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Abstract: In the present paper, the authors introduce and investigate two new subclasses of the
function class B of bi-univalent analytic functions in an open unit disk U connected with a linear
q-convolution operator. The bounds on the coefficients |c2|, |c3| and |c4| for the functions in these new
subclasses of B are obtained. Relevant connections of the results presented here with those obtained
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1. Introduction

Let A be the class of analytical functions in an open unit disk

U := {ξ : ξ ∈ C and |ξ| < 1}

and assume that Ω is a family of functions F ∈ A satisfying the normalization conditions
(see [1]):

F(0) = F′(0)− 1 = 0.

The functions in Ω are defined by

F(ξ) = ξ +
∞

∑
r=2

crξr (ξ ∈ U ). (1)

Assume that Γ denotes the class of all functions in Ω which are univalent in U . For the
functions F, H ∈ A defined by

F(ξ) =
∞

∑
r=1

crξr and H(ξ) =
∞

∑
r=1

drξr (ξ ∈ U ),

the convolution of F and H denoted by F ∗H is

(F ∗H)(ξ) =
∞

∑
r=1

crdrξr = (H ∗ F)(ξ) (ξ ∈ U ).
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To start with, we recall the following differential and integral operators.
For 0 < q < 1, El-Deeb et al. [2,3] defined the q-convolution operator (see also [4–7]) for

F ∗H by

Dq(F ∗H)(ξ) := Dq

(
ξ +

∞

∑
r=2

crdrξr

)

=
(F ∗H)(ξ)− (F ∗H)(qξ)

ξ(1− q)
= 1 +

∞

∑
r=2

[r]qcrdrξr−1, ξ ∈ U ,

where

[r]q :=
1− qr

1− q
= 1 +

r−1

∑
j=1

qj, [0]q := 0. (2)

We used the linear operator Gδ,q
H : A → A according to El-Deeb et al. [2] (see also [3])

for δ > −1 and 0 < q < 1. If

Gδ,q
H F(ξ) ∗ Iδ+1

q (ξ) = ξDq(F ∗H)(ξ), ξ ∈ U ,

where Iδ+1
q is given by

Iδ+1
q (ξ) := ξ +

∞

∑
r=2

[δ + 1]q,r−1

[r− 1]q!
ξr, ξ ∈ U ,

then

Gδ,q
H F(ξ) := ξ +

∞

∑
r=2

[r]q!
[δ + 1]q,r−1

crdr ξr (δ > −1, 0 < q < 1, ξ ∈ U ). (3)

Using the operator Gδ,q
H , we define a new operator as follows:

W δ,q,0
H,µ F(ξ) = Gδ,q

H F(ξ)

W δ,q,1
H,µ F(ξ) = µξ3

(
Gδ,q
H F(ξ)

)′′′
+ (1 + 2µ)ξ2

(
Gδ,q
H F(ξ)

)′′
+ ξ
(
Gδ,q
H F(ξ)

)′
.

. (4)

W δ,q,n
H,µ F(ξ) = µξ3

(
W δ,q,n−1

H,µ F(ξ)
)′′′

+ (1 + 2µ)ξ2
(
W δ,q,n−1

H,µ F(ξ)
)′′

+ ξ
(
W δ,q,n−1

H,µ F(ξ)
)′

= ξ +
∞

∑
r=2

r2n(µ(r− 1) + 1)n [r]q!
[δ + 1]q,r−1

crdr ξr

= ξ +
∞

∑
r=2

Θr crξr

(δ > −1, µ > 0, 0 < q < 1, n ∈ N0 = N∪ {0}, ξ ∈ U ),

where

Θr = r2n(µ(r− 1) + 1)n [r]q!
[δ + 1]q,r−1

dr. (5)

From the definition relation (3), we get

(i) [δ + 1]qW δ,q,n
H,µ F(ξ) = [δ]qW δ+1,q,n

H,µ F(ξ) + qδ ξDq

(
W δ+1,q,n

H,µ F(ξ)
)

, ς ∈ U ; (6)

(ii) Rδ,n
H,µF(ξ) := lim

q→1−
W δ,q,n

H,µ F(ξ)
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= ξ +
∞

∑
r=2

r2n(µ(r− 1) + 1)n r!
(δ+1)r−1

dr cr ξr, ξ ∈ U . (7)

