: Update Posi bu posnew
i

19: end if
20: i = i + 1
21: end for
22: t = t + 1
23: end for
24: end for
25: k = k + 1
26: end while
27: Save the optimal places and sizes of RESs and FCSs.
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A multi-objective red kite optimization algorithm (MOROA) is proposed to minimize
both power loss and voltage violation, two components of archiving and hunting the
food are proposed in MOROA. The first one saves the nondominant solutions achieved so
far while the other component selects the best one from the obtained archive. Moreover,
the solution entrance to the archive is controlled via considering the archive controller.
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When the new solution is governed by one archived solution, it should be excluded from
the archive entering. On the other hand, if the new solution is governed via one or more
archived solutions, it will be included in the archive and the governed solutions are ignored.
Also, when recent solutions and archive members have no control between them, it must
be included in the archive. The top solution is chosen from the archive using the roulette
wheel method as follows:

Pi =
C
Ni

(33)

where C is a constant with a value greater than unity and Ni is the number of pareto solutions.

6. Numerical Analysis and Discussions

The analysis was performed on two standard distribution systems, which are the
IEEE-33 bus network and the IEEE-69 bus network; the proposed ROA was simulated for
100 iterations, 50 population sizes, and 10 independent runs [47]. The maximum generation
of RESs (PV and WT) was 1000 kW, and 1500 kW for FCS [44]. Three cases were studied
in each network, the first one was minimizing power loss whereas the second one was
mitigating network voltage fluctuation. The last case was a multi-objective to reduce both
power loss and voltage fluctuation.

6.1. IEEE-33 Bus Network

The network single line diagram is shown in Figure 6; the network had 32 branches
and 33 nodes, its nominal voltage was 12.66 kV while 100 MVA was the base power. In
this network, it was assumed that two RESs were required to be installed, the first one was
PV and the second one was WT. Also, two FCSs were integrated to the network to serve
200 vehicles selected randomly from Table 2 over 24 h. The base loads were 3.715 MW and
2.3 MVar while the network losses were 3905.628 kW and 2604.031 kVar. Figure 7 shows the
demand level as a percentage of the base demand during each hour. The proposed ROA
was implemented, and the fetched results were compared to other approaches of the dung
beetle optimizer (DBO) [48], the African vultures optimization algorithm (AVOA) [49],
the bald eagle search (BES) algorithm [50], the bonobo optimizer (BO) [51], and the grey
wolf optimizer (GWO) [52] which are programmed. The analysis was performed using a
laptop with specifications of 11th Gen Intel(R) Core(TM) i7-11370 @3.30 GHz processor, and
16.00 GB RAM.
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The fetched results during minimizing the power loss are given in Table 3. The
proposed ROA achieved the best power loss over 24 h with a value of 1631.1189 kW
obtained with integrating a RES of 770.3162 kW and 1126.969 kW on buses 13 and 30,
respectively, and a FCS of 63.34486 kW and 50.23074 kW on buses 30 and 2, respectively.
In such case, the voltage violation of the network was 14.5663 pu. On the other hand,
BO came second with a power loss of 1633.4916 kW through integrating RESs and FCSs
of 1072.105 kW, 870.675 kW, 103.400 kW, and 103.950 kW on buses 30, 13, 2, and 13,
respectively. The highest power loss was 1716.946 kW, obtained via AVOA. The results
proved the preference of the proposed ROA in such case. Another important item that is
considered in comparison is the computational time required to implement one run, it is
clear that the proposed ROA is the fastest one as it consumed 64.569 s., whereas the slowest
one is BES with 131.489 s. The power loss versus number of iterations is shown in Figure 8.
The voltage profiles of the network throughout minimizing the power loss are shown in
Figure 9. The proposed ROA achieved good improvement in the voltage profile, being
better than the original network.

Table 3. The optimal results throughout minimizing the first objective function of the IEEE-33
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1172.455/(30) 1415.316/(8) 767.7161/(13) 1072.105/(30) 796.258/(13) 770.3162/(13)
768.3386/(13) 841.6776/(30) 1073.831/(30) 870.675/(13) 1179.83/(30) 1126.969/(30)

FCS (kW)/location
99.000/(33) 109.800/(26) 104.8500/(2) 103.400/(2) 79.4101/(6) 63.34486/(30)
107.05/(2) 107.625/(19) 112.6125/(19) 103.950/(13) 95.9678/(30) 50.23074/(2)

Active power loss (kW) 1650.078 1716.946 1641.0623 1633.4916 1652.1002 1631.1189

Reactive power loss (kVar) 1067.1 1104.5 1060.6 1067.3 956.48116 947.36830

Vmin (pu)/location 0.9718/(33) 0.9609/(18) 0.9724/(33) 0.9692/(18) 0.9707/(33) 0.9708/(33)

