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Abstract: The theory of three-way decision has been widely utilized across various disciplines and
fields as an efficient method for both knowledge reasoning and decision making. However, the
application of the three-way decision theory to partially labeled data has received relatively less
attention. In this study, we propose a semi-supervised co-training model based on the three-way
decision and pseudo labels. We first present a simple yet effective method for producing two views by
assigning pseudo labels to unlabeled data, based on which a heuristic attribute reduction algorithm
is developed. The three-way decision is then combined with the concept of entropy to form co-
decision rules for classifying unlabeled data into useful, uncertain, or useless samples. Finally,
some useful samples are iteratively selected to improve the performance of the co-decision model.
The experimental results on UCI datasets demonstrate that the proposed model outperforms other
semi-supervised models, exhibiting its potential for partially labeled data.

Keywords: three-way decision; co-training; pseudo labels; normalized entropy; partially labeled data
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1. Introduction

In the era of information and data, there is an increasing need to process data described
by a large number of attributes, such as genetic analysis, medical image classification, and text
mining, which poses a huge challenge to traditional machine learning algorithms. Attribute
reduction [1,2] has played an important role in removing irrelevant or redundant attributes,
while retaining the most informative ones, which can improve computational efficiency and
performance, and mitigate the risk of overfitting and the curse of dimensionality.

Rough set theory [3] has been proven to be a powerful mathematical tool for handling
incomplete, uncertain, or imprecise data. Since Pawlak’s groundbreaking research [4], the
theory has undergone extensive development and application [5–7]. Presently, numerous
attribute reduction methods based on rough set theory have been proposed, including
discernibility matrix methods [3], positive region, and information entropy. Information
entropy is one of the basic concepts of information theory. Pawlak et al. [8] introduced
conditional entropy to assess the significance of attributes. Sun et al. [9] devised a novel
neighborhood joint entropy from the algebraic and information perspectives of neighbor-
hood rough sets. Jiang et al. [10] utilized the notion of relative decision entropy for the
selection of informative attributes. Gao et al. [11,12] defined granularity-based maximum
decision entropy to evaluate the significance of attributes. Yang et al. [13] proposed a
pseudo-label neighborhood relation and re-defined both the neighborhood rough set and
some corresponding measures. Yuan et al. [14] defined an uncertainty measure based on
fuzzy complementary entropy and developed the attribute evaluation criteria of the maxi-
mal information, minimal redundancy, and maximal interactivity based on the proposed
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uncertainty measure. Xu et al. [15] expanded the concept of information entropy to handle
fuzzy incomplete systems.

As a generalization of rough set theory, the theory of three-way decision [16–25] is a
decision-making methodology that introduces three options—acceptance, non-commitment,
and rejection—by both considering the decision itself and the decision costs, rather than
solely being a deterministic or binary decision. The three-way decision has now become
one of the research hotspots in rough set theory, and there have been many related studies.
Li et al. [26] proposed an axiomatic approach for describing three-way concepts using
multiple granularities, and utilized the concept of set approximation to simulate cognitive
processes. Wang et al. [27] proposed a solution to the problem of attribute reduction based
on decision region preservation in rough sets. Ren et al. [28] introduced the three-way deci-
sion to the concept lattice and systematically studied the methods for the three-way concept
lattice. Huang et al. [29] combined the distance function with the three-way decision to
compute the neighborhood for mixed data. Zhang et al. [30] applied the three-way decision
to the concept of the neighborhood information system and decomposed it into a three-level
structure. Kong et al. [31] divided all attributes in the information table into three disjoint
sets and developed a new granular structure for granular computing. Fang et al. [32]
presented a framework that utilizes the three-way decision and discernibility matrix to
address cost-sensitive approximation attribute reduction.

Typically, rough set-based approaches are employed for either fully labeled or unla-
beled data. However, many real-world datasets may consist of both labeled and unlabeled
data. To address the challenge of handling partially labeled data, several rough set-based
methods have been developed. Miao et al. [33] defined a semi-supervised discernibility
matrix and developed a novel rough co-training model to capitalize on unlabeled data to
improve the performance of classifiers learned only from labeled data. By defining a novel
discernibility matrix, Miao et al. [33] proposed a rough co-training model that harnesses
unlabeled data to improve the accuracy of classifiers trained exclusively on labeled data.
Wang et al. [34] applied Gaussian kernel-based similarity relation to evaluating the samples’
inconsistency and developed an active learning model. To effectively deal with big data,
Li et al. [35] used condition neighborhood granularity and neighborhood granularity to
represent the importance of attributes, and provided an attribute reduction method for
numerical attributes. Liu et al. [36] constructed multiple attribute fitness functions by the
class local neighborhood decision error rate and used them to evaluate the importance of
attributes. Xu et al. [6] developed a model and mechanism for a two-way learning system
in fuzzy datasets based on information granules and developed an algorithm to implement
different types of information granules. Pan et al. [37] defined a measure of semi-supervised
neighborhood mutual information to generate the optimal semi-supervised reduct of par-
tially labeled data by heuristic search. However, most of the aforementioned works focus
on semi-supervised attribute reduction; less consideration is given to directly learning from
semi-supervised models for partially labeled data. In fact, unlabeled data contain valuable
information that can help the model better learn the information of data distribution and
improve its generalization ability. However, noise and useless samples are also present in
unlabeled data, which pose a significant threat to the learning process of partially labeled
data. Therefore, it is important to develop a strategy that allows the model to efficiently
select samples that are beneficial to itself. In this study, we propose a co-training model
based on the three-way decision, and the main contributions are as follows:

(1) To perform attribute reduction for partially labeled data, we propose a simple but effec-
tive labeling strategy for unlabeled data and develop a granular condition entropy-based
heuristic attribute reduction algorithm for partially labeled data with pseudo labels.

(2) To learn from unlabeled data effectively, we combine the three-way decision with infor-
mation entropy into a co-training model and design three-way co-decision rules to clas-
sify unlabeled data into three sets of samples—useful, uncertain, and useless—which
allows the model to learn from useful samples, thus improving performance.
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(3) To test the effectiveness of the proposed model, a large number of comparative
experiments are conducted. The results demonstrate the superiority of the model and
show its potential to handle partially labeled data.