Remark 1. We find the following special cases for the operator W δ,q,n
H,µ by considering several

particular cases for the coefficients dr and n :
(i) Putting dr = 1 and n = 0 into this operator, we obtain the operator QTRcalBα

q defined by
Srivastava et al. [8];

(ii) Putting dr =
(−1)r−1Γ(ρ + 1)

4r−1(r− 1)!Γ(r + ρ)
(ρ > 0) and n = 0 in this operator, we obtain the

operator N µ
ρ,q defined by El-Deeb and Bulboacă [9] and El-Deeb [10];

(iii) Putting dr =

(
τ + 1
τ + r

)j
(j > 0, τ ≥ 0) and n = 0 in this operator, we obtain the

operatorMµ,j
τ,q defined by El-Deeb and Bulboacă [11] and Srivastava and El-Deeb [12];

(iv) Putting dr =
σr−1

(r− 1)!
e−σ (σ > 0) and n = 0 in this operator, we obtain the q-analogue

of Poisson operator Iµ,σ
q defined by El-Deeb et al. [2];

(v) Putting dr = 1 in this operator, we obtain the operator QTRcalBδ,q,n
µ defined as follows:

Bα,n
δ,q F (ς) = ξ +

∞

∑
r=2

r2n(δ(r− 1) + 1)n [r]q !
[α+1]q,r−1

cr ξr ; (8)

(vi) Putting dr =
(−1)r−1Γ(ρ + 1)

4r−1(r− 1)!Γ(r + ρ)
(ρ > 0) in this operator, we obtain the operator

N α,n
δ,ρ,q defined as follows:

N α,m
δ,ρ,qF (ς) = ξ +

∞

∑
r=2

r2n(δ(r− 1) + 1)n [r]q !
[α+1]q,r−1

(−1)r−1Γ(ρ+1)
4r−1(r−1)!Γ(r+ρ)

cr ξr

= ξ +
∞

∑
r=2

φr cr ξr , (9)

where
φr = r2n(δ(r− 1) + 1)n [r]q !

[α+1]q,r−1

(−1)r−1Γ(ρ+1)
4r−1(r−1)!Γ(r+ρ)

; (10)

(vii) Putting dr =

(
τ + 1
τ + r

)j
(j > 0, τ ≥ 0) in this operator, we obtain the operatorMα,n,j

δ,τ,q

defined as follows:

Mα,n,j
δ,τ,qF (ς) = ξ +

∞

∑
r=2

r2n(δ(r− 1) + 1)n
(

τ+1
τ+r

)j [r]q !
[α+1]q,r−1

cr ξr; (11)

(viii) Putting dr =
σr−1

(r− 1)!
e−σ (σ > 0) in this operator, we obtain the q-analogue of Poisson

operator Iα,m
δ,σ,q defined as follows:

Iα,n
δ,σ,qF (ς) = ξ +

∞

∑
r=2

r2n(δ(r− 1) + 1)n [r]q !
[α+1]q,r−1

σr−1

(r−1)! e
−σ cr ξr. (12)

The well-known Koebe one-quarter theorem (see [1]) states that any univalent function
F ∈ Ω includes a disk with a radius of 1

4 in its image of U . For a result, the inverse of
F is a univalent analytic function on the disk with the notation Uρ := {ξ : ξ ∈ C and
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|ξ| < ρ; ρ ≥ 1
4}. As a result, there is an inverse function F−1(v) of F(ζ) defined for each

function F(ξ) = v ∈ σ
F−1(F(ς)) = ς (ς ∈ U )

and
F(F−1(v)) = v (v ∈ Uρ)

where
F−1(v) = v− c2v2 + (2c2

2 − c3)v
3 − (5c3

2 − 5c2c3 + c4)v
4 + .... (13)

When both F and F−1 are univalent in U , a function F is said to be bi-univalent in U .
Let B denote the class of bi-univalent functions in U given by (1). The concept of

bi-univalent analytic functions was introduced by Lewin [13] in 1967 and he showed
that |c2| < 1.51. Subsequently, Brannan and Clunie [14] conjectured that |c2| ≤

