Analysis of Psychological Factors Influencing Mathematical Achievement and Machine Learning Classification
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Data Description
3.2. Data Visualization
4. Method
4.1. Used Algorithms
4.1.1. Linear Regression
4.1.2. Machine Learning Classification Algorithms
4.1.3. Machine Learning Evaluation Metrics
5. Results
5.1. Linear Regression
5.2. Performance Evaluation of Machine Learning Classification Models
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luan, H.; Geczy, P.; Lai, H.; Gobert, J.; Yang, S.J.H.; Ogata, H.; Baltes, J.; Guerra, R.; Li, P.; Tsai, C.C. Challenges and future directions of big data and artificial intelligence in education. Front. Psychol. 2020, 11, 580820. [Google Scholar] [CrossRef] [PubMed]
- Hwang, G.-J.; Tu, Y.-F. Roles and research trends of artificial intelligence in mathematics education: A bibliometric mapping analysis and systematic review. Mathematics 2021, 9, 584. [Google Scholar] [CrossRef]
- Bin Mohamed, M.Z.; Hidayat, R.; binti Suhaizi, N.N.; bin Mahmud, M.K.H.; binti Baharuddin, S.N. Artificial intelligence in mathematics education: A systematic literature review. Int. Electron. J. Math. Educ. 2022, 17, em0694. [Google Scholar] [CrossRef]
- Çiftçi, S.K.; Yildiz, P. The Effect of Self-Confidence on Mathematics Achievement: The Metaanalysis of Trends in International Mathematics and Science Study (TIMSS). Int. J. Instr. 2019, 12, 683–694. [Google Scholar] [CrossRef]
- Khesht-Masjedi, M.F.; Shokrgozar, S.; Abdollahi, E.; Habibi, B.; Asghari, T.; Ofoghi, R.S.; Pazhooman, S. The relationship between gender, age, anxiety, depression, and academic achievement among teenagers. J. Fam. Med. Prim. Care 2019, 8, 799–804. [Google Scholar] [CrossRef]
- Olivier, E.; Archambault, I.; De Clercq, M.; Galand, B. Student self-efficacy, classroom engagement, and academic achievement: Comparing three theoretical frameworks. J. Youth Adolesc. 2019, 48, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hilal, M.M. A structural model for predicting mathematics achievement: Its relation with anxiety and self-concept in mathematics. Psychol. Rep. 2000, 86, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.A.; Shateri, K.; Amini, M.; Shokrpour, N. Relationships between academic self-efficacy, learning-related emotions, and metacognitive learning strategies with academic performance in medical students: A structural equation model. BMC Med. Educ. 2020, 20, 76. [Google Scholar] [CrossRef] [Green Version]
- Tokan, M.K.; Imakulata, M.M. The effect of motivation and learning behaviour on student achievement. S. Afr. J. Educ. 2019, 39, 1–8. [Google Scholar] [CrossRef]
- Madigan, D.J.; Curran, T. Does burnout affect academic achievement? A meta-analysis of over 100,000 students. Educ. Psychol. Rev. 2021, 33, 387–405. [Google Scholar] [CrossRef]
- León Hernández, A.; González Escobar, S.; Arratia López Fuentes NI, G.; Barcelata Eguiarte, B.E. Stress, self-efficacy, academic achievement and resilience in emerging adults. Electron. J. Res. Educ. Psychol. 2019, 17, 129–148. [Google Scholar]
- Jiang, Y.; Rosenzweig, E.Q.; Gaspard, H. An expectancy-value-cost approach in predicting adolescent students’ academic motivation and achievement. Contemp. Educ. Psychol. 2018, 54, 139–152. [Google Scholar] [CrossRef]
- Romero, C.; Ventura, S.; Espejo, P.G.; Hervás, C. Data mining algorithms to classify students. In Proceedings of the First International Conference on Educational Data Mining (EDM 2008), Montreal, QC, Canada, 20–21 June 2008; pp. 8–17. [Google Scholar]
- Kabakchieva, D. Student performance prediction by using data mining classification algorithms. Int. J. Comput. Sci. Manag. Res. 2012, 1, 686–690. [Google Scholar]
- Xu, X.; Wang, J.; Peng, H.; Wu, R. Prediction of academic performance associated with internet usage behaviors using machine learning algorithms. Comput. Hum. Behav. 2019, 98, 166–173. [Google Scholar] [CrossRef]
