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Abstract: The prediction of failure mechanisms in nonlinear elastic materials holds significant
importance in engineering applications. In recent years, the phase-field model has emerged as an
effective approach for addressing fracture problems. Compared with other discontinuous fracture
methods, the phase-field method allows for the easy simulation of complex fracture paths, including
crack initiation, propagation, coalescence, and branching phenomena, through a scalar field known
as the phase field. This method offers distinct advantages in tackling complex fracture problems in
nonlinear elastic materials and exhibits substantial potential in material design and manufacturing.
The current research has indicated that the energy distribution method employed in phase-field
approaches significantly influences the simulated results of material fracture, such as crack initiation
load, crack propagation path, crack branching, and so forth. This impact is particularly pronounced
when simulating the fracture of nonlinear materials under finite deformation. Therefore, this review
outlines various strain energy decomposition methods proposed by researchers for phase-field
models of fracture in tension–compression symmetric nonlinear elastic materials. Additionally, the
energy decomposition model for tension–compression asymmetric nonlinear elastic materials is also
presented. Moreover, the fracture behavior of hydrogels is investigated through the application of
the phase-field model with energy decomposition. In addition to summarizing the research on these
types of nonlinear elastic body fractures, this review presents numerical benchmark examples from
relevant studies to assess and validate the accuracy and effectiveness of the methods presented.

Keywords: nonlinear elastic materials; finite deformations; fracture; phase-field model
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1. Introduction

With advancements in science and technology, new materials, including nonlinear
elastic materials, have been developed. Typical nonlinear elastic materials, including rubber
polymer materials, composite materials, hydrogels, and biological materials, are extensively
utilized in various applications. Consequently, accurate prediction of failure mechanisms
in nonlinear elastic materials is of paramount importance in engineering applications.

In recent years, phase-field simulation methods for crack propagation have received
wide attention. This approach, also referred to as the fracture variational approach, enables
the simulation of complex crack patterns, including crack intersections, without the need
for direct modeling of discontinuities. The initial proposal of this method, which mini-
mizes potential energy to solve the fracture problem, can be attributed to Francfort and
Marigo et al. [1]. They drew inspiration from the works of Mumford and Shah et al. [2], as
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well as Ambrosio and Tortorrelli et al. [3], on the Griffith brittle fracture theory. Additionally,
Miehe et al. [4] introduced an alternative method based on the principles of continuum me-
chanics and thermodynamics for small deformations. This method incorporated a crucial
mechanism to differentiate the effects of tension and compression on crack propagation.

This review focuses on the utilization of phase-field methods for simulating fracture
in rubber-like polymer materials under finite deformation. This method has been further
developed to simulate dynamic fracture and has shown good agreement with multiple
benchmark problems [5–9]. Miehe [10], Ambati [11], and McAuliffe [12] have also studied
the application of the phase-field method in elastoplastic materials. They found that the
accumulation of plastic deformation led to a reduction in elastic strength yet had no effect
on the plastic response. Furthermore, Ambati et al. [13] extended the phase-field model
for kinematically linear elastic fractures to three-dimensional finite strain environments.
Subsequently, Borden et al. [14] made further advancements to the model by deriving
micro-force control equations for energy potential under finite deformation. Although
previous studies by Miehe and Schänzel et al. [15], as well as Chen et al. [16], also employed
phase-field methods to model fracture in hyper-elastic solids under finite deformation,
their approach included an artificial viscosity-based regularization formula that lacked the
ability to differentiate between tensile and compressive effects during crack growth, which
impeded the accuracy of numerical simulations.

To overcome the constraints of prior methodologies, Borden et al. [14], as well as
Arriaga and Waisman et al. [17] split the elastic deformation energy into volumetric and
deviatoric parts within the phase-field framework to distinguish the contributions of tensile
and compressive stresses to fracture of elastoplastic materials under small deformations.
Although the spectral decomposition of the logarithmic strain tensor into tensile and com-
pressive parts [18] emerged more reasonable according to the studies by Miehe et al. [4]
and Borden et al. [8], Borden et al. pointed out that this method may lead to reduced
numerical accuracy and may make convergence hard [14]. A novel strain energy decom-
position method for phase-field modeling of fracture in nonlinear elastic materials was
proposed by Tang and Zhang et al. [19]. In contrast to the methods utilized by Miehe and
Hofacker et al. [9], as well as Borden et al. [8], this approach involved the decomposition of
energy into two parts: one that pertained to the principal stretch and the other exclusively
comprising nonlinear terms of volumetric deformation. By decomposing the energy in this
manner, the distinct functions of tension and compression could be identified, facilitating
the direct simulation of actual fracture and leading to a more realistic depiction of the
physical process.

This paper reviews existing phase-field models utilized for studying fracture in nonlin-
ear elastic materials under finite deformations. Section 2 provides an overview of the avail-
able phase-field models for studying nonlinear elastic fracture under finite deformation,
presenting the fundamental equations for different types of nonlinear elastic fracture model-
ing. In Section 3, simulation methods for nonlinear elastic fracture of tension–compression
asymmetry materials are discussed. Section 4 investigates the fracture behavior of hy-
drogels. Lastly, Section 5 summarizes the current research landscape on nonlinear elastic
fracture, identifies unresolved issues, suggests future research directions, and concludes
the review.