√
2. Ne-

tanyahu [15], on the other hand, showed that maxF∈B |c2| = 4
3 . The coefficient estimate

problem for each of the following Taylor–Maclaurin coefficients:

|cr| (r ∈ N \ {1, 2})

is presumably still an open problem.
In [16] (see also [2,10,17–26]), certain subclasses of the bi-univalent analytic functions

class B were introduced and non-sharp estimates on the first two coefficients |c2| and
|c3| were found. The object of the present paper is to introduce two new subclasses as in
Definitions 1 and 2 of the function class B using the linear q-convolution operator and
determine estimates of the coefficients |c2|, |c3| and |c4| for the functions in these new
subclasses of the function class B.

Definition 1. A function F(ξ) given by (1) is said to be in the class N δ,q,n,κ
H,µ,m if the following

conditions are satisfied:

F ∈ B and

∣∣∣∣∣∣ arg

(1−m)
W δ,q,n

H,µ F(ξ)
ς

+ m
(
W δ,q,n

H,µ F(ξ)
)′∣∣∣∣∣∣ < κπ

2
(14)

and ∣∣∣∣∣∣ arg

(1−m)
W δ,q,n

H,µ G(v)

v
+ m

(
W δ,q,n

H,µ G(v)
)′∣∣∣∣∣∣ < κπ

2
(15)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

Definition 2. A function F given by (1) is said to be in the classMδ,q,n,κ
H,µ,m if the following conditions

are satisfied:

F ∈ B and <

(1−m)
W δ,q,n

H,µ F(ξ)
ξ

+ m
(
W δ,q,n

H,µ F(ξ)
)′ > κ (16)

and

<

(1−m)
W δ,q,n

H,µ G(v)

v
+ m

(
W δ,q,n

H,µ G(v)
)′ > κ (17)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

By fixing m = 1, we define a new subclass of B due to Noshiro [27].
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Definition 3. A function F given by (1) is said to be in the class Sδ,q,n,κ
H,µ if the following conditions

are satisfied:

F ∈ B and
∣∣∣∣ arg

((
W δ,q,n

H,µ F(ξ)
)′)∣∣∣∣ < κπ

2
and

∣∣∣∣ arg
((
W δ,q,n

H,µ G(v)
)′)∣∣∣∣ < κπ

2
(18)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

Definition 4. A function F given by (1) is said to be in the classRδ,q,n,κ
H,µ if the following conditions

are satisfied:

F ∈ B and <
[(
W δ,q,n

H,µ F(ξ)
)′]

> κ and <
[(
W δ,q,n

H,µ G(v)
)′]

> κ (19)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

By fixing m = 0, we define a new subclass of B due to Yamaguchi [28].

Definition 5. A function F given by (1) is said to be in the class Y δ,q,n,κ
H,µ if the following conditions

are satisfied:

F ∈ B and

∣∣∣∣∣∣ arg

W δ,q,n
H,µ F(ξ)

ζ

∣∣∣∣∣∣ < κπ

2
and

∣∣∣∣∣∣ arg

W δ,q,n
H,µ G(v)

v

∣∣∣∣∣∣ < κπ

2
(20)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

Definition 6. A function F given by (1) is said to be in the class X δ,q,n,κ
H,µ if the following conditions

are satisfied:

F ∈ B and <

W δ,q,n
H,µ F(ξ)

ξ

 > κ and <

W δ,q,n
H,µ G(v)

v

 > κ (21)

where the function G is the inverse of F given in (13), where 0 < κ ≤ 1, m ≥ 1, ξ, v ∈ U .

2. Coefficient Bounds

We state and prove our main results. We need the following lemma for our investigation.

Lemma 1 (see [1], p. 41). Let P be the class of all analytic functions ψ(ξ) which has a form as
follows

ψ(ξ) = 1 +
∞

∑
r=1

brξr

satisfying <(ψ(ξ)) > 0 (ξ ∈ U ) and ψ(0) = 1, then

|br| ≤ 2 (r = 1, 2, 3, ...).