The rest of this paper is ordered as follows. Section 2 briefly introduces the basic
concepts of semi-supervised learning and three-way decision. Section 3 mainly describes
the co-decision model based on the three-way decision. The experimental results and
analysis are given in Section 4. Finally, Section 5 concludes the paper.

2. Preliminaries

This section briefly describes some related concepts in semi-supervised learning and
three-way decision theory. More information can be found in [3,8,22,38–43].

2.1. Semi-Supervised Learning

In semi-supervised learning, partially labeled datum U containing l + n samples is
divided into two parts: labeled data L = {(xi, yi)}l

i=1 and unlabeled data N =
{(

xj, ?
)}l+n

j=1
where U = L ∪ N and l � n, so any sample in U is divided into L or N based on whether
it has labels or not, that is, the intersection of L and N is ∅. Semi-supervised learning
performs well in various machine learning tasks, such as semi-supervised clustering,
semi-supervised classification, or semi-supervised regression. This paper focuses on the
semi-supervised classification task [43].

Semi-supervised classification is a method that can use effective information in unla-
beled data to improve the performance of supervised classifiers trained only on labeled
data. It can generally be divided into four methods: generative methods, low-density sepa-
ration methods, graph-based methods, and divergence-based methods [43]. Among them,
co-training [40,41], as one of the more popular multi-view models in the divergence-based
methods, has performed well on a large number of practical problems. It assumes that there
are two views (attribute sets) to describe data, and two base classifiers trained separately
on initially labeled data learn from each other using unlabeled data. Unfortunately, two
independent and redundant views are difficult to guarantee in practical data. Therefore, it
is essential to design a method to decompose the attribute set into two independent subsets
to make the co-training model work well.

2.2. Three-Way Decision

In rough sets, an information system [3] represents the data that need to be processed,
denoted as IS = (U, A, V, f ), where U is a non-empty set containing all samples; A is the
set of attributes; V is the value domain of all attributes, so Va represents the value domain
of an attribute a in A and V = ∪Va; and f denotes a mapping function. For any sample
xi ∈ U, there exists a mapping relationship f (xi, a) ∈ Va for any attribute a ∈ A.

For any subset B of A, U is divided into a set of equivalence classes U/B, and the
equivalence class containing sample x is denoted as [x]B. Let X be a subset of U and then
the upper and lower approximations of X given B are defined as [3]

B(X) = {x ∈ U|[x]B ∩ X 6= ∅},
B(X) = {x ∈ U|[x]B ⊆ X}

(1)

The B(X) and B(X) represent the set of samples that may belong to X and the set
of samples that must belong to X, respectively. Particularly, the lower approximation
B(X) is also called the positive region POSB(X) of X on U; the difference between the
upper and lower approximations of X is called the boundary region BNDB(X), that is,
BNDB(X) = B(X)− B(X); the set of samples outside the upper approximation of X is
called the negative region, denoted as NEGB(X) = U − B(X).

When the set of attributes A is further divided into the set of condition attributes C and
the set of decision attributes D, the information system is called the decision information
system, denoted as DS = (U, A = C ∪ D, V, f ). Let U/D =

{
Y1, Y2, . . . , Y|U/D|

}
be the
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set of equivalence classes of the decision attribute set D, where Yi is a set of samples with
the decision i, then the positive region, the boundary region, and the negative region of D
given C are defined as [3]

POSC(D) =
⋃

Yi∈U/D

C(Yi),

BNDC(D) =
⋃

Yi∈U/D

(
C(Yi)− C(Yi)

)
,

NEGC(D) = U −
⋃

Yi∈U/D

C(Yi).

(2)

Let Λ = {aP, aB, aN} be the set of behaviors that classify a sample into the positive
region POS(X), the boundary region BND(X), or the negative region NEG(X). Given a
sample x ∈ U, the cost of taking different actions on x can be defined as [22]

R(aP|[x]) = λPPP(X|[x]) + λPN(1− P(X|[x])),
R(aB|[x]) = λBPP(X|[x]) + λBN(1− P(X|[x])),
R(aN |[x]) = λNPP(X|[x]) + λNN(1− P(X|[x])),

(3)

where P(X|[x]) represents the probability that sample x belongs to X, λPP, λBP, and λNP are
the costs of taking the action aP, aB, or aN when sample x is in X, respectively. Conversely,
when the sample x is not in X, the costs of taking aP, aB, or aN are represented as λPN , λBN ,
and λNN , respectively.

According to Bayesian minimal risk decision theory [39], the following rules can be
obtained using the above decision costs [22]:

(P) When R(aP|[x]) ≤ R(aB|[x]) and R(aP|[x]) ≤ R(aN |[x]), classify sample x into the
positive region;

(B) When R(aB|[x]) ≤ R(aP|[x]) and R(aB|[x]) ≤ R(aN |[x]), classify sample x into the
boundary region;

(N) When R(aN |[x]) ≤ R(aP|[x]) and R(aN |[x]) ≤ R(aB|[x]), classify sample x into the
negative region.

If we assume that the inequality (λPN − λBN)(λNP − λBP) > (λBP−λPP)(λBN −λNN)
holds, then the above rules can be further rewritten as [22]

(P) When P(X|[x]) ≥ α, classify sample x into the positive region;
(B) When β < P(X|[x]) < α, classify sample x into the boundary region;
(N) When P(X|[x]) ≤ β, classify sample x into the negative region,

where α = (λPN−λBN)
(λPN−λBN)+(λBP−λPP)

, β = (λBN−λNN)
(λBN−λNN)+(λNP−λBP)

.

3. Three-Way Decision-Based Co-Training with Pseudo Labels

In this section, we first present the overall framework of the model proposed in this
study. Then, we introduce a pseudo-labeling strategy to generate labels for partially labeled
data and provide a heuristic attribute reduction algorithm. Finally, we propose a co-decision
model to learn from unlabeled data.

3.1. Overall Framework

Co-training [40,41] is a divergence-based multi-classifier model, in that two base
classifiers are trained to learn from each other under two mutually independent views.
However, there are no naturally divided two views in practical data, which limits the
application of co-training. Moreover, base classifiers may learn from mislabeled or noisy
samples, which worsens their performance. To address these problems, a three-way
decision-based co-decision model is proposed in this study, and its overall framework is
shown in Figure 1.
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Figure 1. Framework of the three-way decision based co-training with pseudo labels.

