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Abstract: In the present paper, the authors introduce and investigate two new subclasses of the
function class B of bi-univalent analytic functions in an open unit disk ¢/ connected with a linear
g-convolution operator. The bounds on the coefficients |c;], |c3] and |c4| for the functions in these new
subclasses of B are obtained. Relevant connections of the results presented here with those obtained
in earlier work are also pointed out.
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1. Introduction
Let A be the class of analytical functions in an open unit disk

U:={i:eCand |l <1}

and assume that () is a family of functions F € A satisfying the normalization conditions
(see [1]):
F(0) =F(0)—1=0.

The functions in () are defined by
F(§)=¢+ ) af (CeU). @)
r=2

Assume that I" denotes the class of all functions in () which are univalent in /. For the
functions F, H € A defined by

F@) =Y of and HE) =Y 4 (Eel),
r=1

r=1

the convolution of FF and H denoted by F x H is

(F+ H)(E) = ilcrdraf — (H+F)@) (€ eu).
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6,9,0
WLOF ()

4,q,1
WHIF ()

3,4,
WHLE(Z)

= 4@ (GF@) ++20E (95FE) +2(0F )

To start with, we recall the following differential and integral operators.
For 0 < g < 1, El-Deeb et al. [2,3] defined the g-convolution operator (see also [4-7]) for
F «H by

D,(F+H)(¢) := D, (g + izcrdrérr>

_ExH)@) — (FxH)(g0) _ |, >
- ¢(1—9q) _1+r;”qrdrﬁ ,Eel,

where

1 T r—1 .
o= gp =1+ L [0;:=0 @
j=

We used the linear operator Qﬁﬁq : A — A according to El-Deeb et al. [2] (see also [3])
ford > —land 0 < g <1.If

GH'F(Z) * I)T () = D4 (F+ H)(2), S € U,

where 70 is given by

> [0+ 11,
LH@=e+ L o ¢ Eel
then . N
GUF(E) =+ Y — DT a & (5>—1,0<g<1, Ecl) 3
H (g) g ,g[‘s"f'l]q,rflc 6 ( ‘7 (;’ ) ()

Using the operator Qﬂiiq, we define a new operator as follows:

— GYIF(¢)

n !

. @
= @ (WETER) + 1+ 2@ (W TER)) + (Wi IEE))
- e L)) et
N
> —1,r;2> 0,0<g<1,neNy=NU{0}, el
where
O =" (u(r 1) +1)" gl — Jr[rl}}q;” . 5)

From the definition relation (3), we get

() [0+ WL F(E) = [0l Wenl (@) +° 6Dy (Wil ' F (@) ), s €Uy (6)
(i) RELF(E) = lim WI'F(E)
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=3+ )y P ur -+ ) G dre & Sl (7)
r=2

Remark 1. We find the following special cases for the operator W[fﬂ;n by considering several
particular cases for the coefficients d, and n :
(i) Putting dy = 1 and n = 0 into this operator, we obtain the operator QTRcalBy defined by
Srivastava et al. [8];
(D" T +1)

4=1(r—1)IT(r +p)
operator N ;l q defined by El-Deeb and Bulboacii [9] and El-Deeb [10];

. T+1
(iii) Putting d, = (T—H’

operator /\/l?{7 defined by El-Deeb and Bulboacd [11] and Srivastava and EI-Deeb [12];
r—1
(iv) Putting d, = he’” (o > 0) and n = 0 in this operator, we obtain the q-analogue
of Poisson operator Ig’ " defined by El-Deeb et al. [2];

(v) Putting d, = 1 in this operator, we obtain the operator QTRcalBi’q'n defined as follows:

(ii) Putting d, = (p > 0) and n = 0 in this operator, we obtain the

]
) (j>0,7>0)and n = 0 in this operator, we obtain the

B F(c) §+Zr2” =D+ e & (®)

(-1 'T(p+1)

(vi) Putting d, = 71— 1)I(r +p)

N g defined as follows:

(p > 0) in this operator, we obtain the operator

Ny F(g) = ¢+ irZ”(é(r_1)+1) [r]q! (—1)""'T(p+1) o
r=2

004 &+, 1 & (=D (r+p) "
= §+2([)rcr§r, )
r=2
where ‘ .
by = 72"(5(7 _ 1) + 1)11 [ [r]q! (=1)""T(p+1) . (10)

at+1]y 1 4= 1(r=1)IT(r+p)’

j
(vii) Putting d, = <:ii) (j > 0,7 > 0) in this operator, we obtain the operator th
defined as follows:
MM F() =g+ Zr2” “n 41 (=) e g (11)
5,1,9 +r ) fad 1]y, TV
o1
(viii) Putting d, = me"’ (0> 0) in this operator, we obtain the g-analogue of Poisson

operator I(’;"(’T"q defined as follows:

r—1

Iy Fle) = 8+ L (00— 1) + 1) i e e & (12)