2. Fracture Study of Nonlinear Elastic Materials with Tension–Compression Symmetry
2.1. Relevant Work on Finite Deformation Phase-Field Fracture Models

This section presents a chronological overview of recent advancements in simulating
fracture propagation using the phase-field method under finite deformation conditions
within the last five years. Dittmann et al. [20] proposed a unified computational framework
that can simulate large deformation, thermodynamics, fracture, and contact problems in
a unified and thermodynamically consistent manner. Fang et al. [21] studied the effect of
yield function and material hardening on the behavior of elastic–plastic solid materials
by introducing a unified yield criterion and isotropic hardening in the phase-field model.
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Tang et al. [19] developed a new energy decomposition method within a finite deformation
framework, considering both the stretching and volume parts. This method incorporates
the distinct contributions of stretching and compression into the phase-field model for
simulating crack initiation and propagation. Yin et al. [22] established an anisotropic phase-
field model under finite strain based on a second-order phase-field theory. They derived an
equivalent fracture surface energy density function by evaluating the fracture state of both
the homogeneous matrix and fiber materials using a single phase-field variable.

Tarafder et al. [23] devised a phase-field model under finite deformation for multi-
phase composite materials, enabling the simultaneous prediction of cracks in individ-
ual phases and interface debonding. Numerical examples illustrate the notable distinc-
tions in fracture behavior between finite deformation and small deformation solutions.
Tian et al. [24] proposed a new dynamic phase-field model capable of simulating crack
propagation in nonlinear deformation while achieving crack propagation speeds close to
asymptotic limits. In addition, they developed an adaptive distorted mesh deletion scheme
to tackle the issue of FE (finite element) mesh distortion in fractures involving large defor-
mations. Peng et al. [25] presented a phase-field method, employing ES-FEM, to simulate
the fracture behavior of hyper-elastic materials under finite deformation. Thomas et al. [26]
proposed a phase-field model under finite strain that accounts for damage anisotropy
by decomposing the right Cauchy–Green strain tensor into anisotropic components. The
model introduces a suitable weak solution concept, allowing for spatial and temporal
discretization. Eldahshan et al. [27] developed a plastic fracture phase-field model within a
large plastic strain framework by integrating an adaptive isotropic mesh re-partitioning
strategy with a plastic fracture phase-field model.

Swamynathan et al. [28] proposed a methodology to split the energy density into
tension and compression components in phase-field analysis of finite deformation fracture.
The remarkable feature of this model is that the combination of tension and compression
precisely equals total reference energy of the undamaged system, making it applicable to
different finite strain energy densities. Hu et al. [29] presented a novel plastic fracture phase-
field model in a consistent variational framework under finite deformation kinematics.
Peng et al. [30] devised a fourth-order phase-field model that considers the decomposition
of strain energy during finite deformation to simulate the fracture behavior of hyper-elastic
materials under finite deformation. Dan et al. [31] formulated a finite deformation finite
element model to analyze the electric–elastic coupling response and crack evolution in
heterogeneous piezo-electric composite materials. Phase-field calculation models necessi-
tate a high grid resolution in the vicinity of cracks. To address the high gradient problem
of two phase-field order parameters, an adaptive wavelet-enhanced hierarchical finite
element framework was employed, optimizing the selection of wavelet-based hierarchi-
cal enrichment functions. Koutromanos et al. [32] investigated the toughness fracture
of structural steel under cyclic loading by combining the phase-field method with large
deformation mechanics calculations, accounting for the materials’ elastic–plastic behavior.
Han et al. [33] introduced plastic driving force and fracture toughness degradation into
crack calculations, proposing a new toughness fracture phase-field model. This model
allows for the generation of various cracks by adjustment of the activation conditions of
the plastic driving force and reducing the fracture toughness. Zhao et al. [34] employed
phase-field variables of crack surface density to simulate crack propagation and internal
damage variables, thereby bridging the micro-damage of multiple network elastic bodies
and macroscopic fractures in the finite deformation model.

The advancements in these studies demonstrate the continuous development and
improvement of the phase-field method in simulating fracture propagation under finite
deformation conditions, providing a robust tool and theoretical foundation for investigating
complex material fracture behavior.
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2.2. Material Model and Phase-Field Formulation

The deformation gradient tensor serves as the description of the deformation measure
under finite deformation. As the object undergoes deformation, point X in the unaltered
reference configuration is transformed to a point x in the present deformed configuration
through the deformation gradient (see Figure 1), then the deformation gradient and its
Jacobian are represented.

F =
∂x
∂X

(1)

J = det(F) (2)
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Figure 1. Schematic representation of a solid body B and its boundary denoted by ∂B. The internal
discontinuity is approximated by the phase field.

The discontinuity surfaces Γ within represent an aggregation of discrete cracks. Follow-
ing Griffith’s fracture theory, the energy required to produce a unit area of fracture surface
is equivalent to the critical fracture energy density Gc. To avoid the issue of numerically
handling the discontinuity that represents a crack, the fracture surface Γ is approximated
using a phase field p(X, t):∫

Γ
GcdS =

∫
B

Gc

[
(p− 1)2

4l
+

(p− 1)2

4l
+ l

∂p
∂X1

∂p
∂X1

]
dX (3)

where l is a model parameter that controls the width of the smooth approximation of the
crack. All computations in this review are conducted in Lagrangian coordinates and all
integrals are computed within the unaltered reference configuration. The phase field p
takes a value of 1 outside the crack and 0 inside the crack (refer to Figure 1).

Equations (1)–(3) presented above describe a nonlinear elastic model for tension–
compression symmetry materials. It should be noted that this model is applicable to both
tension–compression asymmetry materials and hydrogels, which will be discussed later in
this review. Hence, further elaboration is deemed unnecessary.

The simplest neo-Hookean model is used as an archetype. Currently, this method
can be extended to incorporate more complex hyper-elastic material models, includ-
ing the Mooney–Rivlin, Odgen, and other advanced hyper-elastic models proposed by
Davidson et al. [35] and Li et al. [36].

