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Abstract: This paper addresses discontinuities in the solutions of mathematical physics that describe
actual processes and are not observed in experiments. The appearance of discontinuities is associated
in this paper with the classical differential calculus based on the analysis of infinitesimal quantities.
Nonlocal functions and nonlocal derivatives, which are not specified, in contrast to the traditional
approach to a point, but are the results of averaging over small but finite intervals of the independent
variable are introduced. Classical equations of mathematical physics preserve the traditional form
but include nonlocal functions. These equations are supplemented with additional equations that
link nonlocal and traditional functions. The proposed approach results in continuous solutions of
the classical singular problems of mathematical physics. The problems of a string and a circular
membrane loaded with concentrated forces are used to demonstrate the procedure. Analytical results
are supported with experimental data.
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1. Nonlocal Functions

Modern differential calculus was developed by I. Newton and G. Leibnitz in the 17th
century. It is demonstrated in the following cubic polynomial:

y = a + bx + cx2 + ex3 (1)

To introduce the derivative, we assume that y and x have some small increments, ∆y
and ∆x. Then:

y + ∆y = a + b(x + ∆x) + c(x2 + 2x∆x + ∆x2) + e(x3 + 3x∆x2 + 3x2∆x + ∆x3)

Subtracting y in Equation (1) and dividing by ∆x, we get:

∆y
∆x

= b + c(2x + ∆x) + d(3x2 + 3x∆x + ∆x2)

To obtain the derivative, we need to eliminate ∆x from the right-hand side of this
equation. Naturally, we cannot put ∆x = 0 because the resulting operation makes no sense.
We also cannot neglect ∆x because the operation becomes approximate in this case and
is not acceptable in mathematics. Thus, we need to introduce the infinitesimal quantity
dx, which is infinitely small but not zero. Then, we arrive at the following equation for
the derivative:

dy
dx

= b + 2cx + 3ex2 (2)
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The other definition of the derivative that does not require the introduction of infinites-
imal quantities was proposed by J. Landen in 1764 [1]. It introduces an interval [x1, x2] and
assumes that x1 ≤ x ≤ x2. We determine the derivative of the function in Equation (1) as:

y2 − y1

x2 − x1
=

b(x2 − x1) + c(x2
2 − x2

1) + e(x3
2 − x3

1)

x2 − x1
= b + c(x1 + x2) + e(x2

1 + x1x2 + x2
2)

Taking x1 = x2 = x, we get:

dy
dx

= b + 2cx + 3ex2

This result coincides with Equation (2) but does not require the introduction of in-
finitesimal quantities.

We further use the Landen definition of the derivative to construct nonlocal derivatives.
To introduce the nonlocal function, we consider a conventional function u(x) as shown

in Figure 1.

Figure 1. A function of one variable.

We assume that this function describes a real physical process and, according to
the definition, is smooth and has traditional derivatives of any order. We introduce in
the vicinity of point x the local coordinate α, such that −a/2 ≤ α ≤ a/2 (Figure 1).
Since function u(x) is smooth, we decompose it in the vicinity of point α = 0 into the
Taylor series:

u(x, α) = u(x) + αu′ +
α2

2!
u′′ +

α3

3!
u′′′ (3)

where u′ = du/dx, and the series is restricted to the terms presented in Equation (3). We
introduce the nonlocal function U(x) as the average value of function u(x, α) on the interval
[−a/2, a/2], i.e.,:

U(x) =
1
a

a/2∫
−a/2

u(x, α)dα

Substituting Equation (3), we arrive at [2]:

U(x) = u(x) +
a2

24
u′′ (x) (4)

Thus, the nonlocal function depends not only on the value of the original function at a
point but on the value of the second derivative as well. According to Landen, we should
introduce the nonlocal derivative as:

Du
Dx

=
1
a
[u(x, a/2)− u(x,−a/2)]



Mathematics 2023, 11, 3362 3 of 10

In contrast to the original Landen definition, the parameter a is small but finite.
Substituting Equation (3) and taking into account Equation (4), we get:

Du
Dx

= u′ +
a2

24
u′′′ + · · · = dU

dx
(5)

Thus, the nonlocal derivative of the original function is the classical derivative of the
nonlocal function.