Firstly, the unlabeled data are all tagged with the pseudo labels 0 or 1 and combined
with the labeled data, respectively, which preserves the discriminative information of both
the labeled and unlabeled data. Then, an attribute reduction algorithm is performed to
obtain the optimal reduct on the two pseudo-labeled datasets, and two base classifiers are
trained on the two reducts, respectively. Subsequently, the two classifiers are retrained
iteratively on useful unlabeled data selected by using the three-way decision to make the
classifiers only learn beneficial data and improve their performance until the stopping
conditions are met. Finally, the two classifiers are combined to obtain the final classifier.

3.2. Semi-Supervised Attribute Reduction Based on Pseudo Labels

Traditional co-training has shown effectiveness in dealing with partially labeled data,
but it remains an open question as to how to obtain two views from data with a naturally
undivided attribute set. In this study, we propose a strategy that uses labeled samples and
unlabeled samples with pseudo labels to form two views.

Assume a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) has l samples
in labeled datum L and n samples in unlabeled datum N, and |U| = u, u = l + n. Without
loss of generality, assume that there are only two classes in the partially labeled data. For
the unlabeled data N, we adopt a simple strategy of labeling all samples in N with pseudo
labels 0 or 1, respectively, and generate two sets of pseudo-labeled data: N0 with pseudo
label 0 and N1 with pseudo label 1. The two pseudo-labeled data are combined with the
labeled datum L to form two views L′0 = L ∪ N0 and L′1 = L ∪ N1. Factually, the generated
pseudo-labeled data reflect the original partially labeled data from different perspectives,
providing data diversity for the learning model. Formally, the partially labeled data with
pseudo labels are represented as DS = (U = L ∪ N′

k
, A = C ∪ D, V, f )(k = 0, 1), where N′

k
is the pseudo-labeled data after the labeling strategy.
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In information theory [38], information entropy is represented by the expectation of
information content from all possible events. Factually, it can be also used to quantify the
uncertainty of attributes in a given dataset.

Definition 1. Given a partially labeled data PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partition U/B = {X1, X2, . . . , X|U/B|} induced by the subset of condition attributes B ⊆ C, the
information entropy of B over U is defined as [8]

H(B) = −
|U/B|

∑
i=1

P(Xi)logP(Xi), (4)

where | · | is the number of elements in a finite set and P(Xi) =
|Xi |
|U| .

Definition 2. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partitions U/B = {X1, X2, . . . , X|U/B|}, U/D =

{
Y1, Y2, . . . , Y|U/D|

}
induced by the subset of

condition attributes B ⊆ C and the decision attribute set D, respectively, the joint entropy between
B and D is defined as [8]

H(B, D) = −
|U/B|

∑
i=1

|U/D|

∑
j=1

P
(
Xi, Yj

)
logP

(
Xi, Yj

)
, (5)

Definition 3. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partitions U/B = {X1, X2, . . . , X|U/B|}, U/D =

{
Y1, Y2, . . . , Y|U/D|

}
induced by the subset of

condition attributes B ⊆ C and the decision attribute set D, respectively, the conditional entropy of
D given B is defined [42]:

H(D|B) = −
|U/B|

∑
i=1

|U/D|

∑
j=1

P
(
Xi, Yj

)
logP

(
Yj
∣∣Xi
)
, (6)

where P
(
Yj
∣∣Xi
)
=
|Xi∩Yj|
|Xi |

.

In rough sets, the universe under a subset of attributes can be divided into a set of
information granules, each of which consists of some indiscernible samples. Factually, the
size of the information granules reflects the discriminating power of the attribute subset.
The finer the information granularity, the better the quality of the attribute subset.

Definition 4. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partition U/B = {X1, X2, . . . , X|U/B|} induced by the subset of condition attributes B ⊆ C, the
granularity on U given B is defined as [44]

G(B) = −
|U/B|

∑
i=1

P(Xi)
2. (7)

Definition 5. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partitions U/B = {X1, X2, . . . , X|U/B|}, U/D =

{
Y1, Y2, . . . , Y|U/D|

}
induced by the subset of

condition attributes B ⊆ C and the decision attribute set D, respectively, the granular conditional
entropy of D given B is defined as [45]

GH(D|B) = −
|U/B|

∑
i=1

P(Xi)
2
|U/D|

∑
j=1

P
(
Xi, Yj

)
logP

(
Yj
∣∣Xi
)
. (8)

For any condition attribute subset B, its granular conditional entropy to D integrates
the granularity and conditional entropy, which not only evaluates the quality of partitions
induced by the condition attribute subset but also accumulates the uncertainty of each
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condition class under different decisions, providing a better measure for the importance of
an attribute subset.

Definition 6. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
partition U/B = {X1, X2, . . . , X|U/B|} induced by the subset of condition attributes B ⊆ C, the
importance of an attribute a ∈ (B− C) is defined as

sig(a, B, D) = H(D|B)− H(D|B ∪ {a}). (9)

Based on the pseudo-labeling strategy and granular conditional entropy, a semi-
supervised attribute reduction algorithm is developed using the forward heuristic search.
The procedure is described in Algorithm 1.

Algorithm 1 Semi-supervised attribute reduction based on granular condition entropy.

Input: Partially labeled data PS = (U = L ∪ N, A = C ∪ D, V, f ).
Output: Semi-supervised reducts RED0 and RED1.

1: Generate two pseudo-labeled data N0 and N1 from the unlabeled data using the pseudo
labels 0 and 1, respectively;

2: for k ∈ {0, 1} do
3: Compute the granular conditional entropy of GH(D|C) on the data L ∪ N′k;
4: Calculate the granular conditional entropy GH(D|{ai})(ai ∈ C) to evaluate each

attribute and add the attribute aopt that has the lowest granular conditional entropy
to REDk;

5: while GH(D|REDk) 6= GH(D|C) do
6: Calculate the importance of each attribute sig(ai, REDk, D);
7: Select the attribute aopt with highest importance;
8: REDk = REDk ∪

{
aopt

}
;

9: end while
10: end for
11: Return Two semi-supervised reducts RED0 and RED1.

