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Abstract: The linear Diophantine fuzzy set notion is the main foundation of the interactive method
of tackling nonlinear fractional programming problems that is presented in this research. When
the decision maker (DM) defines the degree α of α level sets, the max-min problem is solved in this
interactive technique using Zimmermann’s min operator method. By using the updating technique
of degree α, we can solve DM from the set of α-cut optimal solutions based on the membership
function and non-membership function. Fuzzy numbers based on α-cut analysis bestowing the
degree α given by DM can first be used to classify fuzzy Diophantine inside the coefficients. After
this, a crisp multi-objective non-linear fractional programming problem (MONLFPP) is created from
a Diophantine fuzzy nonlinear programming problem (DFNLFPP). Additionally, the MONLFPP can
be reduced to a single-objective nonlinear programming problem (NLPP) using the idea of fuzzy
mathematical programming, which can then be solved using any suitable NLPP algorithm. The
suggested approach is demonstrated using a numerical example.

Keywords: nonlinear programming problems; fuzzy sets; linear Diophantine fuzzy sets; LDF-nonlinear
programming problems

MSC: 90C30; 03E72

1. Introduction

Decision-makers encounter numerous issues in everyday life while deciding between
linear and nonlinear fractional programming problems (FPPs). The aims are typically
conflicting, incommensurable, and fuzzy; therefore, many factors of uncertainty’s ambigu-
ous character should be taken into consideration when formulating the issue. For the
objective functions and constraints, many fuzzy parameters have been used. With the help
of numerous studies, fuzzy nonlinear fractional programming problems (FNLFPP) are
divided into two categories: nonlinear fractional programming problems (NLFPP) with
fuzzy goals and NLFPP with fuzzy coefficients. These fuzzy parameters are described as
fuzzy numbers, introduced by Sakawa et al. [1–4].

The idea of fuzzy set was developed initially by Zadeh [5]. Bellman and Zadeh [6]
also provided a definition for a fuzzy decision. According to the theory of fuzzy sets, an
element’s membership in a fuzzy set is represented by a single value between zero and one.
However, because there may be some hesitation degree, it is not necessarily true that the
degree of non-membership of an element in a fuzzy set is equal to 1 minus the membership
degree. Because it provides a generalization of fuzzy sets, the theory of intuitionistic fuzzy
set (IFS) is anticipated to play a significant role in modern mathematics.

The intuitionistic fuzzy set was developed by Atanassov [7–9], who also expanded
upon the idea of a fuzzy set. Since it includes the degree of belongingness, the degree of
non-belongingness, and the hesitation margin introduced by Atanassov [10], the knowledge
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and semantic representation of IFS become more expressive, innovative, and appropriate.
IFS are fascinating and helpful when describing an issue using a linguistic variable in terms
of a membership function that appears too rough, according to Szmidt and Kacprzyk [11,12]

Hezibah [13] suggested a Taylor series method to solve the intuitionistic fuzzy multi-
objective nonlinear programming problem (IFMONLPP). In an intuitionistic fuzzy setting,
Singh and Yadav [14] presented a method for the handling of nonlinear programming
issues. A method to resolve the intuitionistic fuzzy linear fractional programming problem
was also devised by Singh and Yadav [15] (IFLFPP). The Sperm Motility algorithm was
studied by Raouf et al. [16] as a solution to fractional programming problems under
uncertainty (FPPU). An interactive intuitionistic fuzzy nonlinear fractional programming
problem was introduced by Amer [17].

The idea of “α-cut optimality” is proposed in this study based on “α-level sets of
fuzzy numbers” to address nonlinear fractional programming issues with fuzzy param-
eters classified by fuzzy numbers. Then, as a generalization of the findings in Sakawa
et al. [1–4], an interactive decision-making method is described that may quickly deter-
mine the decision-maker’s most satisfactory option from among a group of α-cut optimal
solutions. Additionally, the objective function’s coefficients are used to measure a linear
Diophantine fuzzy nonlinear fractional programming problem (LDFNLFPP), and the con-
straints are a set of triangular linear Diophantine fuzzy numbers (LDFNs). A deterministic
multi-objective nonlinear fractional programming problem (MONLFPP) is created from the
given LDFNLFPP. Next, the MONLFPP is converted into a single-objective NLPP utilizing
a fuzzy mathematical programming approach [18–20]. Finally, a numerical example is
provided to show the effectiveness of this approach.