In the following sections, the proposed approach is demonstrated on the classical
problems of mathematical physics—the problems of a string and a membrane loaded with
concentrated forces.

2. A String Loaded with a Concentrated Force

We consider a string loaded with the axial tensile force t and the transverse force P as
in Figure 2.

Figure 2. A string loaded with a concentrated force.

The equilibrium equation has the following form:

2t sin θ = P (6)

For a relatively small deflection, v(x), we can take sin θ ≈ θ, and Equation (6) reduces to:

θ =
P
2t

(7)

To obtain the classical solution, we put θ = −dv/dx = −v′, and Equation (7) becomes:

v′ = − P
2t

(8)

The solution of this equation is:

v = −Px
2t

+ C0 (9)

Satisfying the boundary condition, v(x = l/2) = 0 (Figure 2), we finally get the
classical solution for the string deflection:

v =
P
2t

(
l
2
− x
)

(10)

This solution has two points of discontinuity at x = 0 and x = l/2, at which the
deflection derivative does not exist. For a real string, we have the obvious conditions of
v′(x = 0) = v′(x = l/2) = 0, which cannot be satisfied with Equation (9). The experimental
deflection of a steel string with diameter d = 0.49 mm, length l = 124 mm, and elastic
modulus E = 209.3 GPa loaded with forces t = 49 N and P = 1.96 N is shown in Figure 3
with dots.



Mathematics 2023, 11, 3362 4 of 10

Figure 3. Distribution of the deflection over the string length.

The experimental facility for investigating the transverse displacements of a stretched
string under the action of a transverse local force is shown in Figure 4. The equipment
provides a constant controlled string tension. During the test, the transverse displacements
of the string are measured with an accuracy of 0.1 mm using an optical system.

Figure 4. Testing of a string.

As can be seen, the classical solution in Equation (10) presented with the dashed line
does not coincide with the experiment.

We obtain the nonlocal solution of the problem. Using Figure 1 and Equation (4), we
introduce the nonlocal angle:

Θ = θ +
a2

24
θ′′

where angle θ is averaged over some intervals [−a/2, a/2]. Changing θ to Θ in Equation (7),
we arrive at the following equilibrium equation:

θ +
a2

24
θ′′ =

P
2t
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Since θ = −v′, we get:

v′ +
a2

24
v′′′ = − P

2t
(11)

Integration yields:

v +
a2

24
v′′ = −Px

2t
+ C0 (12)

This equation allows us to clear out the procedure used to construct the nonlocal
solution. The left-hand part contains the ordinary Helmhotz-type operator acting on
the string deflection, whereas its right-hand part is the classical solution of the problem
specified by Equation (9).

This conclusion is valid in the general case [2] in which the original function u(x, y, z)
can be found from the following equation:

u +
a2

24
∆u = uc (13)

where ∆ is the Laplace operator, and uc is the classical solution. If u(x, y, z) is a scalar func-
tion, the Laplace operator is invariant, and Equation (13) is valid in any coordinate frame.

Equation (11) includes parameter a, which is not known yet. To determine this
parameter, we should take into account that Equation (10) describes the mathematical
model of the string, which is the one-dimensional manifold. The real string is characterized
with an elastic modulus and the shape and dimensions of the cross-section, which do not
enter into the classical solution, Equation (10). We consider a more adequate physical
model—a beam shown in Figure 5.

Figure 5. Stretching and bending of a beam.

In this model, the axial force t acting in the beam cross-section is supplemented
with transverse force Q and bending moment M (Figure 5). A beam is described by the
following equations:

2(tv′ + Q) = −P, Q = M′, M = −Dv′′

which can be reduced to:
v′ − D

t
v′′′ = −Px

2t
where D is the bending stiffness. Matching this equation to Equation (11), we can conclude
that a2 = −24D/t. Since D and t cannot be negative, parameter a is imaginary. This
result looks natural because the obtained results are based on a model of a homogeneous
continuum that ignores the material’s actual microstructure. Thus, we cannot expect that
this model allows us to determine the actual value of the microstructural parameter. To
avoid imaginary values, we present Equation (12) in the following form:

v− s2v′′ = −Px
2t

+ C0 (14)
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in which:
s =
√

D/t (15)

Thus, parameter s depends on the bending stiffness and the axial force and does not
depend on the transverse force and the string length. Putting D = 0, we get s = 0, and
Equation (14) reduces to the classical Equation (9).