The well-known Koebe one-quarter theorem (see [1]) states that any univalent function
F € O includes a disk with a radius of % in its image of Y. For a result, the inverse of
[F is a univalent analytic function on the disk with the notation i, := {{ : { € C and
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€] < p; p > 1}. As aresult, there is an inverse function F~! (@) of F({) defined for each
functionF({) =w € o

F(F(g))=¢ (ceU)

and
FF Y @) =0 (@€l

where
F Y @) = @ — co* + (263 — c3)@> — (5¢3 — 5cpes + cq)@* + ... (13)

When both F and F~! are univalent in U/, a function F is said to be bi-univalent in /.

Let B denote the class of bi-univalent functions in ¢/ given by (1). The concept of
bi-univalent analytic functions was introduced by Lewin [13] in 1967 and he showed
that |c;| < 1.51. Subsequently, Brannan and Clunie [14] conjectured that |c;| < v/2. Ne-
tanyahu [15], on the other hand, showed that maxpcp |c2| = %. The coefficient estimate
problem for each of the following Taylor-Maclaurin coefficients:

ler|  (re N\{1,2})

is presumably still an open problem.

In [16] (see also [2,10,17-26]), certain subclasses of the bi-univalent analytic functions
class B were introduced and non-sharp estimates on the first two coefficients |c,| and
|c3| were found. The object of the present paper is to introduce two new subclasses as in
Definitions 1 and 2 of the function class B using the linear g-convolution operator and
determine estimates of the coefficients |cz|, |c3]| and |c4| for the functions in these new
subclasses of the function class B.

Definition 1. A function F(&) given by (1) is said to be in the class Nfﬂ’z% if the following
conditions are satisfied:

é,q,n
Wi F(C) n
FeBand |arg (<1 O R F(@))’) <
and
S,q,n
Wi G (@)
arg ((1 - m)HVT + m(WﬁznG(w)Y) < % (15)

where the function G is the inverse of I given in (13), where 0 < x <1,m > 1,¢,@ € U.

Definition 2. A function IF given by (1) is said to be in the class Mﬁﬂq}lﬂnf if the following conditions
are satisfied:
o,qm
Wy F(&) 5 /
F e Band R {(1 - m)’”T + m(WﬁZ;”F(gf)) > K (16)
and 5
W 'q'nG(cO) /
R [(1 — ) +m(W'G(@)) | >« (17)

where the function G is the inverse of I given in (13), where 0 < x <1,m > 1,¢,@ € U.

By fixing m = 1, we define a new subclass of B due to Noshiro [27].
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Definition 3. A function IF given by (1) is said to be in the class Sﬂ‘fﬁql;n’x if the following conditions
are satisfied:

K7T

6,q,n /
F e Band arg ((WH’H G(c@)) >’ <5 (18)

S,qn / E
arg ((WH,y ]F(cf,)) >‘ <5 and

where the function G is the inverse of I given in (13), where 0 < x <1,m >1,¢,@ € U.

Definition 4. A function I given by (1) is said to be in the class R%’Iq’;""( if the following conditions
are satisfied:

5.4, ! 5.4, !
Fe Band R {(WHZ["IF(@)) } >k and RN {(WHZ["G(‘D)) ] > K (19)
where the function G is the inverse of I given in (13), where 0 < x <1,m > 1,¢,@ € U.

By fixing m = 0, we define a new subclass of B due to Yamaguchi [28].

Definition 5. A function IF given by (1) is said to be in the class yﬁ{;”"‘ if the following conditions

are satisfied:
d.qmn d.q.mn
(Mﬁmv «%W@)
arg —7 arg | ———

@
where the function G is the inverse of I given in (13), where 0 < x <1,m >1,¢,@ € U.

<" and <% (20)

F e Band >

Definition 6. A function I given by (1) is said to be in the class Xﬁ’q}l’""{ if the following conditions
are satisfied:

0,9,
%Wm)
[

F e Band R > K (21)

¢

Wﬁ'?fﬂé)]

where the function G is the inverse of I given in (13), where 0 < x <1,m > 1,¢,@ € U.