In [1,13,14,17,21–25], (multi-objective) nonlinear programming problems have been
studied under the environment of fuzzy sets and intuitionistic fuzzy sets. However, here,
we study the nonlinear fractional programming problems in terms of more generalized
fuzzy sets called linear Diophantine fuzzy sets.

2. Preliminaries and Basic Definitions

This section is devoted to reviewing some fundamental ideas that are crucial in
understanding the dominant model.

Definition 1 ([5]). If X is a collection of objects denoted generically by X, then a fuzzy set ℵ in
X is a set of ordered pairs: {(ϑ, µℵ(ϑ))|ϑ ∈ X}, µℵ is called the membership function of ℵ, which
maps X to [0, 1], and µℵ(ϑ) is called the membership degree of ϑ in ℵ.

Definition 2 ([26]). Let ℵ be a fuzzy set on universal set X. Then, ℵ is called convex FS if
∀r, s ∈ X and λ ∈ [0, 1], and we have

µℵ(λr + (1− λ)s) ≥ min{µℵ(r), µℵ(s)}.

Definition 3 ([5]). A fuzzy set ℵ is said to be normalized if h(ℵ) = 1.

Definition 4 ([26]). An α-level set of an FS ℵ is defined as

ℵα = {ϑ ∈ X : µℵ(ϑ) ≥ α} for each α ∈ (0, 1].

Definition 5 ([26]). A fuzzy subset ℵ defined on a set R (of real numbers) is said to be a fuzzy
number (FN) if ℵ satisfies the following axioms:

(a) ℵ is continuous: µℵ(t) is a continuous function from R→ [0, 1].
(b) ℵ is normalized: there exists t ∈ R such that µℵ(t) = 1.
(c) Convexity of ℵ, i.e., ∀ t, u, w ∈ R, if t ≤ u ≤ w then µℵ(u) ≥ min{µℵ(t), µℵ(w)}.
(d) Boundedness of support, i.e., ∃ S ∈ R and ∀ t ∈ R, if |t| ≥ S then µℵ(t) = 0.

We denote the set of all FNs by Fns(R).
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Definition 6 ([27]). Let X be the universe. An LDFS }R on X is defined as follows

}R = {(ϑ, 〈ℵτ
R(ϑ), ξν

R(ϑ)〉, 〈α(ϑ), β(ϑ)〉) : ϑ ∈ X}

where ℵτ
R(ϑ), ξν

R(ϑ), α(ϑ), β(ϑ) ∈ [0, 1] such that

0 ≤ α(ϑ)ℵτ
R(ϑ) + β(ϑ)ξν

R(ϑ) ≤ 1, ∀ϑ ∈ X (1)

0 ≤ α(ϑ) + β(ϑ) ≤ 1. (2)

and the hesitation part can be written as

NπR = 1− (α(ϑ)ℵτ
R(ϑ) + β(ϑ)ξν

R(ϑ)) (3)

where N is the reference parameter.
We write in short }R =

(
〈ℵτ

R, ξν
R〉, 〈α, β〉

)
or }R =

〈
〈ℵτ

R, ξν
R〉, 〈α, β〉

〉
for

}R = {(ϑ, 〈ℵτ
R(ϑ), ξν

R(ϑ)〉, 〈α(ϑ), β(ϑ)〉) : ϑ ∈ X}.

Definition 7 ([27]). An LDFS }R =
{(

ϑ, 〈ℵτ
R(ϑ), ξν

R(ϑ)〉, 〈α(ϑ), β(ϑ)〉
)

: ϑ ∈ X
}

is called a
linear Diophantine fuzzy number (LDFN) if the following hold:

(i) There exists m ∈ R such that ℵτ
R(ϑ) = α(ϑ) = 1 and ξν

R(ϑ) = β(ϑ) = 0, where m is the
mean value of }R.