In Algorithm 1, two pseudo-labeled data are first generated. Then, on each, the overall
granular conditional entropy under all condition attributes is calculated, and the attributes
that have the lowest granular conditional entropies are iteratively selected to the reduct.
The algorithm terminates when the granular conditional entropy of the obtained reduct is
the same as that of all condition attributes. Finally, two optimal semi-supervised reducts
are returned.

Assume that the partially labeled data have |U| samples and |C| condition attributes.
The time cost of determining the optimal attribute is O(|C||U|2) in each round of iteration.
Note that the worst case is that it takes |C| rounds to select the optimal attribute in each
iteration, then the worst time cost is O(|C|2|U|2). The space cost is O(|C||U|) because it is
necessary to store all partially labeled data.

3.3. Three-Way Co-Training Model for Partially Labeled Data

Co-training is a semi-supervised learning model that leverages unlabeled samples to
enhance the performance of two classifiers. Therefore, the selection of unlabeled samples is
crucial. Typically, each unlabeled sample can be classified as useful, uncertain, or useless.
When the classifiers select useful unlabeled samples for learning, their classification perfor-
mance will be improved; when the classifiers select useless samples, there may be negative
effects on their performance; and uncertain samples indicate that the classifiers cannot
classify them undoubtedly at this time, but they may become useful unlabeled samples
in the next round of iterations. Therefore, our primary goal is to select useful samples
and exclude useless ones as much as possible to improve the classifiers’ performance. To
accurately assess the confidence level of a classifier’s prediction probability, we introduce
the concept of normalized entropy.
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Definition 7. Given a partially labeled datum PS = (U = L ∪ N, A = C ∪ D, V, f ) and the
probability distribution Pk(x) =

{
pk

1(x), pk
2(x), . . . , pk

|U/D|(x)
}

, k ∈ {0, 1} predicted by the
classifier for x ∈ N in the view k, the normalized entropy of the classifier on x is defined as

NEk(x) =
1

log|U/D|

|U/D|

∑
i=1
−pk

i (x)logpk
i (x) (10)

Normalized entropy uses the prediction probability distribution in a given view to reflect
the degree of certainty of the classifier on its prediction. The higher the normalized entropy,
the lower the credibility of the classifier in making the prediction on an unlabeled sample.
Conversely, the lower the normalized entropy, the higher the credibility of the classifier.

The three-way decision is an effective method for making three optional decisions
under uncertainty—acceptance, wait-to-see, and rejection—which coincides with our desire
to classify unlabeled samples as useful, uncertain, and useless. However, the three-way
decision is often used for a single classifier, so we propose a three-way co-decision model
to classify unlabeled samples. In the model, each classifier divides a sample into useful,
uncertain, or useless by using the Bayesian minimum risk theory. When the two classifiers
both confidently classify an unlabeled sample as useful, uncertain, or useless, a co-decision
P, B, or N is made. However, when one of the classifiers classifies the sample as uncertain
and the other classifies the sample as useless, we consider the sample useless and make
an N decision; when one of the classifiers classifies the sample as uncertain and the other
classifies the sample as useful, we decide to make a P decision. However, when the
predictions of two classifiers conflict, that is, one classifier considers the sample as useful
and the other classifier classifies it as useless, we need to make further consideration to
find as many useful samples as possible to improve the performance of classifiers, even
though this may degrade the performance of one classifier but improve the performance of
the combined classifier. Specifically, we use two threshold parameters δ and ε to evaluate
the average normalized entropy of two classifiers. If the average normalized entropy is
less than or equal to δ, the sample is considered helpful to improve the performance of the
combined classifier, so it is classified as P. If the average normalized entropy is greater than
δ and less than or equal to ε, it means that the two classifiers generally do not have enough
confidence in the sample and need further learning to judge it, so the sample is classified as
B. If the average normalized entropy is greater than ε, which indicates that the sample has
only a negative impact on the performance of the combined classifier, it should be classified
as N. Bearing this in mind, we further define the following three-way co-decision rules
when two classifiers highly contradict each other:

(P) If 1
2 (NE0(x) + NE1(x)) ≤ δ, then determine sample x to P.

(B) If δ < 1
2 (NE0(x) + NE1(x)) ≤ ε, then determine sample x to B.

(N) If 1
2 (NE0(x) + NE1(x)) > ε, then determine sample x to N.

By using the normalized entropy and three-way decision, the co-decision results for
each unlabeled sample can be expressed in Table 1.

Table 1. Co-decision rules by the proposed model.

a1
P a1

B a1
N

a0
P P P Co− TWD

a0
B P B N

a0
N Co− TWD N N

In Table 1, ak
w indicates that the classifier k makes the decision w, where k ∈ {0, 1}

and w ∈ {P, B, N}, the P, B, and N denote the co-decision result of two classifiers for an
unlabeled sample, while the Co−TWD represents the co-decision result further determined
by using the average normalized entropy and the three-way decision when two classifiers
make different decisions.
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Using these rules, unlabeled samples can be classified as useful, uncertain, and useless,
from which only the useful samples are selected to retrain the classifiers. Algorithm 2
describes the procedure of the co-training model.

Algorithm 2 begins with Algorithm 1 to generate two semi-supervised reducts using
pseudo labels. Two base classifiers are then trained separately on the two reducts. After
initializing all parameters required for the co-training process, the unlabeled samples are
iteratively classified into useful, uncertain, or useless by using co-decision rules. The
classifiers can only be updated when useful samples exist. If the inequality constraint
is satisfied, i.e., the classifier’s performance does not deteriorate after adding unlabeled
samples, some useful samples are selected for updating the classifier in descending order of
the average normalized entropy. The algorithm stops when neither classifier can be further
updated, and the final classifier is obtained by combining the two classifiers.

Algorithm 2 Co-training model for partially labeled data based on the three-way decision.

Input: A partially labeled data PS = (U = L ∪ N, A = C ∪ D, V, f ).
Output: A combined classifier Hcombined = Ht

0 ∪ Ht
1.