Vmax (pu)/location 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1) 1.000/(1)

Voltage deviation (pu) 14.1639 15.2245 14.2351 15.2438 14.5806 14.5663

Time (s) 92.287 89.6085 247.461 66.547 131.489 64.569
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The second fitness function minimized the voltage violation; the original network
had a voltage violation of 36.477 pu. The fetched results in such case are given in Table 4,
the proposed ROA accomplished the best voltage violation of 3.4762 pu, about a 90.47%
enhancement of the original network, by installing RESs of 1499.994 kW and 1500 kW on
buses 10 and 30, respectively, as well as 50 kW and 79.68228 kW FCSs on buses 2 and 10,
respectively. This integration resulted in an active power loss of 1643.5811 kW. AVOA
was the worst optimizer with a voltage deviation of 3.7866 pu. The voltage fluctuation
versus number of iterations is shown in Figure 10, while the voltage patterns of the network



Mathematics 2023, 11, 3305 20 of 30

are displayed in Figure 11, the profile clarified significant improvement of the network
voltages. The proposed ROA was the best optimizer compared to the others in achieving
the least voltage deviation.

Table 4. The optimal results throughout minimizing the second objective function of the IEEE-33
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1498.299/(10) 1449.13/(11) 1485.9678/(10) 1500/(10) 1500/(10) 1499.994/(10)

1500/(31) 1500/(31) 1500/(30) 1380.22/(31) 1500(20) 1500/(30)

FCS (kW)/location
50/(2) 89.58208/(30) 50/(33) 50/(2) 74.7382/(10) 50/(2)

181.6571/(33) 82.92387/(33) 50/(26) 52.7957/(23) 121.3876/(3) 79.68228/(10)

Active power loss (kW) 1838.1837 1748.6105 1743.0893 1840.8733 1654.1723 1643.5811

Reactive power loss (kVar) 1307.9386 1246.4018 1223.3889 1307.5806 1154.3989 1148.2444

Vmin (pu)/location 0.9833/(25) 0.9833/(25) 0.9837/(25) 0.9833/(25) 0.9828/(25) 0.9831/(25)

Vmax (pu)/location 1.0024/(10) 1.0026/(11) 1.0036/(10) 1.0025/(10) 1.0/(1) 1.0/(1)

Voltage deviation (pu) 3.7273 3.7866 3.5632 3.7378 3.5399 3.4762
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The third case involved solving a multi-objective problem to minimize power loss
and volage fluctuation; the proposed MOROA was compared to the multi-objective grey
wolf optimizer (MOGWO), the multi-objective multi-verse optimizer (MOMVO), and the
multi-objective artificial hummingbird algorithm (MOAHA) [47]. The optimal results are
given in Table 5, RESs with 994.2378 kW and 1472.334 kW, and FCSs with 128.1094 kW and
165.3984 kW are recommended to be installed via the proposed MOROA on buses 13, 30,
2, and 30, respectively. This integration achieved active power loss and voltage violation
of 1763.93 kW and 6.6547 pu, respectively, while MOAHA achieved the worst power loss
and voltage violation of 1829.26 kW and 6.7704 pu, respectively. The results demonstrated
the superiority of the proposed MOROA over the others. Moreover, the variations of
both targets with number of iterations obtained via the proposed approach are given in
Figure 12. Furthermore, the network voltage profiles before and after installing RESs and
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FCSs are shown in Figure 13. The curves revealed that there is significant improvement in
the network voltage profile.
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Table 5. The optimal results throughout solving the multi-objective problem for the IEEE-33
bus network.

MOAHA [47] MOMVO MOGWO MOROA

RES (kW)/location
1475.0424/(30) 885.715/(14) 1283.274/(11) 994.2378/(13)
1073.4234/(15) 1465.69/(30) 1264.667/(30) 1472.334/(30)

FCS (kW)/location
63.763105/(14) 51.3188/(3) 190.1696/(2) 128.1094/(2)
188.82647/(17) 92.0779/(2) 96.09850/(10) 165.3984/(30)

Active power loss (kW) 1829.26 1810.31 1801.96 1763.93

Voltage deviation (pu) 6.7704 6.2317 6.4819 6.6547

Reactive power loss (kVar) 1152.29 1122.65 1108.20 1025.81

Vmin (pu)/location 0.9813/(25) 0.9813/(25) 0.9802/(18) 0.9798/(33)

Vmax (pu)/location 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1)

The obtained results confirmed the efficiency of ROA as it achieved the best fitness
values for all scenarios investigated on the IEEE-33 bus network.