(ii) (ℵτ
R and α) and (ξν

R and β) are piecewise continuous functions from R to the closed interval
[0, 1] and 0 ≤ α(ϑ)ℵτ

R(ϑ) + β(ϑ)ξν
R(ϑ) ≤ 1, ∀ϑ ∈ X, where

ℵτ
R(x) =


g1(x) m− ϑ1 ≤ x < m
h1(x) ϑ3 ≤ x ≤ m + ϑ3
0 otherwise

, ξν
R(x) =


g2(x)

m− ϑ2 ≤ x ≤ m;
0 ≤ g1(x) + g2(x) ≤ 1

h2(x)
m ≤ x ≤ m + ϑ3;
0 ≤ h1(x) + h2(x) ≤ 1

0 otherwise,

(4)

and

α(x) =


g′1(x) m− ϑ′1 ≤ x < m
h′1(x) ϑ3 ≤ x ≤ m + ϑ3
0 otherwise

, β(x) =


g′2(x)

m− ϑ′2 ≤ x ≤ m;
0 ≤ g′1(x) + g′2(x) ≤ 1

h′2(x)
m ≤ x ≤ m + ϑ′3;
0 ≤ h′1(x) + h′2(x) ≤ 1

0 otherwise.

(5)

Definition 8 ([28]). Let }R be an LDFS on R with the following membership functions (ℵτ
R and

α) and non-membership functions (ξν
R and β)

ℵτ
R(x) =


x−ϑ1
ϑ3−ϑ1

ϑ1 ≤ x ≤ ϑ3
ϑ5−x
ϑ5−ϑ3

ϑ3 ≤ x ≤ ϑ5

0 otherwise
, ξν

R(x) =


ϑ3−x
ϑ3−ϑ2

ϑ2 ≤ x ≤ ϑ3
x−ϑ3
ϑ4−ϑ3

ϑ3 ≤ x ≤ ϑ4

0 otherwise,
(6)

and

α(x) =


x−ϑ

′
2

ϑ
′
3−ϑ

′
2

ϑ
′
2 ≤ x ≤ ϑ

′
3

ϑ
′
4−x

ϑ
′
4−ϑ

′
3

ϑ
′
3 ≤ x ≤ ϑ

′
4

0 otherwise

, β(x) =


ϑ
′
3−x

ϑ
′
3−ϑ

′
1

ϑ
′
1 ≤ x ≤ ϑ

′
3

x−ϑ
′
3

ϑ
′
5−ϑ

′
3

ϑ
′
3 ≤ x ≤ ϑ

′
5

0 otherwise.

(7)
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Throughout the paper, we consider only a triangular LDFN of type 1 and we refer to
this type as triangular LDFN (TLDFN). This TLDFN is denoted by

}RTLDFN =

{
(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

(ϑ
′
1,ϑ′2,ϑ3,ϑ′4,ϑ′5)

.

Definition 9 ([28]). A TLDFN }RTLDFN =

{
(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

(ϑ
′
1,ϑ′2,ϑ3,ϑ′4,ϑ′5)

is said to be positive if and only if

ϑ1 ≥ 0 and ϑ
′
1 ≥ 0.

Definition 10 ([28]). Two TLDFNs }RTLDFN =

{
(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

(ϑ
′
1,ϑ′2,ϑ3,ϑ′4,ϑ′5)

and =RTLDFN =

{
(δ1,δ2,δ3,δ4,δ5)

(δ
′
1,δ′2,δ3,δ′4,δ′5)

are said to be equal if and only if ϑ1 = δ1, ϑ2 = δ2, ϑ3 = δ3, ϑ4 = δ4, ϑ5 = δ5, ϑ
′
1 = δ

′
1, ϑ

′
2 = δ

′
2,

ϑ
′
4 = δ

′
4 and ϑ

′
5 = δ

′
5.

We now define the arithmetic operations on TLDFNs using the concept of interval
arithmetic.

Definition 11 ([28]). Consider two positive TLDFNs }RTLDFN =

{
(ϑ1,ϑ2,ϑ3,ϑ4,ϑ5)

(ϑ
′
1,ϑ′2,ϑ3,ϑ′4,ϑ′5)

and=RTLDFN ={
(δ1,δ2,δ3,δ4,δ5)

(δ
′
1,δ′2,δ3,δ′4,δ′5)

, then

(i) }RTLDFN +=RTLDFN =

{
(ϑ1+δ1,ϑ2+δ2,ϑ3+δ3,ϑ4+δ4,ϑ5+δ5)

(ϑ
′
1+δ

′
1,ϑ′2+δ

′
2,ϑ3+δ3,ϑ′4+δ

′
4,ϑ′5+δ

′
5)

(ii) }RTLDFN −=RTLDFN =

{
(ϑ1−δ5,ϑ2−δ4,ϑ3−δ3,ϑ4−δ2,ϑ5−δ1)