When not considering phase fields, the free energy density W of the neo-Hookean
model is as follows:

W =
1
2

µ(I1 − 3− 2 ln J) +
1
2

KB(ln J)2 (4)

where I1 = tr
(

FFT), J = det(F), µ is initial shear modulus, and KB is the initial bulk modulus.
Taking into account the differences in fracture behavior under tension and compres-

sion, as well as the variations in the decomposition methods of the free energy under finite
and small deformations, the free energy W is as follows:
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W = W1 + W2 =
1
2

µ
3

∑
i=1

(
λ2

i − 1− 2 ln λi

)
+

1
2

KB(ln J)2 (5)

where λi is the F principal stretch, J = λ1λ2λ3, and I1 =
3
∑

i=1
λ2

i . Here, W is decomposed

into W1 = 1
2 µ

3
∑

i=1

(
λ2

i − 1− 2 ln λi
)

and W1 is a linear function; W2 = 1
2 KB(ln J)2 and W2 is

a nonlinear function.

2.2.1. Decomposing Energy into Tension and Compression Components

Inspired by Miehe et al. [4] and Borden et al. [8], Tang and Zhang et al. [19] decomposed
the energy into tension and compression components. The form of the free energy W
coupled with the phase field p for simulating fracture is given by:

Grub =
[
(1− κ)p2 + κ

]
W+ + W− (6)

κ is introduced for improving numerical stability; its value is much smaller than 1.
W+ and W− are defined by:

W+ = W
(
λ+

i , J+
)
, λ+

i =

{
λi, λi > 1
1, λi ≤ 1

, J+ =

{
J, J > 1
1, J ≤ 1

(7)

W− = W
(
λ−i , J−

)
, λ−i =

{
1, λi > 1
λi, λi ≤ 1

, J− =

{
1, J > 1
J, J ≤ 1

(8)

2.2.2. Decomposing Energy into Isochoric and Volumetric Components

Swamynathan et al. [28] developed a model that permits the evolution of the phase-
field in the presence of local tensile conditions while maintaining the compressive rigidity
of the material. Building upon the invariant-based work of Hesch et al. [37], they split the
energy function into isochoric and volumetric components.

W0
(

I1, I2, J
)
= Wiso

(
I1, I2

)
+ Wvol(J) (9)

Here, I1 and I2 are the first and the second invariant of the isochoric part of the right
Cauchy–Green deformation tensor given by

I1 = J−2/3 I1, I2 = J−4/3 I2 (10)

where I1 and I2 are the first and second invariant of the right Cauchy–Green tensor. The
undamaged energy density was divided into contributions of tension and compression

W
(

I1, I2, J
)
= W+

iso

(
I1
+, I2

+
)
+ W+

vol
(

J+
)
+ W−iso

(
I1
−, I2

−)
+ W−vol

(
J−
)

(11)

where positive and negative components of energies are determined using the Heaviside
functions as

W+
iso = ∑

i
H(Ii − 3)Wiso

(
Ii
)

(12)

W+
iso = ∑

i
[1− H(Ii − 3)]Wiso

(
Ii
)

(13)

The ultimate expression of the energy function is presented as

G(F, p) = g(p)
[
W+

iso

(
I1
+, I2

+
)
+ W+

vol
(

J+
)]

+ W−iso

(
I1
−, I2

−)
+ W−vol

(
J−
)

(14)

where the degradation function is defined as

g(p) = (1− p)2 (15)
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2.3. Numerical Verification

To investigate the performance of the aforementioned model, Swamynathan et al. [28]
conducted a study on the classical three-point bending test under finite deformation and
plane strain conditions. Figure 2a illustrates the geometry and boundary conditions of the
test. A monotonic increasing displacement load was applied at the center of the specimen’s
upper boundary, while a vertical slit of appropriate length was introduced at the lower
boundary. The mesh was divided using quadrilateral elements, as shown in Figure 2b.
During the crack initiation stage of the test, the displacement ∆u = 1× 10−4 mm. As the
crack propagation stage commenced, the displacement ∆u decreased to 1 × 10−5 mm.
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Figure 2. Three-point bending test. (a) Geometry and boundary conditions (units in mm); (b) finite-
element mesh.

The evolution of the phase field during different stages of displacement loading is
illustrated in Figure 3; the crack path results obtained from all three models were consistent.
However, in the model proposed by Amor et al. [38], compressive damage was observed
in the region where the specimen was loaded, while in the models proposed by Tang and
Zhang et al. [19], as well as by Swamynathan et al. [28], this phenomenon was alleviated.
It can be concluded that the latter two models accurately distinguished the local states
of tension and compression. In this demonstration, a model derived from the research of
Amor et al. is presented as a comparison. Note that, for clarity in illustrating the crack
propagation, the regions within the continuum where p > 0.98 have been removed.
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Figure 3. Deformed specimens of the three-point bending test. The plotted configurations are
related to applied displacements of u = {0.4, 1.19, 1.9} mm (from top to bottom) in consideration of
(a1,a2,a3) the model of Tang and Zhang et al. [19], (b1,b2,b3) the model inspired by Amor et al. [38],
and (c1,c2,c3) the model of Swamynathan et al. [28].

2.4. Summary

This chapter begins by summarizing the research achievements of phase-field fracture
models for nonlinear elastic materials under finite deformation conditions in the past five
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years. Two typical phase-field models are then presented: one decomposes the free energy
into tension and compression components, while the other decomposes the free energy
into isochoric and volumetric components. Subsequently, the simulation results of these
two models are compared using a classical three-point bending test. The advantage of the
approach that decomposes the free energy into tension and compression components lies in
its ability to be extended to tension–compression asymmetric materials, while the approach
that decomposes the free energy into isochoric and volumetric components exhibits a
higher level of fit with the existing literature.

Currently, for complex geometric shapes and material models such as visco-plasticity
and elasto-plasticity, further improvement in mesh sensitivity and parametric studies is
required. The ES-FEM method, which combines the finite element method with the idea of
meshless methods, offers advantages such as precise results and a lack of susceptibility to
element distortion. Combining the phase-field method with ES-FEM for finite deformation
fracture modeling shows promising potential for development.