The solution of Equation (14) is:

v = C1e−kx + C2ekx − Px
2t

+ C0, k =
1
s

, 0 ≤ x ≤ l
2

(16)

This solution specifies two boundary-layer effects in the vicinity of points x = 0 and
x = l/2. For a long string, we can neglect the interaction of these effects and present
Equation (16) as:

v = C1e−kx + C2e−k( l
2−x) − Px

2t
+ C0

We consider the boundary condition at x = 0, i.e., v′(0) = 0. Taking C2 = 0 and using
this condition to determine C1, we arrive at the solution that is valid for 0 ≤ x ≤ l/4:

v = − P
2tk

e−kx − Px
2t

+ C0 (17)

We consider the part of the string corresponding to l/4 ≤ x ≤ l/2. To apply the
boundary conditions v(l/2) = v′(l/2) = 0, we put C1 = 0 and get:

v = C2e−k( l
2−x) − Px

2t
+ C0 (18)

Using the boundary conditions, we can find C2 and C0 and present Equations (17) and (18) as:

v = − P
2kt

(
1 + e−kx

)
+

P
2t

(
l
2
− x
)

, 0 ≤ x ≤ l
4

v = − P
2kt

(
1− e−k( l

2−x)
)
+

P
2t

(
l
2
− x
)

,
l
4
≤ x ≤ l

2

For x = l/4, we can neglect the exponential terms in comparison with unity, and
both solutions yield one and the same result. For the experimental string, the obtained
solution is shown in Figure 3 with the solid line. As can be seen, it is in good agreement
with the experiment.

3. A Circular Membrane Loaded with a Concentrated Force

A circular membrane loaded with in-plane forces t and a concentrated force P applied
at the membrane center (Figure 6) is a classical singular problem of mathematical physics [3].

Figure 6. Circular membrane loaded with in-plane tensile forces t and a concentrated force P.
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The membrane deflection satisfies the following equation [3]:

t∆w = −p(r), ∆w =
1
r
(rw′)′, (·)′ = d(·)/dr (19)

For a concentrated force, p(r) = Pδ(r), in which δ(r) is the delta function. The solution
of Equation (19) that satisfies the boundary condition w(r = R) = 0 is [3]:

wc =
P

2πt
ln

R
r

(20)

As can be seen, wc → ∞ if r → 0 . Moreover, the deflection is infinitely high for
any force P, irrespective of how small it can be. Naturally, this result does not have a
physical meaning.

To obtain the nonlocal solution of the problem, we apply Equation (13). Taking into
account that w(r) is a scalar function, we have [2]:

w +
a2

24
∆w = wc, ∆w =

d2w
dr2 +

1
r

dw
dr

(21)

where wc is specified by Equation (20). To determine parameter a, we assume, as earlier,
that the membrane is a three-dimensional object—a circular plate with a finite thickness h,
rather than a two-dimensional mathematical manifold. The plate deflection satisfies the
following equation [4]:

w− D
t

∆w =
P

2πt
ln r (22)

where D = Eh3/12(1− ν2), E is the elastic modulus, and ν is Poisson’s ratio. Matching
Equations (21) and (22), we can, as earlier, conclude that a2 = −24D/t. Introducing
parameter s in accordance with Equation (15), we arrive at:

s2∆w− w = − P
2πt

ln
R
r

Using the following notations:

ρ = r/s, Rs = R/s,

we finally have:
d2w
dρ2 +

1
ρ

dw
dρ
− w = − P

2πt
ln

Rs

ρ
(23)

The general solution of this equation can be written in terms of modified Bessel
functions I0(ρ), K0(ρ) and the corresponding particular solution as:

w(ρ) = C1 I0(ρ) + C2K0(ρ) +
P

2πt
ln

Rs

ρ

Using the boundary condition w(ρ = Rs) = 0, we can determine the constant C1 and get:

w(ρ) = C2

[
K0(ρ)−

K0(Rs)