(ϑ
′
1−δ

′
5,ϑ′2−δ

′
4,ϑ3−δ3,ϑ′4−δ

′
2,ϑ′5−δ

′
1)

;

(iii) }RTLDFN ×=RTLDFN =

{
(ϑ1δ1,ϑ2δ2,ϑ3δ3,ϑ4δ4,ϑ5δ5)

(ϑ
′
1δ
′
1,ϑ′2δ

′
2,ϑ3δ3,ϑ′4δ

′
4,ϑ′5δ

′
5)

;

(iv) }RTLDFN ÷=RTLDFN =


(

ϑ1
δ5

, ϑ2
δ4

, ϑ3
δ3

, ϑ4
δ2

, ϑ5
δ1

)
(

ϑ
′
1

δ
′
5

,
ϑ
′
2

δ
′
4

, ϑ3
δ3

,
ϑ
′
4

δ
′
2

,
ϑ
′
5

δ
′
1

) ;

(v) k× }RTLDFN =


{
(kϑ1,kϑ2,kϑ3,kϑ4,kϑ5)

(kϑ
′
1,kϑ

′
2,kϑ3,kϑ

′
4,kϑ

′
5)

if k > 0{
(kϑ5,kϑ4,kϑ3,kϑ2,kϑ1)

(kϑ
′
5,kϑ

′
4,kϑ3,kϑ

′
2,kϑ

′
1)

if k < 0.

3. Problem Formulation and Solution Concepts

The general mathematical model of LDFNLFPP can be written as follows:

Max Z(x̃L) = f (x,ÃL)

g(x,B̃L)
,

subject to hj1(x, C̃L) ≤ D̃L
j1

, j1 = 1, 2, . . . , m1,

hj2(x, ẼL) ≥ j̃L
j2

, j2 = m1 + 1, . . . , m2,
hj3(x, ĨL) = L̃L

j3
, j3 = m2 + 1, . . . , m,

x ≥ 0,
g(x, B̃L) 6= 0,

(8)

where x is n-dimensional decision variable vector x = (x1, x2, . . . , xn), f (x, ÃL) and
g(x, B̃L) 6= 0, hj1(x, C̃L), hj2(x, ẼL) and hj3(x, ĨL), respectively, are supposed to be real val-
ued continuous nonlinear functions with LDFNs. The parameters ÃL, B̃L, C̃L, D̃L, ẼL, j̃L, ĨL

and L̃L are considered TLDFNs.
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Similarly,

Max Z′(x̃′L) = f ′(x′ ,Ã′L)
g′(x′ ,B̃′L)

,

subject to h′j1(x′, C̃′L) ≤ D̃′L
j1

, j1 = 1, 2, . . . , m1,

h′j2(x′, Ẽ′L) ≥ j̃′L
j2

, j2 = m1 + 1, . . . , m2,
h′j3(x′, Ĩ′L) = L̃′L

j3
, j3 = m2 + 1, . . . , m,

x′ ≥ 0,
g(x′, B̃′L) 6= 0,

(9)

where x′ is n-dimensional decision variable vector x′ = (x′1, x′2, . . . , x′n), f ′(x, Ã′L) and
g′(x, B̃′L) 6= 0, h′j1(x, C̃′L), h′j2(x, Ẽ′L) and h′j3(x, Ĩ′L), respectively, are supposed to be real val-

ued continuous nonlinear functions with LDFNs. The parameters Ã′L, B̃′L, C̃′L, D̃′L, Ẽ′L, j̃′
L
, Ĩ′L

and L̃′L are considered TLDFNs.
In this section, the methodology for the solution of an interactive LDFNLFPP is expanded

where all coefficients are TLDFNs. This problem varies from the crisp problem via parametric
values. The parameters are known precisely in crisp or non-fuzzy models. Consequently, for
a precise degree of α, as in Definition 4, which is described by the DM, problems (8) and
(9) can be redeveloped as the following linear Diophantine non-fuzzy α-nonlinear fractional
programming problem (α-LDNLFPP) with linear Diophantine non-fuzzy numbers (α-LDFNs):

Max θ(x) = F(x,A)
G(x,B) ,

subject to Hj1(x, C) ≤ Dj1
, j1 = 1, 2, . . . , m1,

Hj2(x, E) ≥ Jj2 , j2 = m1 + 1, . . . , m2,
Hj3(x, I) = Lj3

, j3 = m2 + 1, . . . , m,
x ≥ 0,
G(x, b) 6= 0, ℵ J̃L(J) ≥ αJ ,

(10)

where J is any coefficient and the parameters A, B, C, D, E, J, I and L, respectively, are
assumed to be non-fuzzy numbers defined as (θ1, θ2, θ3, θ4, θ5).