1: Using Algorithm 1 to generate two pseudo-labeled data N′0 and N′1 and use them to
obtain semi-supervised reducts RED0 and RED1;

2: Train base classifiers H0 and H1 using RED0 and RED1, respectively;
3: Set the error rates, unlabeled samples, useful samples, and update flags for each

classifier. Errt
k = 0.5, Nt = N, Nt

P,k = ∅, Updatet
k = True, t = 0, k ∈ {0, 1};

4: while Updatet
0 = True or Updatet

1 = True do
5: Updatet

0 = Updatet
1 = Flase;

6: Divide the unlabeled data Nt into useful samples Nt+1
P , uncertain samples Nt+1

B , and
useless samples Nt+1

N by using the three-way decision;
7: if Nt+1

P 6= ∅ then
8: Sort the samples in descending order in Nt+1

P based on the average normalized
entropy of two classifiers Ht

0 and Ht
1;

9: for k ∈ {0, 1} do
10: Pick a certain number of samples Nt+1

P∗ ,k from Nt+1
P to ensure that the inequality

Errt+1
k ∗

∣∣∣Nt
P,k ∪ Nt+1

P∗ ,k

∣∣∣ < Errt
k ∗ |Nt

P,k| holds;

11: Nt
P,k = Nt+1

P ∪ Nt+1
P∗ ,k, Updatet

k = True;
12: end for
13: Nt = Nt − Nt+1

N − Nt+1
P∗ ,0 ∪ Nt+1

P∗ ,1;
14: end if
15: for k ∈ {0, 1} do
16: if Updatet

k = True then
17: Retrain classifierHt

k on L ∪ Nt
P,k;

18: end if
19: end for
20: t = t + 1;
21: end while
22: Return the combined classifiers Hcombined = Ht

0 ∪ Ht
1.

Assume a partially labeled datum has |U| samples and |C| condition attributes, where
|L| samples are labeled and |N| samples are unlabeled. The time complexity of training each
base classifier is O(|C||U|). In the worst-case scenario, if there is only one useful unlabeled
sample learned by one classifier in each iteration, it takes |N| iterations. Therefore, the time
complexity of Algorithm 2 is O(|C||U|2), and the space complexity is O(|C||U|).

4. Empirical Analysis

In this section, we first test the effectiveness of semi-supervised attribute reduction and
then the proposed model is compared with other semi-supervised learning methods. All
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experiments are conducted on a computer with Windows 10 operating system configured
with Inter(R) Core(TM) i7-7700K CPU @ 4.20 GHz 4.20 GHz, 16 GB RAM.

4.1. Investigated Data Sets and Experiment Design

In the experiments, 16 UCI datasets are used in this experiment, and their details are
presented in Table 2. The second column in Table 2 indicates the number of condition
attributes, with the number of continuous attributes shown in brackets. The third and
fourth columns display the sample size and number of classes for each dataset, respectively.
The fifth column indicates whether the dataset has missing values.

Table 2. Investigated datasets.

Dataset Name Number of
Attributes

Number of
Samples Number of Classes Missing Data

biodegradation (biode) 41 (41) 1055 2 N
cardiotocography (cardio) 21 (21) 2126 10 N

cmc (cmc) 9 (2) 1473 3 N
frogs (frogs) 22 (22) 7195 10 N

hepatitis (hepatitis) 19 (6) 155 2 Y
hungarian (hungarian) 13 (6) 294 2 Y

kr-vs-kp (krvskp) 36 (0) 3196 2 N
lymph (lymph) 18 (3) 148 4 N

newcylinder-bands(newcylinder) 37 (18) 540 2 Y
pima (pima) 8 (8) 768 2 N

quality-assessment-green (green) 62 (62) 98 2 N
spectf (spectf) 44 (44) 269 2 N
tic-tac-toe (ttt) 9 (0) 958 2 N

vehicle (vehicle) 18 (18) 846 4 N
vowel (vowel) 13 (10) 990 11 N

wine (wine) 13 (13) 178 3 N

In the experiments, missing values in each dataset are replaced by the mean or mode
of their corresponding attributes. Continuous attribute values are first normalized to
the range of [0, 1], and then an equal-frequency discretization technique with five bins
is used [46]. To accurately evaluate the performance of the selected methods, we use a
10-fold cross-validation technique. For example, suppose there are 1000 samples in the
partially labeled data, with the class distribution of 30% positive samples and 70% negative
samples. In each fold of cross validation, 90% of the samples is randomly selected as the
training set, while the remaining 10% is used as the test set, i.e., 900 training samples and
100 test samples are generated, and the original class distribution (30%, 70%) is retained.
Considering a label rate of 10%, only 90 of the 900 training samples are selected as labeled
samples, and the remaining 810 are treated as unlabeled samples. Finally, the average
performance obtained from 10 cross validations is used as the final performance of the
method for the given dataset.

4.2. Attribute Reduction for Partially Labeled Data with Pseudo Labels

The semi-supervised attribute reduction based on the granular conditional entropy is
used in the experiments. Specifically, the method uses a heuristic algorithm to generate
the optimal reduct of partially labeled data by combining the information granularity
with conditional entropy. The results of the attribute reduction at a label rate of 10% are
shown in Table 3, where the second column shows the number of attributes of the dataset
before attribute reduction, and the third to fifth columns are the maximum, minimum, and
average number of remaining attributes after attribute reduction in 10 cross validations,
respectively. The sixth column displays the number of attributes obtained after attribute
reduction at a label rate of 100%, that is, all data are labeled.
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Table 3. Results of semi-supervised attribute reduction based on granular conditional entropy.

Dataset Name Raw
Reducts

Ground Truth
Max Min Avg

biode 41 15 12 13.8 12
cardio 21 8 5 6.3 4
cmc 9 9 8 8.3 7
frogs 22 15 14 14.4 10

hepatitis 19 11 9 10.1 9
hungarian 13 4 3 3.2 3

krvskp 36 32 30 31.2 29
lymph 18 8 7 7.5 6

newcylinder 37 17 16 16.7 15
pima 8 6 5 5.6 4
green 62 29 28 28.8 26
spectf 44 14 13 13.2 10

ttt 9 9 8 8.2 8
vehicle 18 14 12 13.2 10
vowel 13 11 10 10.9 10
wine 13 5 4 4.4 4
avg. 23.9 12.9 11.5 12.2 10.4

By observing Table 3, it can be found that after attribute reduction, the completely
irrelevant and some redundant attributes are excluded from the obtained attribute subsets,
thus reducing the redundant information as much as possible while preserving the inherent
information of the dataset. At the same time, on the dataset “biode”, “hepatitis”, and “tic”,
the minimum number of attributes in the reduct is nearly equivalent to that of the GT
(ground truth), which implies that the proposed method can achieve the attribute reduction
performance as the fully supervised method. The proposed method achieved an average
attribute reduction rate of 48.95% across all selected datasets, demonstrating its potential in
reducing the number of attributes required for classification.