I0(Rs)
I0(ρ)

]
+

P
2πt

ln
Rs

ρ
(24)

As can be seen, this particular solution is singular at ρ = 0. However, the Macdonald
function K0(ρ) has the same type of singularity and can be used to eliminate the singularity
of the solution in Equation (24). We decompose the Bessel functions into the power
series [5]:

I0(ρ) = 1 +
ρ2

4(1!)2 +
ρ4

42(2!)2 + · · ·, K0(ρ) = −
[
γ + ln

ρ

2

]
I0(ρ) +

ρ2

4(1!)2 + · · · (25)



Mathematics 2023, 11, 3362 8 of 10

where γ = 0.577 is the Euler constant. Substituting series (25) in Equation (24) and putting
ρ→ 0 , we can conclude that the solution becomes regular if we take C2 = −P/(2πt).
Finally, we arrive at:

w(ρ) =
P

2πt

[
ln

Rs

ρ
− K0(ρ) +

K0(Rs)

I0(Rs)
I0(ρ)

]
At the membrane center, the deflection is finite, i.e.,:

w0 =
P

2πt

[
ln Rs + 0.116 +

K0(Rs)

I0(Rs)

]
The derivative of the deflection,

w′ =
1
s

dw
dρ

=
P

2πts

[
K1(ρ)−

1
ρ
+

K0(Rs)

I0(Rs)
I1(ρ)

]
,

is zero at the membrane center because K1(ρ→ 0)→ 1/ρ and I1(0) = 0.
We undertake the analysis of the obtained results. First, the singular classical solution

in Equation (20) looks consistent since the right-hand side of Equation (19) includes the
delta function, which is also singular. Thus, a singular action results in a singular solution.
Being natural in mathematics, it is not acceptable in physics, in which the concentrated force
and the membrane deflection are, in principle, different functions. A concentrated force
does not exist in reality and is singular according to its definition, whereas a deflection is a
physical variable that can be directly measured and cannot be infinitely high. Second, the
consistency of the classical solution is proved in mathematics since it can be presented as a
limit of a system of regular functions [6]. Thus, the mathematically consistent solution is
not physically consistent. Finally, as follows from the foregoing derivation, the logarithmic-
type singularity in the right-hand side of Equation (23) is compensated for by the same
type of singularity in a fundamental solution of the corresponding homogeneous equation.
If we formally change the type of singularity in the right-hand side of Equation (23)
(e.g., introduce a power-type singularity), it will not be eliminated by the logarithmic
fundamental solution. Thus, the proposed method works only for the equations that
describe physical problems.

The obtained solution was verified experimentally. The experimental membrane was
made of a polymeric film and had the following parameters: h = 0.04 mm, R = 75 mm,
E = 5.4 GPa, ν = 0.4, t = 0.77 N/mm, P = 0.5 N H. For these parameters, Equation (15)
yields s = 0.216 mm. The calculated value of the maximum deflection—w0 = 0.593mm
is in good agreement with the experimental result—w0 = 0.6 mm. The description of the
experiment is presented in [7].

Dependence of the deflection on the radial coordinate is shown in Figure 7 with the
solid line along with experimental results (dots). The line corresponds to both solutions
(classical and nonlocal)—the difference between them can be seen only in the vicinity of
the membrane center (Figure 8).

As follows from Figure 8, the difference between the curves is observed for r ≤ 1 mm,
whereas the membrane radius is R = 75 mm.
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Figure 7. Dependences of the membrane deflection on the radial coordinate corresponding to the
classical and nonlocal solutions (——–) and experiment (•).

Figure 8. Membrane deflection corresponding to the classical solution (- - - - - - -) and the nonlocal
solution ( ——– ).

4. Conclusions

Regular solutions of the problems of mathematical physics for a string and a membrane
following from physically consistent models simulating a string as a beam and a membrane
as a circular plate cannot be obtained on the basis of the classical mathematical models of
a string and a membrane as one- or two-dimensional manifolds, respectively, and can be
found by applying the proposed nonlocal functions and derivatives.
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