Max θ′(x′) = F′(x′ ,A′)
G′(x′ ,B′) ,

subject to H′j1(x′, C′) ≤ D′j1 , j1 = 1, 2, . . . , m1,
H′j2(x′, E′) ≥ D′j2 , j2 = m1 + 1, . . . , m2,
H′j3(x′, I′) = D′j3 , j3 = m2 + 1, . . . , m,
x′ ≥ 0,
g(x′, b′) 6= 0, α J̃′L(J) ≥ αJ ,

(11)

where J′ is any coefficient and the parameters A′, B′, C′, D′, E′, J′, I′ and L′, respectively, are
assumed to be non-fuzzy numbers defined as (θ′1, θ′2, θ3, θ′4, θ′5).

4. Solution Procedure for an Interactive LDFNLFPP

By using the division in Definition (12), problems (10) and (11) reduce to an equiva-
lent linear Diophantine multi-objective nonlinear fractional programming problem (LD-
MONLFPP) as follows:
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Max θ1(x) = F(x,θ1)
G(x,δ5)

,

Max θ2(x) = F(x,θ2)
G(x,δ4)

,

Max θ3(x) = F(x,θ3)
G(x,δ3)

,

Max θ4(x) = F(x,θ4)
G(x,δ2)

,

Max θ5(x) = F(x,θ5)
G(x,δ1)

subject to Hj1 (x, C) ≤ Dj1
, j1 = 1, 2, . . . , m1,

Hj2 (x, E) ≥ Jj2 , j2 = m1 + 1, . . . , m2,
Hj3 (x, I) = Lj3

, j3 = m2 + 1, . . . , m,
x ≥ 0,

(12)

and

Max θ′1(x′) =
F′(x′ ,θ′1)
G′(x′ ,δ′5)

,

Max θ′2(x′) =
F′(x′ ,θ′2)
G′(x′ ,δ′4)

,

Max θ3(x) = F(x,θ3)
G(x,δ3)

,

Max θ′4(x′) =
F′(x′ ,θ′4)
G′(x′ ,δ′2)

,

Max θ′5(x′) =
F′(x′ ,θ′5)
G′(x′ ,δ′1)

,

subject to H′j1 (x′, C′) ≤ D′j1 , j1 = 1, 2, . . . , m1,
H′j2 (x′, E′) ≥ D′j2 , j2 = m1 + 1, . . . , m2,
H′j3 (x′, I′) = D′j3 , j3 = m2 + 1, . . . , m,
x′ ≥ 0,

(13)

Let us consider
{
(θ1(x),θ2(x),θ3(x),θ4(x),θ5(x))
(θ′1(x),θ′2(x),θ3(x),θ′4(x),θ′5(x)) ≥ 0 as feasible regions of problems (12) and

(13). Hence, using Charnes and Cooper’s transformation, the above model LDMONLFPP
can be transformed into a linear Diophantine multi-objective nonlinear programming
problem (LDMONLPP) by taking y = tx, t > 0, as follows:

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),
s.t G(y/t, δ5) ≤ 1,

G(y/t, δ4) ≤ 1,
G(y/t, δ3) ≤ 1,
G(y/t, δ2) ≤ 1,
G(y/t, δ1) ≤ 1,
Hj1 (y/t, c1) ≤ (d1)j1

, j1 = 1, 2, . . . , m1,
Hj1 (y/t, c2) ≤ (d2)j1

, j1 = 1, 2, . . . , m1,
Hj1 (y/t, c3) ≤ (d3)j1

, j1 = 1, 2, . . . , m1,
Hj1 (y/t, c4) ≤ (d4)j1

, j1 = 1, 2, . . . , m1,
Hj1 (y/t, c5) ≤ (d5)j1

, j1 = 1, 2, . . . , m1,
Hj2 (y/t, e1) ≥ (J1)j2 , j2 = m1 + 1, . . . , m2,
Hj2 (y/t, e2) ≥ (J2)j2 , j2 = m1 + 1, . . . , m2,
Hj2 (y/t, e3) ≥ (J3)j2 , j2 = m1 + 1, . . . , m2,
Hj2 (y/t, e4) ≥ (J4)j2 , j2 = m1 + 1, . . . , m2,
Hj2 (y/t, e5) ≥ (J5)j2 , j2 = m1 + 1, . . . , m2,
Hj3 (y/t, i1) = (L1)j3