This inequality is sharp. In particular, this equality holds for all r for the function

ψ(ξ) =
1 + ξ

1− ξ
= 1 +

∞

∑
r=1

2ξr.
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Theorem 1. Let F given by (1) be in the class N δ,q,n,κ
H,µ,m . Then,

|c2| ≤
2κ√

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2

, (22)

|c3| ≤
2κ

(1 + 2m)Θ3
, (23)

and

|c4| ≤
2κ

(1 + 3m)Θ4

1 +
2(1− κ)(1 + m)Θ2

{
6κ(1 + 2m)Θ3 + (1− 2κ)(1 + m)2Θ2

2
}

3
{

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2
} 3

2

, (24)

where Θr (r = 2, 3, 4) is given in (5).

Proof. Let F ∈ N δ,q,n,κ
H,µ,m . Hence, by Definition 1, there exist two functions ϕ(ξ) and ψ(v) ∈

P satisfying the conditions of Lemma 1 such that

(1−m)
W δ,q,n

H,µ F(ξ)
ξ

+ m
(
W δ,q,n

H,µ F(ξ)
)′

= [ϕ(ξ) ]κ (25)

and

(1−m)
W δ,q,n

H,µ G(v)

v
+ m

(
W δ,q,n

H,µ G(v)
)′

= [ψ(v)]κ . (26)

Assume that
ϕ(ξ) = 1 + x1ξ + x2ξ2 + x3ξ3 + ... (27)

and
ψ(v) = 1 + y1v + y2v2 + y3v3 + .... (28)

Equating the coefficients in (25) and (26), we get

(1 + m)Θ2c2 = κx1 (29)

(1 + 2m)Θ3c3 = κx2 +
κ(κ − 1)

2
x2

1 (30)

(1 + 3m)Θ4c4 = κx3 + κ(κ − 1)x1x2 +
κ(κ − 1)(κ − 2)

6
x3

1 (31)

and
− (1 + m)Θ2c2 = κy1 (32)

(1 + 2m)Θ3(2c2
2 − c3) = κy2 +

κ(κ − 1)
2

y2
1 (33)

− (1 + 3m)Θ4(5c3
2 − 5c2c3 + c4) = κy3 + κ(κ − 1)y1y2 +

κ(κ − 1)(κ − 2)
6

y3
1. (34)

From (29) and (32), we get

c2 =
κx1

(1 + m)Θ2
= − κy1

(1 + m)Θ2
(35)

which implies
x1 = −y1.

Squaring and adding (29) and (32), we get

c2
2 =

κ2

(1 + m)2Θ2
2
(x2

1 + y2
1) (36)
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Adding (30) and (33), we obtain

2(1 + 2m)Θ3c2
2 = κ(x2 + y2) +

κ(κ − 1)
2

(x2
1 + y2

1). (37)

Substitute the value of c2 from (35) in (37) and noting that x2
1 = y2

1, we observe that

x2
1 =

(1 + m)2Θ2
2(x2 + y2)

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2

. (38)

By application of the triangle inequality and Lemma 1, we obtain

|x1| ≤
2(1 + m)Θ2√

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2

. (39)

Then, (35) gives

|c2| ≤
2κ√

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2

. (40)

In order to find the bound on |c3|, subtracting (33) from (30) with x1 = −y1 gives

2(1 + 2m)Θ3c3 = 2(1 + 2m)Θ3c2
2 + κ(x2 − y2)

c3 = c2
2 +

κ(x2 − y2)

2(1 + 2m)Θ3
. (41)

Using (35) and (38) in (41), we have

2(1 + 2m)Θ3c3 =
2κ2Θ3(1 + 2m)

2ξ(1 + 2m)Θ3 + (1 + n)2Θ2
2(1− ξ)

(x2 + y2) + κ(x2 − y2)

=

[
2κ2Θ3(1 + 2m)

2κ(1 + 2m)Θ3 + (1 + m)2Θ2
2(1− κ)

+ κ

]
x2

+

[
2κ2Θ3(1 + 2m)

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2
− κ

]
y2

=
κ[{4κ(1+2m)Θ3+(1−κ)(1+m)2Θ2

2}x2−(1−κ)(1+m)2Θ2
2y2]

2κ(1+2m)Θ3+(1−κ)(1+m)2Θ2
2

. (42)

Application of the triangle inequality to (42) gives

|c3| ≤
κ
[{

4κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2
}

x2 − (1− κ)(1 + m)2Θ2
2y2
]

2(1 + 2m)Θ3
{

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2
} .