6.2. IEEE-69 Bus Network

The proposed ROA was also applied on the IEEE-69 bus system, it consisted of
68 branches and 69 nodes, the network nominal voltage was 12.66 kV and the base power
was 100 MVA. The single line diagram of the IEEE-69 bus system is shown in Figure 14.
The demand and branch data of the network were given in [53], the network is loaded by
24 h demand level given in Figure 7, the active power loss was 8665.356 kW whereas the
reactive power loss was 3938.366 kVar. It was assumed that three renewable DGs were
integrated in addition to three FCSs.
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The fetched results obtained by ROA and others throughout minimizing the network
power loss are given in Table 6. The best loss was 2738.731 kW, achieved through the
proposed ROA via installing RESs of 1500 kW, 663.715 kW, and 502.0473 kW on buses
61, 69, and 19, respectively, in addition to FCSs of 156.5290 kW, 50 kW, and 346.3399 kW
on buses 19, 4, and 69, respectively. This integration reduced the active power loss by
68.39% compared to the original network. BO came in the second rank with a power loss
of 2742.766 kW, while the worst one was 2905.728 kW, obtained by AVOA. Moreover, the
proposed ROA required 62.078 s. to implement one run, this was the best obtained time.
Figure 15 shows the variations of power losses during iterative process followed in each
optimizer. Moreover, the voltage profile of the network is shown in Figure 16, it is clear
that the voltage pattern is improved after integrating RESs and FCSs with sizes and sites
obtained via the proposed ROA. The fetched results proved the superiority of ROA in
minimizing the IEEE-69 bus system power losses.

Table 6. The optimal results throughout minimizing the first objective function of the IEEE-69
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
1500/(61) 1500/(61) 713.821/(17) 1500/(61) 1500/(61) 1500/(61)

518.641/(17) 295.224/(6) 584.281/(62) 426.56/(17) 47.971/(23) 663.715/(69)
54.7547/(14) 813.401/(10) 1036.10/(61) 485.21/(53) 575.167/(12) 502.0473/(19)

FCS (kW)/location
51.0967/(18) 67.2109/(4) 58.7486/(18) 50.019/(53) 64.7808/(35) 156.5290/(19)

50/(69) 53.2949/(51) 82.7298/(47) 50/(2) 196.489/(47) 50/(4)
50.6284/(5) 54.3663/(29) 191.153/(17) 50/(47) 173.715/(29) 346.3399/(69)

Active power loss (kW) 2810.358 2905.728 2775.538 2742.766 2819.619 2738.731

Reactive power loss (kVar) 1291.968 1311.428 1274.645 1259.164 1296.032 1276.838

Vmin (pu)/location 0.9796/(65) 0.9798/(27) 0.9836/(65) 0.9819/(65) 0.9804/(65) 0.9800/(65)

Vmax (pu)/location 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1) 1.0/(1)

Voltage deviation (pu) 11.4739 13.3273 11.5038 10.4405 13.3135 12.1014

Time (s) 159.893 104.103 347.468 62.493 145.821 62.078
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The original network had a voltage violation of 39.229 pu; minimization of the volt-
age fluctuation was the second target, Table 7 tabulates the optimal fetched results in
such case. The proposed ROA succeeded in mitigating the network voltage deviation
to 2.6607 pu, about 93.22% enhancement of the original value, via installing RESs of
1464.69 kW, 1495.45 kW, and 891.503 kW on buses 63, 56, and 15, respectively, in addition to
FCSs of 311.624 kW, 337.688 kW, and 231.826 kW on buses 7, 16, and 5, respectively. AVOA
was still in the last rank, achieving a voltage deviation of 4.2701 pu. The performances of the
optimizers considered are given in Figure 17, while the voltage patterns with/without the
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installed DGs and stations are given in Figure 18. The results demonstrated the excellence
of the proposed method while reducing the voltage fluctuation of the IEEE-69 bus network.

Table 7. The optimal results throughout minimizing the second objective function of the IEEE-69
bus network.