, j3 = m2 + 1, . . . , m,
Hj3 (y/t, i2) = (L2)j3

, j3 = m2 + 1, . . . , m,
Hj3 (y/t, i3) = (L3)j3

, j3 = m2 + 1, . . . , m,
Hj3 (y/t, i4) = (L4)j3

, j3 = m2 + 1, . . . , m,
Hj3 (y/t, i5) = (L5)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0.

(14)
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Similarly,

Max θ′1(y
′/t′) = F′(y′/t′, θ′1),

Max θ′2(y
′/t′) = F′(y′/t′, θ′2),

Max θ3(y/t) = F(y/t, θ3),
Max θ′4(y

′/t′) = F′(y′/t′, θ′4),
Max θ′5(y

′/t′) = F′(y′/t′, θ′5),
s.t G′(y′/t′, δ′5) ≤ 1,

G′(y′/t′, δ′4) ≤ 1,
G(y/t, δ3) ≤ 1,
G′(y′/t′, δ′2) ≤ 1,
G′(y′/t′, δ′1) ≤ 1,
H′j1(y

′/t′, c′1) ≤ (d′1)j1
, j1 = 1, 2, . . . , m1,

H′j1(y
′/t′, c′2) ≤ (d′2)j1

, j1 = 1, 2, . . . , m1,
Hj1(y/t, c3) ≤ (d3)j1

, j1 = 1, 2, . . . , m1,
H′j1(y

′/t′, c′4) ≤ (d′4)j1
, j1 = 1, 2, . . . , m1,

H′j1(y
′/t′, c′5) ≤ (d′5)j1

, j1 = 1, 2, . . . , m1,
H′j2(y

′/t′, e′1) ≥ (J′1)j2 , j2 = m1 + 1, . . . , m2,
H′j2(y

′/t′, e′2) ≥ (J′2)j2 , j2 = m1 + 1, . . . , m2,
Hj2(y/t, e3) ≥ (J3)j2 , j2 = m1 + 1, . . . , m2,
H′j2(y

′/t′, e′4) ≥ (J′4)j2 , j2 = m1 + 1, . . . , m2,
H′j2(y

′/t′, e′5) ≥ (J′5)j2 , j2 = m1 + 1, . . . , m2,
H′j3(y

′/t′, i′1) = (L′1)j3
, j3 = m2 + 1, . . . , m,

H′j3(y
′/t′, i′2) = (L′2)j3

, j3 = m2 + 1, . . . , m,
Hj3(y/t, i3) = (L3)j3

, j3 = m2 + 1, . . . , m,
H′j3(y

′/t′, i′4) = (L′4)j3
, j3 = m2 + 1, . . . , m,

H′j3(y
′/t′, i′5) = (L′5)j3

, j3 = m2 + 1, . . . , m,
y′ ≥ 0, t′ > 0.

(15)

Now, to solve problems (14) and (15), the following algorithm can be developed.
Step 1: Use the method proposed by Amer [17]; we expand this method to decom-

pose problems (14) and (15) into nine sub-problems, MONLPPs, according to TLDFNs
as follows:

(P1) :

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),

subject to

G(y/t, δ5) ≤ 1,
Hj1(y/t, c1) ≤ (d1)j1

, j1 = 1, 2, . . . , m1,
Hj2(y/t, e1) ≥ (J1)j2 , j2 = m1 + 1, . . . , m2,
Hj3(y/t, i1) = (L1)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0,
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(P2) :

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),

subject to

G(y/t, δ4) ≤ 1,
Hj1(y/t, c2) ≤ (d2)j1

, j1 = 1, 2, . . . , m1,
Hj2(y/t, e2) ≥ (J2)j2 , j2 = m1 + 1, . . . , m2,
Hj3(y/t, i2) = (L2)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0,

(P3) :

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),

subject to

G(y/t, δ3) ≤ 1,
Hj1(y/t, c3) ≤ (d3)j1

, j1 = 1, 2, . . . , m1,
Hj2(y/t, e3) ≥ (J3)j2 , j2 = m1 + 1, . . . , m2,
Hj3(y/t, i3) = (L3)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0,