Applying Lemma 1 for the coefficients x2 and y2, we obtain

|c3| ≤
2κ

(1 + 2m)Θ3
.

To determine the bound on |c4|, by adding (31) and (34) with x1 = −y1, we obtain

− 5(1 + 3m)Θ4c3
2 + 5(1 + 3m)Θ4c2c3 = κ(x3 + y3) + κ(κ − 1)x1(x2 − y2). (43)
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Substitute the values of c2 and c3 from (35) and (41) in (43) and simplify, then we
obtain

x1(x2 − y2) =
2(1 + 2m)(1 + m)Θ2Θ3

5κ(1 + 3m)Θ4 + 2(1− κ)(1 + 2m)(1 + m)Θ2Θ3
(x3 + y3), (44)

subtracting (34) from (31) and using (38), (39), (43) and (44) in the result, we get

2c4(1 + 3m)Θ4 = −5(1 + 3m)Θ4c3
2 + 5(1 + 3m)c2c3Θ4 + κ(x3 − y3)

+ κ(κ − 1)x1(x2 + y2) +
κ(κ − 1)(κ − 2)

3
x3

1

= κ(x3 + y3) + κ(κ − 1)x1(x2 − y2)

+κ(x3 − y3) + κ(κ − 1)x1(x2 + y2) +
κ(κ − 1)(κ − 2)

3
x3

1

= 2κx3 +
2κ(κ − 1)(1 + 2m)(1 + m)Θ2Θ3

5κ(1 + 3m)Θ4 + 2(1− κ)(1 + 2n)(1 + n)Θ2Θ3
(x3 + y3) (45)

+ κ(κ − 1)x1(x2 + y2) +
κ(κ − 1)(κ − 2)(1 + m)2Θ2

2
3{2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2

2}

=
10κ2(1 + 3m)Θ4 + 2κ(1− κ)(1 + 2m)(1 + m)Θ2Θ3

5κ(1 + 3m)Θ4 + 2(1− κ)(1 + 2m)(1 + m)Θ2Θ3
x3

− 2κ(1− κ)(1 + 2m)(1 + m)Θ2Θ3

5(1 + 3m)κΘ4 + 2(1− κ)(1 + 2m)(1 + m)Θ2Θ3
y3

−κ(1− κ)

[
6κ(1+2m)Θ3+(1−2κ)(1+m)2Θ2

2
6κ(1+2m)Θ3+3(1−κ)(1+m)2Θ2

2

]
x1(x2 + y2).

Applying Lemma 1 with the triangle inequality in (45), we obtain

|c4| ≤
2κ

(1 + 3m)Θ4

1 +
2(1− κ)(1 + m)Θ2

{
6κ(1 + 2m)Θ3 + (1− 2κ)(1 + m)2Θ2

2
}

3
{

2κ(1 + 2m)Θ3 + (1− κ)(1 + m)2Θ2
2
} 3

2

,

this completes the proof of Theorem 1.

Putting q→ 1−, δ = 1, n = 0 and H(ξ) = ξ
1−ξ in Theorem 1.

Example 1. Let F given by (1) be in the class lim
q→1−

N 1,q,0,κ
ξ

1−ξ ,µ,m
, then

|c∗2 | ≤
2κ√

2κ(1 + 2m) + (1− κ)(1 + m)2
,

|c∗3 | ≤
2κ

(1 + 2m)
,

and

|c∗4 | ≤
2κ

(1 + 3m)

[
1 +

2(1− κ)(1 + m)
{

6κ(1 + 2m) + (1− 2κ)(1 + m)2}
3{2κ(1 + 2m) + (1− κ)(1 + m)2}

3
2

]
.