4.3. Effectiveness of the Proposed Co-Training Model

To demonstrate the performance of the proposed model, it is compared with classical
semi-supervised methods, including self-training, co-training, and their extensions.

The classic self-training is a self-learning model. It first trains a basic classifier on
labeled data, followed by iteratively selecting some confident samples from unlabeled
samples to learn until the stop condition is met. Co-training is a multi-view model, in which
two classifiers learn from each other on unlabeled data, but it has to fulfill the condition
that two views must be sufficient and independent. Nevertheless, such a condition is
usually difficult to satisfy in practical problems. Fortunately, the work of Nigam et al. [47]
demonstrated that even if the raw data are randomly split into two attribute subsets, the
co-training classifier can still learn from unlabeled samples. Therefore, we divided each
condition attribute set of the dataset into two disjoint subsets by half-splitting attributes. In
addition, for a more comprehensive comparison, we set the self-training into two cases: self-
training with a single view and self-training with two randomly divided views. Moreover,
we evaluated single-view self-training in two cases: data after attribute reduction and data
without attribute reduction. The settings for these models are shown in Table 4.

Table 4. Settings of comparison methods.

Methods Generated Views

ST-1V Original attribute set
ST-1VR Attribute reduction
ST-2V Random split attribute subsets
CT-2V Random split attribute subsets

CT-TWD Attribute reduction with pseudo-labeled data
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In Table 4, ST-1V and ST-2V denote the single-view self-training and two-view self-
training, respectively, and ST-1VR denotes the single-view self-training after attribute
reduction. In order to comprehensively compare the performance of the proposed model,
we adopt a semi-supervised neighborhood discriminant index, which is a filter method that
combines the supervised neighborhood discriminant index with unsupervised Laplacian in-
formation. CT-2V represents the classical co-training, while CT-TWD denotes the proposed
three-way co-training model. To learn useful unlabeled samples, a threshold parameter
needs to be set for ST-1V, ST-1VR, ST-2V, and CT-2V, and the model proposed in this study
requires two pairs of parameters, where the first pair can be obtained based on the Bayesian
minimum risk decision, while the second pair is calculated by the defined normalized
entropy. For a simple and fair comparison, these parameters are all empirically set to
α = 0.75, β = 0.55, δ = 0.80, and ε = 0.95. For ST-1V and ST-2V, the unlabeled sample with
a prediction probability greater than α is selected for learning. For CT-2V, the unlabeled
sample is used for learning when its prediction probability of one classifier is greater than α,
and the probability predicted by the other classifier is less than β. For the CT-TWD in this
study, the thresholds α and β are used to classify whether the unlabeled sample is useful,
uncertain, or useless. It should be noted that when the average normalized entropy of the
two classifiers for an unlabeled sample is less than δ, the unlabeled sample is considered
useful; when the average normalized entropy is greater than δ and less than ε, the sample
is determined to be uncertain; when the average normalized entropy is greater than ε, the
sample is considered useless. In the experiments, two types of classifiers, i.e., the K-nearest
neighbor classifier with K = 3 and the naive Bayes classifier, are used to evaluate the
performance of the selected methods. Given a label rate θ = 10%, the results of the different
methods are shown in Tables 5 and 6.

Table 5. Error rates of comparison methods on KNN classifier.

Dataset Name
ST-1V ST-1VR ST-2V CT-2V CT-TWD

Initial Final Initial Final Initial Final Initial Final Initial Final

biode 0.3233 0.3357 0.3482 0.3459 0.3747 0.3705 0.3176 0.3067 0.2800 0.2486
cardio 0.3642 0.3722 0.3695 0.3588 0.3821 0.3722 0.2802 0.2889 0.2986 0.2858
cmc 0.3651 0.3830 0.3535 0.3671 0.4509 0.4510 0.3959 0.3731 0.3667 0.3619
frogs 0.4907 0.4936 0.4935 0.4913 0.5015 0.4996 0.4932 0.4932 0.4907 0.4882

hepatitis 0.2733 0.2667 0.2667 0.2667 0.3104 0.3000 0.2800 0.2600 0.3067 0.2333
hungarian 0.4493 0.4345 0.4441 0.4308 0.4204 0.4138 0.4276 0.4279 0.3759 0.3448

krvskp 0.3564 0.3395 0.3402 0.3561 0.3914 0.3843 0.3401 0.3226 0.3276 0.3082
lymph 0.3629 0.3500 0.3143 0.3288 0.3661 0.3557 0.3143 0.3143 0.2643 0.2429

newcylinder 0.4426 0.4463 0.4459 0.4422 0.4705 0.4622 0.4444 0.4630 0.4389 0.4222
pima 0.3237 0.3658 0.3278 0.3158 0.3846 0.3647 0.2974 0.2566 0.2408 0.2395
green 0.4333 0.4474 0.3852 0.3885 0.4725 0.4667 0.3702 0.3556 0.3486 0.3345
spectf 0.3374 0.3462 0.3061 0.3116 0.3812 0.3615 0.2862 0.2615 0.2538 0.2346

ttt 0.3326 0.3395 0.3421 0.3326 0.3468 0.3411 0.3642 0.3602 0.3539 0.3400
vehicle 0.3876 0.3977 0.3562 0.3482 0.3408 0.3369 0.2781 0.2764 0.2861 0.2607
vowel 0.3715 0.3485 0.3129 0.3285 0.3674 0.3581 0.3455 0.3512 0.3464 0.3452
wine 0.2624 0.2529 0.2354 0.2414 0.3248 0.2941 0.2476 0.2364 0.2353 0.2059
avg. 0.3673 0.3700 0.3526 0.3534 0.3929 0.3833 0.3427 0.3342 0.3259 0.3060

In Tables 5 and 6, the symbols “initial” and “final” denote the error rates of each model
trained from labeled data and then improved by unlabeled data, respectively. All results in
“initial” and “final” are obtained after averaging over 10-fold cross validation. In addition,
for the convenience of comparison, the results with the lowest error rates are marked in
bold. Tables 7 and 8 provide the computation time of different comparison methods on
KNN and naive Bayes classifiers. The row “avg.” represents the average error rates of the
selected models computed from all the datasets.
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Table 6. Error rates of comparison methods on Naive Bayes classifier.