2. Coefficient Bounds

We state and prove our main results. We need the following lemma for our investigation.

Lemma 1 (see [1], p. 41). Let P be the class of all analytic functions (&) which has a form as
follows

lp(é) =1+ Z brgr

r=1
satisfying R(P(&)) > 0 (& € U) and p(0) = 1, then

bl <2 (r=1,23,..).
This inequality is sharp. In particular, this equality holds for all r for the function

$o) =g =1+
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Theorem 1. Let I given by (1) be in the class /\/ﬁl’x Then,
2K
o] < , (22)
\/2(1+2m)@s3 + (1 — 1) (1 + m)?03
2K
< 23
|es| < 1+ 2m)05’ (23)
and
2 2(1 —x)(1+m)@2{6K(1 +2m)@3 + (1 — 2x) (1 + m)?@3
C“§u+;b®'*( )1+ m)@a{ex(1-+2m)0s +(1-20)(1 + m6R} | o
4 3{2k(142m)O5 + (1 — x)(1 + m)2©3} 2

where ©®, (r =2,3,4) is given in (5).

Proof. LetF € Nﬁzlnmk Hence, by Definition 1, there exist two functions ¢(&) and (@) €
P satisfying the conditions of Lemma 1 such that

Wity F(§) iy,
(1= m)——= 4 m(WF Q) ) = [9(2) ' (25)
and 5q
Wy ’”G((ﬂ) " /
(1—m)— 7 oy (ng; G(c@)) = [p(@)]". (26)
Assume that
P(8) =1+ x018+ 028" + %38 + .. (27)
and
(@) =14+ 1y10 + y2@* + y3@° + ... (28)

Equating the coefficients in (25) and (26), we get

(1 + m)@)zCz = KX1 (29)
k(k—1) 5
(14 2m)@3c3 = Kkxp + X7 (30)
—1)(x—2
(14 3m)Ogcq = kx5 + x(x — 1)x1x0 + %x? (31)
and
— (1+m)O@yc2 = Ky (32)
K(k—1
(14 2m)@3(2¢5 — c3) = Kyp + ( 5 )y% (33)
K(k—1)(xk—2
— (14 3m)@4(5¢3 — 5cac3 + ¢4) = Ky3 + x(xk — V)y1y2 + %yﬁ (34)
From (29) and (32), we get
KX1 Ky
— = _ 35
2T A rme, (1+me, (35
which implies
X1 = —Y1.
Squaring and adding (29) and (32), we get
2 K 2, .2
0= (X7 + 1) (36)

(1+m)*03
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2(142m)@sc3

Adding (30) and (33), we obtain

2(1 +2m)@®sc3 = x(x2 +y2) + (% +y3). (37)

x(xk—1)
2

Substitute the value of ¢, from (35) in (37) and noting that x% = y%, we observe that

2 (1+m)?@3(x2 +y2) (38)
1= 202"
2x(1+2m)@3 + (1 —x) (14 m)?0O3
By application of the triangle inequality and Lemma 1, we obtain
2(1
| < 1+ m)®, . (39)
\/21<(1 +2m)O3 + (1 —x)(1+ m)203
Then, (35) gives
2K
o] < (40)

V26(1+2m)@s + (1— x)(1+ m)2603

In order to find the bound on |c3|, subtracting (33) from (30) with x; = —y; gives

2(142m)@szc5 = 2(1+42m)@sc3 + x(x2 — o)
_ 2, Kxa—y)
S = 2t omes, (1)

Using (35) and (38) in (41), we have

2k2@3(1 + 2m)
2¢(1+42m)O@3 + (1+n)203(1 —¢)
2k2@3(1 +2m)
2k(142m)©@3 + (1 +m)203(1 —«)
2x%@5(1 + 2m)
2(1+2m)@s + (1 —x) (1 + m)2@2 K] 72

K[{4K(l+2m)®3+(171() (1+m)2®%}x27 (1—x) (l+m)2®§y2} (42)
2k (142m) @3+ (1—x) (1+m)203 )

(x2 +y2) +x(x2 — y2)