Theorem 2. Let F given by (1) be in the classMδ,q,n,κ
H,µ,m . Then,

|c2| ≤

√
2(1− κ)

(1 + 2m)Θ3
, (46)

|c3| ≤
2(1− κ)

(1 + 2m)Θ3
(47)
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and

|c4| ≤
2(1− κ)

(1 + 3m)Θ4
. (48)

Proof. Let F ∈ Mδ,q,n,κ
H,µ,m , there are two functions ϕ(ξ) and ψ(v) ∈ P that satisfy the

conditions of Lemma 1 such that

(1−m)
W δ,q,n

H,µ F(ξ)
ξ

+ m
(
W δ,q,n

H,µ F(ξ)
)′

= κ + (1− κ)ϕ(ξ) (49)

and

(1−m)
W δ,q,n

H,µ G(v)

v
+ m

(
W δ,q,n

H,µ G(v)
)′

= κ + (1− κ)ψ(v), (50)

where ϕ(ξ) and ψ(v) have the form (27) and (28), respectively. Equating the coefficients
in (49) and (50) gives

(1 + m)Θ2c2 = (1− κ)x1 (51)

(1 + 2m)Θ3c3 = (1− κ)x2 (52)

(1 + 3m)Θ4c4 = (1− κ)x3, (53)

and
− (1 + m)Θ2c2 = (1− κ)y1 (54)

(1 + 2m)Θ3(2c2
2 − c3) = (1− κ)y2 (55)

− (1 + 3m)Θ4(5c3
2 − 5c2c3 + c4) = (1− κ)y3. (56)

From (51) and (54), we obtain

c2 =
1− κ

(1 + m)Θ2
x1 = − 1− κ

(1 + m)Θ2
y1 (57)

which implies
x1 = −y1.

Adding (52) and (55), we obtain

2(1 + 2m)Θ3c2
2 = (1− κ)(x2 + y2) (58)

c2
2 =

(1− κ)

2(1 + 2m)Θ3
(x2 + y2). (59)

Using (57) in (58), we have

x2
1 =

(1 + m)2Θ2
2

2(1 + 2m)(1− κ)Θ3
(x2 + y2). (60)

Application of the triangle inequality and Lemma 1 in (60) yields

|x1| ≤ (1 + m)Θ2

√
2

(1 + 2m)(1− κ)Θ3
. (61)

Using (61) in (57) gives

|c2| ≤

√
2(1− κ)

(1 + 2m)Θ3
. (62)
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Now, subtracting (55) from (52) and using (58), we obtain

|c3| ≤
2(1− κ)

(1 + 2m)Θ3
, (63)

which is the direct consequence of (52).
In order to obtain the bounds on |c4|, we proceed as follows:

|c4| =
∣∣∣∣ (1− κ)x3

(1 + 3m)Θ4

∣∣∣∣ ≤ 2(1− κ)

(1 + 3m)Θ4
. (64)

On the other hand, subtracting (56) from (53) and using (57), we get

c4 = 1
2(1+3m)Θ4

[
−5(1+3m)(1−κ)3Θ4

(1+m)3Θ3
2

x3
1 +

5(1+3m)(1−κ)Θ4
(1+m)Θ2

c3x1 + (1− κ)(x3 − y3)

]
. (65)

Applying the triangle inequality in (65), we have

|c4| ≤
1

2(1 + 3m)Θ4

[
5(1 + 3m)(1− κ)3Θ4

(1 + m)3Θ3
2

|x1|3 +
5(1 + 3m)(1− κ)Θ4

(1 + m)Θ2
|c3||x1|+ (1− κ)(|x3|+ |y3|)

]
. (66)

Using (61), (63) and Lemma 1 in (66), and after simplification, yields

|c4| ≤
2(1− κ)

(1 + 3m)Θ4

[
1 +

5(1 + 3m)

(1 + 2m)Θ3

√
2(1− κ)

(1 + 2m)Θ3

]
. (67)

From (64) and (67), we observe that

|c4| ≤ min

[
2(1− κ)

(1 + 3m)Θ4
,

2(1− κ)

(1 + 3m)Θ4

{
1 +

5(1 + 3m)

(1 + 2m)Θ3

√
2(1− κ)

(1 + 2m)Θ3

}]

=
2(1− κ)

(1 + 3m)Θ4
.

This completes the proof of Theorem 2.