3. Fracture Study of Nonlinear Elastic Materials with Tension–Compression Asymmetry

Many natural or artificially synthesized materials exhibit tension–compression asymmetry,
showing different behaviors under tensile and compressive loads. These tension–compression
asymmetric materials encompass natural materials such as brain tissue and artificially synthe-
sized materials such as polyester (polyethylene terephthalate), exhibiting a significant disparity
between their tensile and compressive elastic moduli.

Previous research has established theoretical models to describe the mechanical proper-
ties of tension–compression asymmetric materials. In the framework of small deformations,
Ambartsumyan’s pioneering work [39,40] on the theory of bimodulus elasticity is sum-
marized in monographs. Du and Guo [41], along with Du et al. [42], formulated a series
of variational principles and related definitions for bimodulus materials based on the
constitutive relationship proposed by Ambartsumyan [39,40].

3.1. Research Progress

The contributions of the past five years in the field of phase-field fracture of nonlin-
ear elastic tension–compression asymmetric materials are shown in chronological order.
Li et al. [43] investigated the application of a dynamic gradient damage model as a phase-
field model in dynamic fracture problems. The phase-field model offers a distinct advantage
by providing a unified framework for addressing 2D and 3D crack evolution problems.
A comparative analysis was conducted between two distinct damage constitutive laws
and tension–compression asymmetry formulas. However, compared with traditional
methods based on crack sharpness descriptions, it may incur higher computational cost.
Tang et al. [19] constructed a Lagrangian equation and derived a coupled equation group
describing deformation and phase-field evolution through crack separation energy and
fracture energy in the phase-field approximation. The model exhibits good robustness
and efficiency and its validity is confirmed through multiple examples, aligning well with
experimental observations. This model offers the benefit of effectively managing tension
and compression asymmetry within finite deformation, rendering it suitable for simulating
fractures in rubber-like materials characterized by such asymmetry.

Shahba et al. [44] developed a FES phase-field simulation framework for modeling the
fracture processes in anisotropic elastic materials exhibiting tension–compression asym-
metry. The article also discussed the issue of numerical instability that adversely affects
computational fracture simulations. To address this, a solution based on viscous stabiliza-
tion was proposed to effectively overcome the convergence problem in the nonlinear finite
element solver. Zhang et al. [45] presented a method for modeling nonlinear elastic material
with tension–compression asymmetry. The method avoids the non-zero stress issue by
decomposing the energy into stretch and compression parts and simulating the asymmetry
by directly setting the ratio of shear and bulk modulus under tension and compression.
Cheng et al. [46] introduced a wavelet-enriched adaptive FE model for solving a coupled
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crystal plasticity-phase field model, allowing for the simulation of crack propagation within
poly-crystalline micro-structures. The advantage of this model is no need to assume a prior
crack path. Their research indicates that the stored elastic strain energy due to material
anisotropy and tension–compression asymmetry, along with the defect energy from the
slip systems, are the main driving forces for crack propagation under finite deformation.

A model coupling crystal plasticity and phase-field modeling was developed by
Tu et al. [47] for analyzing crack initiation and propagation in poly-phase–poly-crystalline
micro-structures of 7000 aluminum alloy. You et al. [48] proposed a plastic damage-coupled
phase-field framework that can describe various fracture modes of quasi-brittle materials.
The framework allows for the incorporation of different tension crack initiation criteria and
constitutive relations, enabling an accurate description of tension–compression asymmetry
in mechanical response. However, the comprehensive yield surface smoothness of the
model presents some issues and capturing the integration of tensile and compressive
failure remains a challenging theoretical problem. Li et al. [49] demonstrated the use
of two common tension–compression asymmetry phase-field fracture models to solve
plane stress problems. The correctness of the proposed plane stress formula was verified
through benchmark testing examples. Pathrikar et al. [50] proposed a gauge field theory
model for quantifying and evolving micro-crack defects in solid deformation. The model
considers kinematic aspects of deformation and damage, describing various characteristics
of brittle damage, such as tension–compression asymmetry, stiffness degradation, and
energy functionals, including crack contributions.

A coupled phase-field model was proposed by Hao et al. [51] to simulate fracture
under high-speed impact. The model incorporates tension–compression asymmetry and
introduces a new historical variable to enforce the irreversible condition of crack prop-
agation. Ziaei-Rad et al. [52] proposed a method that decomposes the constitutive rela-
tion into crack driving and persistent parts, specifically designed for materials exhibiting
anisotropic/orthotropic behavior in phase-field fracture to explain the tension–compression
asymmetry. This model is applicable to any anisotropic elastic material in a 3D setting.
Building upon this foundation, two existing tension–compression asymmetric models,
namely the volume-deviator model and the no-tension model, were expanded to incorpo-
rate anisotropic properties. The extended models accurately capture anisotropic constitutive
behavior and tension–compression asymmetry in crack response, exhibiting qualitative
agreement with the anticipated behavior of orthogonal materials.

Various researchers have developed phase-field simulation frameworks and models to
study fracture processes in nonlinear elastic materials with tension–compression asymmetry.
These studies contribute to a better understanding of crack propagation and fracture
behavior in complex materials.