(P4) :

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),

subject to

G(y/t, δ2) ≤ 1,
Hj1(y/t, c4) ≤ (d4)j1

, j1 = 1, 2, . . . , m1,
Hj2(y/t, e4) ≥ (J4)j2 , j2 = m1 + 1, . . . , m2,
Hj3(y/t, i4) = (L4)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0,

(P5) :

Max θ1(y/t) = F(y/t, θ1),
Max θ2(y/t) = F(y/t, θ2),
Max θ3(y/t) = F(y/t, θ3),
Max θ4(y/t) = F(y/t, θ4),
Max θ5(y/t) = F(y/t, θ5),

subject to

G(y/t, δ1) ≤ 1,
Hj1(y/t, c5) ≤ (d5)j1

, j1 = 1, 2, . . . , m1,
Hj2(y/t, e5) ≥ (J5)j2 , j2 = m1 + 1, . . . , m2,
Hj3(y/t, i5) = (L5)j3

, j3 = m2 + 1, . . . , m,
y ≥ 0, t > 0,
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(P6) :

Max θ′1(y
′/t′) = F′(y′/t′, θ′1),

Max θ′2(y
′/t′) = F′(y′/t′, θ′2),

Max θ3(y/t) = F(y/t, θ3),
Max θ′4(y

′/t′) = F′(y′/t′, θ′4),
Max θ′5(y

′/t′) = F′(y′/t′, θ′5),

subject to

G′(y′/t′, δ′5) ≤ 1,
H′j1(y

′/t′, c′1) ≤ (d′1)j1
, j1 = 1, 2, . . . , m1,

H′j2(y
′/t′, e′1) ≥ (J′1)j2 , j2 = m1 + 1, . . . , m2,

H′j3(y
′/t′, i′1) = (L′1)j3

, j3 = m2 + 1, . . . , m,
y′ ≥ 0, t′ > 0,

(P7) :

Max θ′1(y
′/t′) = F′(y′/t′, θ′1),

Max θ′2(y
′/t′) = F′(y′/t′, θ′2),

Max θ3(y/t) = F(y/t, θ3),
Max θ′4(y

′/t′) = F′(y′/t′, θ′4),
Max θ′5(y

′/t′) = F′(y′/t′, θ′5),

subject to

G′(y′/t′, δ′4) ≤ 1,
H′j1(y

′/t′, c′2) ≤ (d′2)j1
, j1 = 1, 2, . . . , m1,

H′j2(y
′/t′, e′2) ≥ (J′2)j2 , j2 = m1 + 1, . . . , m2,

H′j3(y
′/t′, i′2) = (L′2)j3

, j3 = m2 + 1, . . . , m,
y′ ≥ 0, t′ > 0,

(P8) :

Max θ′1(y
′/t′) = F′(y′/t′, θ′1),

Max θ′2(y
′/t′) = F′(y′/t′, θ′2),

Max θ3(y/t) = F(y/t, θ3),
Max θ′4(y

′/t′) = F′(y′/t′, θ′4),
Max θ′5(y

′/t′) = F′(y′/t′, θ′5),

subject to

G′(y′/t′, δ′2) ≤ 1,
H′j1(y

′/t′, c′4) ≤ (d′4)j1
, j1 = 1, 2, . . . , m1,

H′j2(y
′/t′, e′4) ≥ (J′4)j2 , j2 = m1 + 1, . . . , m2,

H′j3(y
′/t′, i′4) = (L′4)j3

, j3 = m2 + 1, . . . , m,
y′ ≥ 0, t′ > 0,

and
(P9) :

Max θ′1(y
′/t′) = F′(y′/t′, θ′1),

Max θ′2(y
′/t′) = F′(y′/t′, θ′2),

Max θ3(y/t) = F(y/t, θ3),
Max θ′4(y

′/t′) = F′(y′/t′, θ′4),
Max θ′5(y

′/t′) = F′(y′/t′, θ′5),

subject to

G′(y′/t′, δ′1) ≤ 1,
H′j1(y

′/t′, c′5) ≤ (d′5)j1
, j1 = 1, 2, . . . , m1,

H′j2(y
′/t′, e′5) ≥ (J′5)j2 , j2 = m1 + 1, . . . , m2,

H′j3(y
′/t′, i′5) = (L′5)j3

, j3 = m2 + 1, . . . , m,
y′ ≥ 0, t′ > 0,

Step 2: Solve models Pi, i = 1, 2, 3, 4, 5, 6, 7, 8, 9 as individual objective functions under
the given constraints.
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Step 3: Find the optimal points of all the sub-problems and let the total solution set be
X = ∪9