3. Fekete–Szegö Inequalities

In this section, we obtain Fekete–Szegö inequalities results [29] (also see Zaprawa [30])
for F ∈ N δ,q,n,κ

H,µ,m and F ∈ Mδ,q,n,κ
H,µ,m ,

Theorem 3. For ρ ∈ R, let F be given by (1) and F ∈ N δ,q,n,κ
H,µ,m , then

∣∣∣c3 − ρc2
2

∣∣∣ ≤ { 2κ
(1+2m)Θ3

; 0 ≤ |T(ρ)| ≤ κ
2(1+2m)Θ3

4|T(ρ)| ; |T(ρ)| ≥ κ
2(1+2m)Θ3

where

T(ρ) =
2κ2(1− ρ)

4κ(1 + 2m)Θ3 − (κ − 1)(1 + m)2Θ2
2

.

Proof. From (41), we have

c3 − ρc2
2 =

κ(x2 − y2)

2(1 + 2m)Θ3
+ (1− ρ)c2

2 (68)
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=
κ(x2 − y2)

2(1 + 2m)Θ3
+

2κ2(1− ρ)(x2 + y2)

4κ(1 + 2m)Θ3 − (κ − 1)(1 + m)2Θ2
2

(69)

By simple computation, we have

c3 − ρc2
2 =

(
T(ρ) +

κ

2(1 + 2m)Θ3

)
x2 +

(
T(ρ)− κ

2(1 + 2m)Θ3

)
y2,

where

T(ρ) =
2κ2(1− ρ)

4κ(1 + 2m)Θ3 − (κ − 1)(1 + m)2Θ2
2

.

Thus, by taking the modulus of c3 − ρc2
2, we get

∣∣∣c3 − ρc2
2

∣∣∣ ≤ { 2κ
(1+2m)Θ3

; 0 ≤ |T(ρ)| ≤ κ
2(1+2m)Θ3

,
4|T(ρ)| ; |T(ρ)| ≥ κ

2(1+2m)Θ3

.

Theorem 4. For ρ ∈ R, let F be given by (1) and F ∈ Mδ,q,n,κ
H,µ,m , then

∣∣∣c3 − ρc2
2

∣∣∣ ≤ (1− κ)|2− ρ|
(1 + 2m)Θ3

[
1 +

ρ

|2− ρ|

]
.

Proof. Subtracting (55) from (52), we obtain

c3 =
(1− κ)(x2 − y2)

2(1 + 2m)Θ3
+ c2

2, (70)

and using (59), we get

c3 − ρc2
2 =

(1− κ)(x2 − y2)

2(1 + 2m)Θ3
+ (1− ρ)c2

2 (71)

=
(1− κ)(x2 − y2)

2(1 + 2m)Θ3
+

(1− κ)(1− ρ)

2(1 + 2m)Θ3
(x2 + y2).

Then,

c3 − ρc2
2 =

(
(1− κ)(1− ρ)

2(1 + 2m)Θ3
+

1− κ

2(1 + 2m)Θ3

)
x2 +

(
(1− κ)(1− ρ)

2(1 + 2m)Θ3
− 1− κ

2(1 + 2m)Θ3

)
y2,

=
(1− κ)

2(1 + 2m)Θ3
((1− ρ) + 1)x2 +

(1− κ)

2(1 + 2m)Θ3
((1− ρ)− 1)y2,

=
(1− κ)

2(1 + 2m)Θ3
[(2− ρ)x2 − ρy2],

=
(1− κ)(2− ρ)

2(1 + 2m)Θ3

[
x2 −

ρ

2− ρ
y2

]
. (72)

By taking the modulus of (72), we have∣∣∣c3 − ρc2
2

∣∣∣ ≤ (1− κ)|2− ρ|
(1 + 2m)Θ3

[
1 +

ρ

|2− ρ|

]
.
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In particular, ρ = 1, then we obtain∣∣∣c3 − c2
2

∣∣∣ ≤ 2(1− κ)

(1 + 2m)Θ3
.

4. Conclusions

Geometric function theory is one of the most exciting areas of research in complex
analysis. We investigated a unified subclass of bi-univalent functions of the Yamaguchi–
Noshiro type combined with the linear q-convolution operator. For the functions in this
new class, we obtained nonsharp bounds for the initial coefficients and the Fekete–Szegö
inequalities. We also considered several interesting corollaries and applications of the
results by suitably fixing the parameters, as illustrated in Remark 1.
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