3.2. Tension–Compression Asymmetry Phase-Field Model
3.2.1. Decomposing Energy into Tension and Compression Components

Zhang et al. [45] extended the approach of energy decomposition into tension and
compression components to tension–compression asymmetric materials. Consistent with
Section 2.2 above, body B is surrounded by a curved surface ∂B (see Figure 1). As the object
undergoes deformation, point X in the unaltered reference configuration is transformed to
a point x in the present deformed configuration through the deformation gradient. The
right Cauchy–Green tensor can be defined as

C = FT F = QΛQT (16)

where Q consists of the orthogonal eigenvectors of C and Λ = diag
(
λ2

1, λ2
2, λ2

3
)

is a diagonal
matrix of principal right Cauchy–Green tensor and λi, i = 1 . . . 3 are the principal stretches.
Suppose am|m=1...3 are eigenvalues of matrix C, then the following equation can be proven

amdC = am ⊗ am (17)
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where am is the eigenvector corresponding to the eigenvalue am. As we know, am = λ2
m is

the eigenvalue of matrix C.
The neo-Hookean model serves as a fundamental basis and is extended to the Ogden

model. To differentiate between tension and compression, the corresponding shear moduli
are defined as

µ(λi) =

{
µ+, λi > 1
µ−, λi ≤ 1

(18)

the corresponding bulk modulus is then defined as

K(J) =
{

K+, J > 1
K−, J ≤ 1

(19)

where J = det(F) = λ1λ2λ3. Through the adoption of these shear and bulk moduli
formulations, the strain energy of the initial neo-Hookean model, which incorporates
tension–compression asymmetry, can be reformulated as follows:

W =
3

∑
i=1

µ(λi)

[
1
2

(
λ2

i − 1
)
− ln λi

]
+

1
2

K(J)(ln J)2 (20)

3.2.2. Decomposing Energy into Elasticity, Plasticity, and Surface Energy Parts

With a focus on the influence of tension and shear, You et al. [48] introduced the defi-
nition of crack surface density per unit volume within the fracture process zone as follows:

γ1(p,∇p) =
1

2lc1
p2

1 +
lc1

2
(∇p1)

2 (21)

γ2(p,∇p) =
1

2lc2
p2

2 +
lc2

2
(∇p2)

2 (22)

where lc1 and p1 are the length scale parameter and the phase-field damage variable of
regularization under tension, while lc2 and p2 are the length scale parameter and the
phase-field damage variable of regularization under shear.

Considering the Griffith-type critical energy release rates gc1 for tension and gc2 for
shear, the system’s Helmholtz free energy density GH is introduced within the thermo-
dynamic framework. GH is broken down into four parts: elasticity, plasticity, and two
surface energies:

GH(ε
e, εp, α, p1, p2) = Ge(εe, p1) + Gp(εp, α, p2) + G1(p1,∇p1) + G2(p2,∇p2) (23)

where
G1(p1,∇p1) = gc1γ1(p1,∇p1) (24)

G2(p2,∇p2) = gc2γ2(p2,∇p2) (25)

Ge(εe, p1) =
1
2

[
(1− p1)

2 + κ
]
εe : C0 : εe (26)

Gp(εp, α, p2) = g(p2)

(
1
2

εp : H : εp +
1
2

hα2
)

(27)

In Equation (22), εe and εp are elastic and plastic strains, respectively. C0 represents the
elasticity tensor of the material in its undamaged state. To ensure the well-posedness of the
system in regions with partially broken domains, a small positive parameter κ is introduced.
A fourth-order kinematic hardening modulus tensor, denoted asH, is positively definite,
and h is a non-negative parameter related to the isotropic hardening of the material. In this
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case, the researchers did not explore various degradation functions and the degradation
function follows a standard quadratic form.

g(p2) = (1− p2)
2 (28)

3.3. Numerical Verification

Numerical examples are employed in this section to demonstrate the fracture modeling
capability of the tension–compression asymmetrical phase-field model for nonlinear elastic
materials. Initially, this section presents the research findings of Zhang et al. [45]. In the
simulations, µ+ and K+ are kept unchanged, while µ− is varied; the ratio of bulk moduli
K+/K− and the ratio of shear moduli µ+/µ− are kept equal.

To investigate the three-point bending behavior of a solid specimen with a vertical
notch under plane strain conditions, the model depicted in Figure 4 is established. The
figure illustrates the boundary conditions and the discrete FE mesh employed in the model.
A finite element model is established, where the solid is discretized by triangular elements.
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Figure 4. Three-point bending test. Geometry, boundary conditions, and FE mesh.

Figure 5 illustrates the contours of the phase-field p on the deformed configuration
with two modulus ratios µ+/µ− = 5.0, 0.5. The nucleation of new cracks occurs at imposed
displacements of 0.97 and 0.61, respectively, leading to the subsequent propagation of the
pre-existing crack.
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Figure 5. Three-point bending test. The imposed displacement is u/H = 0.97 and 0.61 with modulus
ratios µ+/µ− = 5.0 and 0.5.

You et al. [48] also conducted a three-point bending test; Figure 6 shows the model and
the finite element mesh partitioning results of the simulation experiment. Figure 7 compares
the predicted crack evolution processes for gc1 = 0.045 N/mm and gc1 = 0.029 N/mm,
respectively. The crack initiates from the notch tip and propagates towards the upper
border of the block. However, when gc1 = 0.029 N/mm, the crack propagation speed
is faster.
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Figure 6. (a) Geometry and boundary conditions of a notched beam under three-point bending.
(b) Finite element meshes.
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3.4. Summary

This section presents a summary of the accomplishments of previous researchers in
constructing models for nonlinear elastic tension–compression asymmetric materials. Par-
ticularly, the methods of Zhang et al. [45] and You et al. [48] are demonstrated. Zhang et al.’s
strategy demonstrates excellent numerical stability through the direct setting of shear mod-
ulus and bulk modulus ratios, enabling the simulation of tension–compression asymmetry.
Conversely, You et al.’s model effectively captures pressure sensitivity and unilateral effects.
Nevertheless, a trade-off has been made regarding the smoothness of the combined yield
surfaces. Researchers have proposed numerous damage constitutive laws and tension–
compression asymmetry formulas, along with various methods to simulate the fracture
behavior of materials displaying such asymmetric characteristics. However, certain the-
oretical issues remain, such as ensuring the smoothness of the integrated yield surface
and capturing the integrated failure behavior during both tensile and compressive load-
ing. Furthermore, the high computational cost associated with the phase-field model
may impede its application in large-scale problems. Currently, researchers are actively
addressing these challenges to enhance the accuracy and efficiency of the phase-field
model in simulating fracture propagation under finite deformation in tension–compression
asymmetric materials.
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4. Fracture Behavior Research of Hydrogels