+ K

X2

Application of the triangle inequality to (42) gives

K[{4x(1+2m)Os + (1~ x) (1 +m)?OF}xa — (1 —x)(1 + m)*®3ya]

les] < 2(1+2m)@s {2(1+2m)©s + (1 — x) (1 + m)203}

Applying Lemma 1 for the coefficients x; and y,, we obtain

2
[ —
(1 +2m)®3

To determine the bound on |¢4|, by adding (31) and (34) with x; = —y1, we obtain

—5(1 +3m)@yc5 4+ 5(1 + 3m)@ycc3 = k(x3 +y3) +x(k — V)xy(x2 —y2).  (43)
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Substitute the values of ¢; and c3 from (35) and (41) in (43) and simplify, then we
obtain
2(1 + 2m) (1 + m)®2®3
5k(1+3m)@y +2(1 — k) (1 4 2m) (1 + m)©,03

x1(x2 —y2) = (x3+y3), (44

subtracting (34) from (31) and using (38), (39), (43) and (44) in the result, we get

20c,(143m)@y = —5(1+3m)@yc5 + 5(1 + 3m)cac3®y + x(x3 — y3)
k(k—1)(k—2) 5

3 1
= x(x3+y3) +x(c—1)x1(x2 — y2)

+ xw(x—1)x1(x2+y2) +

+x(x3 —y3) +x(x — 1)y (x2 +y2) + Wx%
2x(k — 1)(14+2m) (1 + m)@,03
Se(l+ 3m()®4 +) ;(1 = K))((1 n 211; [ 1 n)@,0; 3 T ¥3) 45
K(x = 1) (x = 2)(1+ m)?03
3{2x(1+2m)O3 + (1 — «)(1 + m)?@3}
10x2 (1 + 3m) @4 + 2k (1 — x) (1 + 2m) (1 + m)©,03
T TBk(1+3m)@s +2(1— k) (1 +2m)(1+ m)©,05
2k(1 —x)(1+2m)(1 +m)©,03
5(1 + 3m)x@4 + 2(1 — k) (1 + 2m) (1 + m)@,05°

6x(1-4+2m) @3 +(1—2x) (1+m)?@3
—K(1—x) |:6K(l+2m)®§+3(1K)(l+m)2®§ x1(x2 +12).

= 2xx3+

+ w(k—Dxp(xa+y2) +

Applying Lemma 1 with the triangle inequality in (45), we obtain

2(1—x) (1 + m)Op{6x(1+2m)O3 + (1 — 2x) (1 + m)?@3 }
3
3{2x(1+2m)®s; + (1 — ) (1 +m)2@3}°
this completes the proof of Theorem 1. [J

7

2
sl < S S

Puttingg - 17,0 =1, n=0and H({) = % in Theorem 1.

Example 1. Let F given by (1) be in the class lim N 1’;1’0"( , then

q—=1= =M

5] < - :
V2k(1+2m) + (1 —x) (1 +m)?
" 2K
5] < mr
and
) < 2k , 2(1—x) (1 +m){6r(1+2m)+ (1 —2x)(1+m)?}
T (1+3m) 3{2(1 +2m) + (1 — k)(1 + m)2}3 '

Theorem 2. Let I given by (1) be in the class M%’TJ . Then,

2(1—x)

o] < A1 2m)0; (46)
2(1 —x)

= Trmes “n
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and
2(1 —x) (48)

Proof. Let F € M%’TJ , there are two functions ¢(¢) and (@) € P that satisfy the

conditions of Lemma 1 such that

Wity F(§) NI
(1= m)—= 4 m(WF(Q) ) = (1= 1)9(0) (49)
and 5
WG /
(1 — m) (@) + m(wﬁﬁ?ﬂ;@)) =x+ (1—x)yp(@), (50)

where ¢(¢) and (@) have the form (27) and (28), respectively. Equating the coefficients
in (49) and (50) gives

(14+m)Ozcy = (1 —x)x; (51)
(14+2m)Oszc3 = (1 —x)xp (52)
(1+3m)Oscs = (1 —x)x3, (53)
and
— (1+m)®2c2 = (1 —x)y1 (54)
(1+2m)05(2c —c3) = (1 - K)y2 (55)
— (14 3m)@4(5¢5 — 5cpc3 + ¢4) = (1 — K)ys. (56)

From (51) and (54), we obtain

1—x 1—x
2= (1 + m)®2 1= (1 + m)@zyl (57)
which implies
X1 = —Y1-
Adding (52) and (55), we obtain
21+2m)@3c3 = (1—x)(x2+12) (58)
2 _ (1-x)
9 = Fiyame, 2T ©9)
Using (57) in (58), we have
2 _ (1+m)*03
= A am (1 = e, 2 T ) (60)
Application of the triangle inequality and Lemma 1 in (60) yields
x| < (1+m)o 2 61)
1= N d+2m)1—x)0;
Using (61) in (57) gives
2(1—-x
o] < | ) ®