DBO AVOA BES BO GWO ROA

RES (kW)/location
987.669/(63) 1500/(12) 1499.996/(63) 801.0936/(64) 549.582/(19) 1464.69/(63)
1152.20/(13) 1500/(64) 1499.999/(68) 1500/(59) 1500/(62) 1495.45/(56)
1416.90/(63) 607.458/(54) 469.3114/(58) 1500/(69) 1500/(55) 891.503/(15)

FCS (kW)/location
245.784/(43) 350/(7) 53.66301/(58) 50/(36) 162.323/(29) 311.624/(7)
253.716/(64) 234.083/(46) 50/(2) 350/(58) 58.5327/(21) 337.688/(16)
308.648/(56) 333.914/(31) 163.3407/(67) 192.210/(66) 149.570/(47) 231.826/(5)

Active power loss (kW) 3316.866 3518.4419 3534.8244 3636.6704 3176.7778 3284.3169

Reactive power loss (kVar) 1626.321 1740.1091 1659.1212 1696.3122 1602.5207 1645.6244

Vmin (pu)/location 0.9941/(56) 0.9870/(61) 0.9912/(65) 0.9922/(61) 0.9903/(65) 0.9915/(65)

Vmax (pu)/location 1.0040/(13) 1.0055/(12) 1.0096/(68) 1.0100/(69) 1.0024/(55) 1.0021/(56)

Voltage deviation (pu) 3.748 4.2701 3.4861 3.5533 2.7751 2.6607
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Finally, the multi-objective problem for the IEEE-69 bus network was solved via the
proposed MOROA in comparison to others, the fetched results are tabulated in Table 8.
The best power loss and voltage violation were 2929.075 kW and 4.3347 pu, respectively,
obtained via the proposed algorithm. The MOGWO achieved the worst power loss with
a value of 3351.509 kW, whereas the largest voltage deviation was 6.832 pu, obtained via
MOMVO. Also, the power loss and voltage fluctuation versus the number of iterations
are shown in Figure 19, while the network voltage patterns are shown in Figure 20. The
proposed approach proved its preference in finding the best locations and sizes of RESs
and charging stations while solving the multi-objective problem.
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Table 8. The optimal results throughout solving the multi-objective problem for the IEEE-69
bus network.

MOAHA [47] MOMVO MOGWO MOROA

RES (kW)/location
1469.52/(61) 1249.069/(49) 1260.96/(68) 917.811/(9)
916.516/(18) 1500/(61) 1395.23/(51) 647.6445/(15)
301.015/(59) 855.449/(14) 1470.41/(62) 1500/(61)

FCS (kW)/location
307.607/(47) 98.1616/(34) 305.866/(68) 248.222/(28)
60.7376/(52) 80.8805/(43) 307.682/(6) 135.164/(2)
207.741/(26) 207.898/(31) 296.051/(51) 336.811/(37)

Active power loss (kW) 2974.105 2960.5889 3351.509 2929.075

Voltage deviation (pu) 5.1243 6.832 5.4632 4.3347

Reactive power loss (kVar) 1294.045 1232.638 1501.993 1303.072

Vmin (pu)/location 0.9881/(65) 0.9817/(65) 0.9812/(65) 0.9856/(65)

Vmax (pu)/location 1.0002/(18) 1.0/(1) 1.0008/(68) 1.0005/(15)

A new methodology incorporating the ROA is proposed to find the best locations and
capacities of RESs and FCSs in distribution systems. Power loss and voltage fluctuation are
the considered targets to be minimized. Both single objective and multi-objective problems
are formulated and solved via the proposed ROA. The power loss and voltage deviation
of the IEEE-33 bus were reduced by 58.24% and 90.47%, respectively, with the aid of the
proposed ROA. While benefits of 68.39% for losses and 93.22% for voltage deviation were
achieved for the IEEE-69 bus network. Finally, the proposed ROA can be recommended
as an effective tool to solve the problem of integrating RESs and EV FCSs in a radial
distribution network.
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7. Conclusions

This paper proposed a new metaheuristic approach of the red kite optimization
algorithm (ROA) to identify the best sites and sizes of RESs and FCSs in distribution
networks. The ROA was selected due to its simplicity, requirement of less controlling
parameters, high convergence rate, and balance between exploration and exploitation
phases that enabled the algorithm to escape from local optima. The targets were minimizing
the network active power loss and voltage fluctuation. Also, a multi-objective red kite
optimization algorithm (MOROA) was proposed to mitigate both targets. Two standard
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radial distribution networks, the IEEE-33 bus and the IEEE-69 bus, were analyzed. In the
first network, two RESs and two FCSs were installed while in the second network three
RESs and three FCSs were integrated. Comparisons to DBO, AVOA, BES, BO, and GWO
in the single objective problem in addition to MOGWO, MOMVO, and MOAHA in the
multi-objective problem were conducted. The proposed ROA gave the best solution in
the IEEE-33 bus, reducing the network loss and voltage violation by 58.24% and 90.47%,
respectively, whereas it achieved benefits of 68.39% for losses and 93.22% for voltage
deviation of the IEEE-69 bus network. The obtained results revealed the robustness and
competence of the proposed ROA in achieving the best results. Minimizing the period of
charging for EVs will be considered as the target in future works. Also, the investigation of
a real distribution network will be conducted in the next works.
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