Water-containing soft solids extensively exist in synthetic materials such as hydrogels,
as well as in natural materials such as elastic proteins and materials designed to mimic
elastic proteins. With advancements in biomedical and chemical engineering, these materi-
als are extensively used in various applications, including the development of scaffolds
and flexible electronic devices. Notably, these materials possess the ability to maintain their
structural integrity and withstand macroscopic cracks. It is noteworthy that these water-
containing soft solids exhibit softer mechanical properties compared with their dehydrated
counterparts, which are typically harder. This distinction in mechanical behavior can be
utilized to achieve complex functionalities, such as camouflage.

4.1. Research Progress

From a micro-mechanical perspective, water-containing soft solids can be viewed
as polymer networks with a high degree of hydrophilicity and water-swelling, where
hydration plays a critical role in determining their elastic properties. When the notched
specimen is subjected to subcritical stretching and maintained at a constant state, ‘delayed
fracture’ [53] occurs, where the crack propagates following an incubation period of adequate
duration, attributed to the diffusion of water within the polymer network. The exceptional
toughness of double-network hydrogels has gained considerable attention and qualitative
crack models have been developed to elucidate its underlying mechanisms. These models
aim to explain the superior toughness exhibited by double-network hydrogels compared
with conventional hydrogels [54–57].

From the perspective of macroscopic fracture mechanics, extensive research has been
conducted on the fracture behavior of these hydrated materials. In this context, many
numerical methods [58] have been proposed to investigate how crack propagation initiates
by assuming the existence of pre-existing cracks and analyzing the crack tip region. This
approach also offers a means of measuring material toughness, allowing for the evaluation
of the material’s brittleness or ductility [59–63]. Classical fracture mechanics theories
have been extended to hydrogels and even utilized to examine fatigue fracture [64,65].
Zhang et al. [66] developed a model that couples the cohesive zone and the Mullins effect
to quantitatively predict the fracture energy of soft and tough hydrogels, as well as the
fracture field near the crack tip. Long et al. [67] presented an analytical solution describing
the deformation and stress field in the vicinity of a static crack tip in a soft elastic material.
Guo et al. [68] studied the stress and deformation fields in the vicinity of a crack tip within
a self-healing hydrogel specimen featuring a unilateral notch. They employed a model
that incorporates physical crosslink fracture dynamics to describe the behavior of finite
deformations in nonlinear visco-elastic materials. Yu et al. [69] developed asymptotic and
finite element analysis methods to analyze the crack tip field of stable crack propagation in
polymer gels based on linear poroelastic theory.

However, the aforementioned methods are unable to predict the initiation time and
location of cracks and they may face challenges when predicting crack initiation and
propagation. To partially overcome these challenges, a potential solution is to introduce a
diffuse crack model that relies on the fracture phase field.

Böger et al. [70] proposed and implemented a variational framework, employing the
finite element method, to establish a phase-field fracture model for gels. Their numeri-
cal simulations unveiled the occurrence of crack initiation and subsequent propagation
throughout the dehydration process in gels. Mao et al. [71] formulated a phase-field model
by adopting Gurtin’s [72,73] original virtual method. The constitutive equation for gel
fracture contains two novel physical components: (1) the entropy and internal energy
caused by the stretching of the Kuhn segments and the polymer cross-linked network struc-
ture and (2) the damage and failure of the polymer network attributed to the alteration in
internal energy. Mao et al. [71] have illustrated the successful application of the phase-field
approach in simulating the fracture behavior of double-notched specimens subjected to uni-
axial tension. Although a fully coupled diffusion–deformation fracture framework holds
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promise for simulating real-world problems, it introduces more parameters that are not
easily calibrated through experiments, particularly those related to water diffusion. When
the deformation time scale significantly outweighs the diffusion time scale, neglecting
water diffusion becomes plausible [54,55,66]. This assumption facilitates the calibration of
material parameters involved in experimental studies.

Böger et al. [74] introduced a phase-field model for crack propagation in water gels,
integrated it into a variational framework, and implemented it using an operator splitting
algorithm. They conducted creep tests driven by diffusion to investigate the slow mass
transport phenomena in water gels, specifically crack initiation and evolution induced
by drying. Zhang et al. [75] proposed a graph finite element phase-field hybrid model to
simulate the fracture behavior of a water gel-based curved shell, abstracting the water gel
in the biomedical field as a shell and effectively improving the computational efficiency.
Zheng et al. [76] proposed a diffusion fracture-based rate-independent variational principle
phase-field method, which can effectively simulate the fracture process of super elastic
materials and water gels under different boundary conditions, and verified the robustness
of the method. Subsequently, they integrated the phase-field evolution equation with
the analogy of heat transfer and diffusion laws to establish a theoretical model of the
temperature-sensitive water gel fracture simulation phase-field method that considers
diffusion-coupled large deformation. This model eliminates the need for pre-defined cracks
and can simulate cracks of various types of temperature-sensitive water gels under different
boundary conditions. Liu et al. [77] established an anisotropic model for porous-visco-
hyper-elastic damage based on the theory of porous media (TPM). This model aimed to
analyze the relationship between visco-hyper-elasticity, time-dependent behavior of fluid
transport coupling, and fracture behavior of water gel composites. During the numerical
verification process, the aging mechanism of the anisotropic water gel composite fracture
behavior was discussed.