(1 + 21’?1)@3 '
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Now, subtracting (55) from (52) and using (58), we obtain

2(1—x)
< — 7
le3| < A +2m0; (63)
which is the direct consequence of (52).
In order to obtain the bounds on |c4|, we proceed as follows:

(1—x)x3 2(1—x)
pr— < . 64
lca] ‘(1—|—3m)®4 = [ +3m)e, (64)

On the other hand, subtracting (56) from (53) and using (57), we get

—5(14-3m)(1-x)%@, _3 , 5(143m)(1—x)O,

; (1+m)303 X1+ (1+m)0, c3x1 + (1 - K)(x3 - ]/3)} . (65)

€4 = 2[013m)0,

Applying the triangle inequality in (65), we have

1 5(143m)(1—x)30y, 5 5(1+3m)(1—x)0O4
< 1— .
Using (61), (63) and Lemma 1 in (66), and after simplification, yields
2(1 —x) 5(1+3m) 2(1 —x)
< 1 . 7
leal = (14 3m)0Oy, [ (14+2m)@s3 \| (1+2m)0O3 (67)

From (64) and (67), we observe that

lcy] < mi 2(1 —x) 2(1—x) 14 5(1+ 3m) 2(1 —x)
Al =M 5000, (1+ 3m) 0y (1+2m)@; \| (1+2m)0;
_2(1—x)
~ (1+3m)0y

This completes the proof of Theorem 2. []

3. Fekete-Szego Inequalities
In this section, we obtain Fekete-Szego inequalities results [29] (also see Zaprawa [30])

3,q,1,K 6,q,n,x
forF € NH,y,m and F € MH,;l,m’

Theorem 3. For p € R, let I be given by (1) and F € NH‘_}"L’%K, then

2 0<|T < __ K
’cs —PC%’ < { (1+2m)03 < T(p)| < 2(1+2m)03

4T 1T = sam2m6;

where

B 2k*(1 - p)
T(p) = 4x(1+2m)@3 — (k —1)(1 + m)2®%.

Proof. From (41), we have

K(x2 — y2)

2
201+ 2m)0; +(1—p)c3 (68)

2
€3 — P2
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x(x2 — y2) 2c*(1 = p) (x2+ y2) (69)
2(1+2m)®3  4xk(1+2m)O@;3 — (x — 1)(1 + m)2@3
By simple computation, we have
— ok = ___* -
=P (T(p) a0 +2m)®3>x2 * (T(p) 201 +2m)®3>y2'
where
2k2(1 —
4x(14+2m)O3 — (k — 1)(1 4 m)?0;3
Thus, by taking the modulus of c; — pc3, we get
irame; 0 <ITP)| < gvbayes
‘%—pc%‘ < é(ll}Zm)®3 7 N 1%(1+2m)®3 .
IT(e)| ;IT(p)| = 2(152m)o;
O
Theorem 4. For p € R, let F be given by (1) and TF € M%qynr: , then
o mRpl[, o
‘C3 pc2‘ S Arames | =gl
Proof. Subtracting (55) from (52), we obtain
_ A= —y) o
G = St ome, (70)
and using (59), we get
2 (1 —x)(x2 —y2) N2
_ (A-m)-y) (A-x1-p)
= itome; | 2 tome, 2TV
Then,
2 ((=r0-p) 1—x 1-x)1-p)  1-x
Gopa = ( 21 +2m)@ 201 +2m®; )2 T\ 20 12m@; 21+ 2m)@; )Y
B (1—x) B (1—x) o
= 2 rame, TR TURT e, (1) Dy
_ (=% Ve
_ 0=nC2=pf P
T 20t2m@, |2 2-p% 72)

By taking the modulus of (72), we have

(1-1)2—p| 0
(1+2m)0; [”u—p}

’C3 —PC%‘ <
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In particular, p = 1, then we obtain

2(1—x)
Y B i Sl
’63 62‘ = A+2m)0;

O

4. Conclusions

Geometric function theory is one of the most exciting areas of research in complex
analysis. We investigated a unified subclass of bi-univalent functions of the Yamaguchi—
Noshiro type combined with the linear g-convolution operator. For the functions in this
new class, we obtained nonsharp bounds for the initial coefficients and the Fekete-Szeg6
inequalities. We also considered several interesting corollaries and applications of the
results by suitably fixing the parameters, as illustrated in Remark 1.
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