Dataset Name
ST-1V ST-1VR ST-2V CT-2V CT-TWD

Initial Final Initial Final Initial Final Initial Final Initial Final

biode 0.3833 0.3895 0.3494 0.3401 0.3638 0.3529 0.3376 0.3386 0.3257 0.3048
cardio 0.2346 0.2369 0.2806 0.2792 0.2347 0.2311 0.2802 0.2797 0.2594 0.2264
cmc 0.3960 0.3953 0.3621 0.3614 0.4275 0.4252 0.3959 0.4007 0.3809 0.3741
frogs 0.4962 0.5022 0.4951 0.4912 0.4931 0.4925 0.4932 0.4844 0.4826 0.4826

hepatitis 0.3740 0.3767 0.3769 0.3627 0.3862 0.3767 0.3815 0.3684 0.3725 0.3584
hungarian 0.4910 0.4993 0.4655 0.4582 0.4884 0.4876 0.4676 0.4566 0.4585 0.4483

krvskp 0.2831 0.2897 0.2884 0.2859 0.2944 0.2884 0.3001 0.2801 0.2727 0.2705
lymph 0.2843 0.2986 0.3142 0.3075 0.3143 0.3129 0.3143 0.2943 0.2857 0.2762

newcylinder 0.4941 0.4952 0.4918 0.4992 0.5074 0.4970 0.4644 0.4778 0.4506 0.4424
pima 0.3266 0.3263 0.2672 0.2506 0.3332 0.3355 0.2674 0.2539 0.2408 0.2368
green 0.3109 0.3111 0.2783 0.2670 0.3389 0.3222 0.2402 0.2267 0.2283 0.2186
spectf 0.3246 0.3230 0.3195 0.3195 0.2992 0.2808 0.2862 0.2969 0.2476 0.2308

ttt 0.3322 0.3368 0.3200 0.3284 0.3474 0.3339 0.3342 0.3216 0.3206 0.3163
vehicle 0.1886 0.1810 0.1875 0.1857 0.1860 0.1831 0.1981 0.1852 0.1766 0.1667
vowel 0.1131 0.0939 0.1028 0.0912 0.1129 0.1051 0.1112 0.1020 0.1075 0.0909
wine 0.3018 0.3118 0.3056 0.3021 0.3053 0.3041 0.3076 0.2976 0.3042 0.2941
avg. 0.3334 0.3355 0.3253 0.3206 0.3395 0.3331 0.3237 0.3165 0.3071 0.2961

By observing Tables 5–8, it can be found that when the label rate is 10%, the initial
performance of the ST-1VR model is better than ST-1V, and even on some datasets, such as
“ttt”(33.26%), “vowel”(32.85%) in Table 5, and “cmc”(36.14%) in Table 6, it is better than that
of the proposed model CT-TWD in this study, which shows the effectiveness of attribute
reduction for semi-supervised learning. However, the improvement of both ST-1VR and
ST-1V after learning unlabeled samples is not significant, even worse performance is
observed on many datasets. The two-view self-training (ST-2V) can learn useful information
from unlabeled samples and outperform the first two models in terms of performance.
Combining Tables 7 and 8, it can be found that the computation time of ST-2V is greater
than that of ST-1VR and ST-1V, which proves that two views have better performance
than single views, but additional computational time is required to process them. For
most datasets, the classifier retrained on unlabeled samples performs better than the
classifier trained on labeled data only, while the co-training model with two views (CT-2V)
achieved better performance using the KNN classifier and the naive Bayes classifier, which
is improved by 2.50% and 2.20%, respectively, because of the mutual learning in the two
classifiers. The average error rates on the KNN classifier and the naive Bayes classifier
are lower than ST-1V, ST-1VR, and ST-2V, which demonstrates the stability of CT-2V. In
addition, CT-2V requires to simultaneously train the two classifiers, resulting in a slightly
longer computation time. However, the results in Tables 5 and 6 show that the performance
of CT-2V is with the average error rates of 33.42% on the KNN classifier and 31.65% on
the naive Bayes classifier, which still has a large gap compared to the proposed model
CT-TWD, with 30.60% on the KNN classifier and 29.61% on the naive Bayes classifier. In
terms of the calculation time, although the average calculation time (avg.) of CT-TWD in
Tables 7 and 8 is relatively large with 4.0440 s on the KNN classifier and 2.5763 s on the
naive Bayes classifier, considering the good performance of CT-TWD, the additional time
cost is clearly acceptable.

To compare the differences among the methods more comprehensively, we also con-
duct experiments at different label rates, and the results are shown in Figures 2 and 3.

As can be seen in Figures 2 and 3, the proposed model CT-TWD can learn from unlabeled
samples and achieve impressive performance against different models. ST-1V is a single-
view semi-supervised learning model, and it can be found in the experiments that ST-1V
performs poorly on most datasets; even worse performance occurs at higher label rates, such
as “lymph” with the KNN classifier and “frogs” with the naive Bayes classifier. This may
be because the initially labeled data are not representative, so the classifiers will mislabel
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unlabeled samples in the training process. Therefore, the classifier will learn the wrong
classification information, which results in poor generalization of the final performance. ST-
1VR is also a single-view semi-supervised self-learning model but performs attribute reduction
on the dataset. Although its overall performance is poor, it outperforms ST-1V, which shows
the effectiveness of the semi-supervised neighborhood discriminant index-based attribute
reduction method. However, ST-1VR still has poor final performance with the limitations of
the single-view model, such as “cmc” and “lymph” with the KNN classifier. ST-2V is a multi-
view self-training model that uses randomly split subsets of attributes from the raw dataset to
train the base classifiers, and a threshold is used to select useful samples to help the classifiers
retrain themselves, but its final performance is not good. On the one hand, the two classifiers
of ST-2V are self-taught. On the other hand, the poor quality of the randomly partitioned
subsets of attributes also leads to the disappointing performance of ST-2V. Although CT-2V
can make two base classifiers learn from each other through unlabeled samples to improve the
performance, the two subspaces of CT-2V are randomly divided from the dataset. Therefore,
the performance of the classifiers is not stable, resulting in CT-2V only performing better on
some datasets.