Researchers have made significant advancements in the field of phase-field fracture
models for gels. These innovative approaches hold great promise for understanding and
analyzing the fracture behavior of gels in real-world applications.

4.2. The Material and Phase-Field Models for Hydrogels

Numerous models have been developed to analyze the finite deformation behavior
of hydrogels [73,78–81]. The theoretical formulations typically reference the free energy
density of hydrogels to the state of the network that is dry and devoid of solvent. However,
in reality, soft solids such as hydrogels contain a significant number of water molecules.
Therefore, the reference state is defined as the initially hydrated state rather than the
dehydrated state and is expressed as the reference configuration in its undeformed state.

4.2.1. Decomposing Energy into Tension and Compression Components

Zhang et al. [82] employed the approach of decomposing energy into tension and
compression components to conduct fracture simulations of hydrogel materials. The initial
polymer volume fraction is denoted by φ0 and its corresponding free energy density is
defined by the following equation:

G
kT/υ

=
1
2

Nυφ0
(

I − 3
)
+

kB
kT/υ

[
J2 − 1 + 2φ0(1− J)

]
/φ0 + (J − φ0) ln

(
1− φ0

J

)
+ χφ2

0

(
1− 1

J

)
− µ0

kT
(J − 1)− ∆µ

kT
(J − φ0) (29)

with the first invariant I = J−2/3 I(I = tr(b), J = det(F)).
In the aforementioned equation, N represents the number of chains per unit volume, υ

is the volume per solvent molecule, χ is the Flory–Huggins parameter that characterizes the
enthalpy of mixing between polymer and solvent molecules, k is the Boltzmann constant,
T is the temperature, and kB is the pseudo bulk modulus. Given that the swollen state is
adopted as the undeformed reference configuration, the chemical potential at this state,
denoted as µ0, can be represented by the following expression:
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µ0

kT
=

2kB
kT/υ

(1− φ0)/φ0 + χφ2
0 + φ0 + ln(1− φ0) (30)

∆µ/kT represents the change in chemical potential with respect to the reference configura-
tion. The initial (undeformed) state is denoted by ∆µ/µ0 = 0. Constrained deswelling of
the gel is represented by ∆µ/µ0 > 0, while ∆µ/µ0 < 0 represents swelling.

To ensure resistance in the compressed state, the free energy density G is subsequently
decomposed into isochoric and volumetric components.

G(I, J) = Gd
(

I
)
+ Gν(J) (31)

where
Gd

kT/υ
=

1
2

Nυφ0
(

I − 3
)

(32)

Gν

kT/υ
=

kB
kT/υ

[
J2 − 1 + 2φ0(1− J)

]
/φ0 + (J − φ0) ln

(
1− φ0

J

)
+ χφ2

0

(
1− 1

J

)
− µ0

kT
(J − 1)− ∆µ

kT
(J − φ0) (33)

Subsequently, a phase-field methodology is proposed to characterize the fracture
process within the critical region in hydrogels. This method aims to quantify the reduction
in stiffness of the material within the failure zone. Inspiration for the ensuing expression
for the hydrogel’s free energy, which is coupled with the phase-field p, was drawn from
the works of Miehe et al. [4] and Borden et al. [8], in the realm of linear elasticity for
small deformations.

Ggel =
(

I, J, p
)
=
[
(1− K)p2 + K

][
Gd
(

I
)
+ G+

ν (J)
]
+ G−ν (J) (34)

where
G+

ν (J) = Gν H+ (35)

H+ =

{
1, ∂G

∂J ≥ 0

0, ∂G
∂J < 0

, H− =

{
0, ∂G

∂J ≥ 0

1, ∂G
∂J < 0

(36)

The sign of H± is dependent on whether the material is subjected to hydrostatic
pressure or compression. Essentially, the superscript of H± is indicative of the sign of the
hydrostatic (or mean) Cauchy stress:

σm =
1
3

tr(σ) =
∂G
∂J

(37)

4.2.2. Decomposing Energy into Stretch and Mixing Components

Compared with the method of Zhang et al., Zheng et al. [83] decomposed undamaged
free energy density G into the part of stretch and mixing. Note that the model is established
based on temperature-sensitive hydrogel.

G(F, p) = g(p)G0(F) (38)

where

G0(F) =
1
2

NkBT
[

FT F− 3− 2 ln(J)
]
+ kBT

[
D ln

(
νD

1 + νD

)
+

χD
1 + νD

]
− µD (39)

where N is the referential chain density, kB is the Boltzman constant, T is the absolute
temperature, ν is the nominal volume of a solvent molecule, D is the concentration of the
solvent in the hydrogel, χ is the interaction parameter, and µ is the chemical potential in
the solvent.
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To incorporate the phase field model with the large deformation behavior of hydrogels,
the potential energy of a hydrogel body is formulated as

Wint = E(u, p) + W(p) (40)

where
E(u, p) =

∫
Ω

G(F, p)dV (41)

W(p) =
∫

Ω
gcγ(p,∇p)dV (42)

where W (fracture energy) represents the cumulative fracture surface area multiplied by gc,
the critical fracture energy, and

γ(p,∇p) =
1

2lc
p2 +

lc
2
(∇p)2 (43)

4.3. Numerical Verification
4.3.1. Decomposing Energy into Tension and Compression Components

A finite element model was constructed, as illustrated in Figure 8a, where the φ0 = 0.15.
Figure 8b,c displays the deformation patterns at loading point displacements of d/H = 1.0
and d/H = 1.5, respectively.
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Figure 8. Three-point bending test. (a) Geometry and boundary conditions; (b) vertical displacement
d/H = 1.0; (c) d/H = 1.5; (d) the crack phase-field contour at d/H = 1.5 is mapped onto the
initial configuration.