- BujangSelamat, A.; Ibrahim, R.; Krejcar, O.; Herrera-Viedma, E.; Fujita, H.; Ghani, N.A.M. Multiclass prediction model for student grade prediction using machine learning. IEEE Access 2021, 9, 95608–95621. [Google Scholar]
- Sravani, B.; Bala, M.M. Prediction of student performance using linear regression. In Proceedings of the International Conference for Emerging Technology (INCET), Belgaum, India, 5–7 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Zimmermann, J.; Brodersen, K.H.; Pellet, J.-P.; August, E.; Buhmann, J.M. Predicting graduate-level performance from undergraduate achievement. In Proceedings of the 4th International Conference on Educational Data Mining, Eindhoven, The Netherlands, 6–8 July 2011; pp. 357–358. [Google Scholar]
- Le Mai, T.; Do, P.T.; Chung, M.T.; Thoai, N. Adapting the score prediction to characteristics of undergraduate student data. In Proceedings of the International Conference on Advanced Computing and Applications (ACOMP), Nha Trang, Vietnam, 26–28 November 2019; pp. 70–77. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. Available online: http://www.jstor.org/stable/2699986 (accessed on 17 June 2023). [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
Variables | Description | Range | Count |
---|---|---|---|
ID | Student’s unique number | 1–1880 | 1880 |
Mathematical achievement | Test 1 and Test 2 Scores | 0–100 | 2 |
TLP items (self-efficacy, math-efficacy, learning approach motivation, performance approach motivation, reliance on academies) | Scores of psychological test items | 0–100 | 5 |
Test 1 Classes | Count | Oversampled Count |
---|---|---|
High level | 276 | 1604 |
Low level | 1604 | 1604 |
Test 2 Classes | Count | Oversampled Count |
---|---|---|
High level | 126 | 1754 |
Low level | 1754 | 1754 |
Dependent Variables | Independent Variables | Coefficient | T-Value | P-Value | Prob (F-Statistics) |
---|---|---|---|---|---|
Test 1 | Self-Efficacy | 0.160 *** | 3.579 | 0.000 | 0.000 |
Math-Efficacy | 0.190 *** | 4.102 | 0.000 | 0.000 | |
Learning Approach Motivation | 0.119 ** | 2.846 | 0.004 | 0.004 | |
Test 2 | Self-Efficacy | 0.074 * | 2.216 | 0.027 | 0.027 |
Reliance on Academies | −0.079 * | −2.214 | 0.027 | 0.027 |
Model | Accuracy | Precision | Recall | F1-Score | AUC | |
---|---|---|---|---|---|---|
Test 1 | Logistic regression | 0.58 | 0.59 | 0.58 | 0.58 | 0.59 |
KNN | 0.58 | 0.57 | 0.62 | 0.60 | 0.60 | |
Random forest | 0.73 | 0.70 | 0.74 | 0.79 | 0.78 | |
Decision tree | 0.69 | 0.68 | 0.77 | 0.71 | 0.70 | |
SVM | 0.60 | 0.62 | 0.51 | 0.56 | 0.63 | |
GBM | 0.65 | 0.65 | 0.69 | 0.67 | 0.68 | |
LGBM | 0.66 | 0.65 | 0.69 | 0.67 | 0.70 | |
XGBoost | 0.70 | 0.68 | 0.76 | 0.71 | 0.74 | |
Test 2 | Logistic regression | 0.57 | 0.57 | 0.55 | 0.56 | 0.60 |
KNN | 0.65 | 0.62 | 0.78 | 0.69 | 0.67 | |
Random forest | 0.81 | 0.76 | 0.88 | 0.82 | 0.88 | |
Decision tree | 0.77 | 0.73 | 0.87 | 0.79 | 0.79 | |
SVM | 0.59 | 0.57 | 0.66 | 0.61 | 0.62 | |
GBM | 0.68 | 0.65 | 0.76 | 0.70 | 0.70 | |
LGBM | 0.69 | 0.66 | 0.75 | 0.70 | 0.73 | |
XGBoost | 0.77 | 0.73 | 0.86 | 0.79 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, S.; Jang, B. Analysis of Psychological Factors Influencing Mathematical Achievement and Machine Learning Classification. Mathematics 2023, 11, 3380. https://doi.org/10.3390/math11153380
Park J, Kim S, Jang B. Analysis of Psychological Factors Influencing Mathematical Achievement and Machine Learning Classification. Mathematics. 2023; 11(15):3380. https://doi.org/10.3390/math11153380
Chicago/Turabian StylePark, Juhyung, Sungtae Kim, and Beakcheol Jang. 2023. "Analysis of Psychological Factors Influencing Mathematical Achievement and Machine Learning Classification" Mathematics 11, no. 15: 3380. https://doi.org/10.3390/math11153380
APA StylePark, J., Kim, S., & Jang, B. (2023). Analysis of Psychological Factors Influencing Mathematical Achievement and Machine Learning Classification. Mathematics, 11(15), 3380. https://doi.org/10.3390/math11153380