Table 7. Computation time of comparison methods on KNN classifier (in seconds).

Dataset Name ST-1V ST-1VR ST-2V CT-2V CT-TWD

biode 0.7241 0.8591 0.8357 1.2159 1.7486
cardio 1.4974 1.7692 2.7157 3.2531 4.2960
cmc 1.1913 1.0838 1.2039 1.1448 1.9738
frogs 8.5527 15.1085 18.9194 20.2269 20.6095

hepatitis 0.0837 0.0947 0.1478 0.1771 0.2135
hungarian 0.1721 0.1678 0.2480 0.3563 0.4245

krvskp 2.4541 6.8275 2.7247 4.5600 5.8669
lymph 0.0764 0.0973 0.1131 0.1320 0.1882

newcylinder 0.2567 0.2988 0.3335 0.4090 0.4505
pima 0.5108 0.6147 0.6824 0.6968 0.6937
green 0.0522 0.0566 0.0717 0.0811 0.0859
spectf 0.1430 0.2100 0.1855 0.2539 0.2629

ttt 0.7839 0.7737 0.9943 0.9106 0.9787
vehicle 0.5464 0.6936 1.1177 1.1366 1.1564
vowel 1.0919 1.0220 1.4024 1.1234 1.3427
wine 0.1033 0.1125 0.1553 0.1220 0.1485
avg. 1.1400 1.8619 3.1851 3.5800 4.0440

Table 8. Computation time of comparison methods on Naive Bayes classifier (in seconds).

Dataset Name ST-1V ST-1VR ST-2V CT-2V CT-TWD

biode 0.6475 0.6839 0.8281 0.9782 1.0773
cardio 1.3194 1.3785 1.5004 1.6889 1.7402
cmc 0.7274 0.7704 0.9232 0.9902 1.0686
frogs 6.1380 9.8430 11.2920 14.1749 14.9361

hepatitis 0.0685 0.0748 0.0864 0.1038 0.1090
hungarian 0.1281 0.1442 0.1454 0.2429 0.2635

krvskp 2.9206 2.8730 2.4105 2.4737 2.6089
lymph 0.0804 0.0714 0.0742 0.0844 0.0954

newcylinder 0.2323 0.2806 0.3145 0.3498 0.3535
pima 0.3683 0.3794 0.4796 0.6669 0.6978
green 0.0397 0.0492 0.0618 0.0694 0.0752
spectf 0.1349 0.1382 0.1986 0.2465 0.2790

ttt 0.4538 0.4345 0.7001 0.6771 0.7709
vehicle 0.4709 0.4555 0.7014 0.7113 0.8108
vowel 0.5423 0.5481 0.5310 0.6838 0.7396
wine 0.0760 0.0830 0.1128 0.1166 0.1374
avg. 0.8967 1.1380 1.2725 2.4258 2.5763
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(a) biode (b) cardio

(c) cmc (d) frogs

(e) hepatitis (f) hungarian

(g) krvskp (h) lymph

Figure 2. Cont.
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(i) newcylinder (j) pima

(k) green (l) spectf

(m) ttt (n) vehicle

(o) vowel (p) wine

Figure 2. Error rates of comparison methods under different label rates when using KNN.
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Figure 3. Cont.
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(i) newcylinder (j) pima

(k) green (l) spectf

(m) ttt (n) vehicle

(o) vowel (p) wine

Figure 3. Error rates of comparison methods under different label rates when using Naive Bayes.

Different from the selected comparison models, the CT-TWD uses the three-way co-
decision model in the training process to classify unlabeled samples into useful, uncertain,
and useless. The training set of each classifier is updated only when the unlabeled samples
are useful and have a positive impact on the model performance. Such a sample selec-
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tion mechanism ensures that CT-TWD can effectively use unlabeled samples to improve
performance on most datasets at different label rates. For example, the proposed model
achieves an improvement of 22.03% at a 30% label rate on the “vowel” dataset with the
KNN classifier and an improvement of 13.55% at a 40% label rate on the “wine” dataset
with the naive Bayes classifier, illustrating the potential of the proposed model for partially
labeled data.

It should be noted that for some datasets, such as “cmc” on the naive Bayes classifier
and “lymph” on the KNN classifier, as the label rate increases, the performance of the
methods tends to decrease. This is likely due to the labeled data not being representative
enough, thereby limiting the performance of the classifier as the data scale increases.
Compared to other models, the CT-TWD proposed in this study assigns pseudo labels of 0
and 1 to unlabeled samples to form two views of data, which makes the two views of data
still maintain the discriminative ability as the raw dataset. Therefore, the quality of the
base classifiers obtained by CT-TWD has good robustness, which allows it to have better
performance across all the datasets.

5. Conclusions

In real-world applications, annotating large amounts of data is often challenging, but
collecting unlabeled data is relatively easy, which results in semi-supervised data with
a small amount of labeled data and a large amount of unlabeled data. In this study, we
proposed a simple yet effective strategy for generating pseudo-labels for partially labeled
data and developed a heuristic semi-supervised attribute reduction algorithm using a
granular conditional entropy measure. To exploit useful unlabeled samples for learning,
we combined the three-way decision with the normalized entropy and proposed a three-
way co-decision model for partially labeled data. However, due to the proposed model
requiring partitioning of the dataset with 0 and 1 pseudo labels, which can only have
significant advantages in binary classification problems, it still has limitations in multi-
classification problems. Therefore, extending the model to multi-classification problems
will be future work. Also, exploring the semi-supervised model for discrete and continuous
data is worthy of further investigation.
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