As the loading point displacement d increases, the crack phase field undergoes evolu-
tion. At a loading displacement of d/H = 1.5, Figure 8d exhibits an isosurface map of the
crack phase field in the initial configuration. The contour analysis of the crack phase field
demonstrates the initiation of the crack at the center of the bottom surface, followed by its
linear propagation towards the top surface. The simulation results were experimentally
validated, showing consistency with the experimental results, which indicates the accuracy
of the simulation. However, due to mesh deformation, the crack propagation was limited
to approximately half the height of the specimen.
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4.3.2. Decomposing Energy into Stretch and Mixing Components

The notched hydrogel was investigated by Zheng et al. [83]. Figure 9 depicts the
geometry of the sample, where the initial crack length measures 5 mm. In the experimental
configuration known as pure shear, the bottom side of the rectangular specimen is fixed,
while the top side experiences displacement while retaining its original length.
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Figure 9. The geometry (mm) of the notched hydrogel.

The deformation patterns of hydrogel specimens in different crack states are illustrated
in Figure 10, demonstrating the evolution of cracks until final fracture. Figure 10a depicts
the region surrounding the initial notch tip of the hydrogel specimens, showcasing the
localized crack initiation. In Figure 10b, the fracture propagation is illustrated, where the
load reaches its peak magnitude. Subsequently, there is a rapid decline in load until the
complete fracture of the specimen. Figure 10c depicts the subsequent crack extension until
the specimen separates into two parts.
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4.4. Summary

Consistent with their previous work on tension–compression symmetric [19] and asym-
metric materials [45], Zhang et al.’s [82] approach decomposed the energy into tensile and
compressive parts, ensuring both fracture capture and numerical stability. Zheng et al. [83]
established a phase field fracture model for temperature-sensitive hydrogels, which can be
extended to other hyper-elastic models.

In recent years, the phase-field method has emerged as a prominent numerical ap-
proach for studying fracture models of hydrogels. Based on the continuity description of
energy functional and phase-field variable, the phase-field method enables the simulation
of mechanical and thermo-dynamic properties of hydrogels, including initial damage,
fracture process, and fracture morphology. Previous studies have demonstrated the appli-
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cability of the phase-field method in analyzing various fracture behaviors of hydrogels,
including those of temperature-sensitive and chemically reactive hydrogels. Moreover, the
phase-field method can be combined with other models and experimental data for valida-
tion and application, such as in conjunction with continuum mechanics models and finite
element methods to predict the mechanical response and fracture behavior of hydrogels.

While progress has been made in studying fracture models of hydrogels using the
phase-field method, several challenges still need to be addressed. First, existing phase-field
models often demand significant computing resources and time, necessitating further
optimization and enhancement of their computational efficiency. Second, the phase-field
method requires more accurate physical and material parameters to describe the mechanical
and thermo-dynamic properties of hydrogels. Therefore, additional experimental research
and parameter optimization is necessary. Lastly, the phase-field method struggles to
effectively simulate the multi-scale and multi-physical process characteristics of hydrogels,
underscoring the necessity for the advancement of phase-field models capable of capturing
such multi-scale and multi-physical phenomena. Resolving these challenges will contribute
to a deeper understanding of the fracture behavior of hydrogels and offer valuable insights
for the design and application of hydrogels in biomedical and engineering fields.

5. Summary and Future Directions

Over the past decade, the phase-field method has gained widespread recognition in
studying the fracture of nonlinear elastic materials under finite deformation. This method
demonstrates its capability to capture complex fracture patterns across various material
models and structures and provides insights into different scenarios under diverse loading
conditions. Consequently, it offers a viable solution for addressing challenges beyond the
scope of commonly used models. However, it necessitates substantial efforts in mathe-
matical formulas, numerical implementation, and model validation. This comprehensive
review paper aims to elucidate critical aspects of fracture in nonlinear elastic materials
under finite deformation and highlight its notable contributions.

In addition, this review introduces several formulations for the phase-field evolution
equation of nonlinear elastic materials and some methods for analyzing such materials.
Among these, a novel energy decomposition method that incorporates strain energy is
highlighted, particularly emphasizing considering stretching and compression within
the framework of finite deformation. This approach aims to predict crack initiation and
propagation in the phase-field model, providing an invaluable resource for studying
fracture behavior in nonlinear elastic materials. Furthermore, the review covers several
numerical implementation methods, algorithms, and experimental studies.

Given the significant challenge associated with predicting the fracture of nonlinear
elastic materials under finite deformations, utilizing the phase-field method in addressing
this issue is currently limited. Therefore, there remains a pressing need for further research
to comprehensively explore this area.

1. The research presented in this review was conducted within the quasi-static phase
field framework. However, there is currently a lack of comprehensive research using
the methodology of phase field to investigate the physical mechanisms of dynamic
crack propagation, especially the conditions leading to crack branching. In addition,
accurately determining the location of the crack tip to calculate crack propagation
velocity remains a challenge. Therefore, it is necessary to establish a phase-field model
that incorporates dynamic loading with rate effects and rapid crack propagation.

2. Fatigue crack formation and propagation contribute significantly to the failure of many
engineering structures; predicting these phenomena continues to pose challenges
in modeling and simulation. Some researchers have begun employing phase-field
methods to study the fatigue crack in brittle or quasi-brittle materials. Hence, the
utilization of the phase-field approach to explore fatigue crack problems in nonlinear
elastic materials is a novel idea.
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3. While the phase-field models discussed in this review have demonstrated their ca-
pability to predict fracture strains of specimens under quasi-static loading using the
finite element mesh, they face limitations in capturing crack propagation during large
deformation, especially in the case of three-point bending. This phenomenon may be
attributed to severe deformation of the meshes.
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