i=1Xi.
Step 4: Find the value of each objective function θi(y/t), i = 1, . . . , 5 and θ′i(y/t),

i = 1, . . . , 4 at each point obtained in step 3.
Step 5: Find the upper and lower bounds U, U′ and L, L′, respectively, for objec-

tive functions

L = min {θi(y/t) : x ∈ X, i = 1, . . . , 5} and U = max {θi(y/t) : x ∈ X, i = 1, . . . , 5}
L′ = min {θ′i(y

′/t′) : x′ ∈ X, i = 1, . . . , 4} and U′ = max {θ′i(y
′/t′) : x′ ∈ X, i = 1, . . . , 4}

Step 6: Then, IMONLFPPs (12) and (13) are equivalent to the following fuzzy model
using Zimmermann’s technique.

Find x

such that

θ(x) ≥ U
Hj1(x, C) ≤ Dj1 , j1 = 1, . . . , m1,
Hj2(x, E) ≥ Dj2 , j2 = m1 + 1, . . . , m2,
Hj3(x, I) ≈ Dj3 , j3 = m2 + 1, . . . , m,

x ≥ 0,

(16)

and find x′

such that

θ′(x′) ≥ U′

H′j1(x′, C′) ≤ D′j1 , j1 = 1, . . . , m1,
H′j2(x′, E′) ≥ D′j2 , j2 = m1 + 1, . . . , m2,
H′j3(x′, I′) ≈ D′j3 , j3 = m2 + 1, . . . , m,

x′ ≥ 0,

(17)

where ≤, ≥ and ≈ are fuzzy inequality and fuzzy equality, respectively. Fuzzy in this context
means that the DM’s specified rigorous equality and inequality are subject to some tolerance.

Since the objective is to maximize it, the DM becomes more satisfied as the objective
value approaches the upper bound. Let ℵU and αU stand for the degree of attainability of
the upper bound U of the objective function θ(x) and L stand for the least sustainable level
of the objective value by the DM.

Step 7: Take the membership functions as follows:

ℵU(θ(x)) =


0 if θ(x) < L,
(θ(x))t−Lt

Ut−Lt if L ≤ θ(x) ≤ U,
1 if θ(x) > U.

(18)

Let ℵD,ℵJ and ℵL, respectively, represent the degree of achievability of the available
constraints; they are defined by the following.

For (J1 = 1, 2, . . . , m1),

ℵD(Hj1(x, C)) =


0 if Hj1(x, C) < dj1 ,
(dr

j1
)t− (Hj1

(x,C))t

(dr
j1
)t−(dj1

)t if dj1 ≤ Hj1(x, C) ≤ dr
j1

,

0 if Hj1(x, C) > dr
j1

.

(19)

For (J2 = m1 + 1, . . . , m2),

ℵJ(Hj2(x, E)) =


0 if Hj2(x, E) < jj2 ,
(Hj2 (x,E))t−(jlj2

)t

(jj2 )
t−(jL

j2
)t if jL

j2
≤ Hj2(x, E) ≤ jj2 ,

1 if Hj2(x, E) > jj2 .

(20)
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For (J3 = m2 + 1, . . . , m),

ℵJ(Hj3(x, I)) =



0 if Hj3(x, I) < Ij3 ,
(Hj3 (x,I))t−(ll

j3
)t

(lj3 )
t−(ll

j3
)t if ll

j3
≤ Hj3(x, I) ≤ lj3 ,

(lr
j3
)t−(Hj3 (x,I))t

(lr
j3
)t−(lj3 )

t if lj3 ≤ Hj3(x, I) ≤ lr
j3

,

0 if Hj3(x, I) > lj3

(21)

where t > 0 is specified by the DM.
Similarly, for the membership fuction α,

αU(θ
′(x′)) =


0 if θ′(x) < L′,
(θ′(x′))t−L′t

U′t−L′t if L′ ≤ θ′(x) ≤ U′,
1 if θ′(x) > U′.

(22)

Let αD, αJ and αL, respectively, represent the degree of achievability of the available
constraints; they are defined by the following.

For (J1 = 1, 2, . . . , m1),

αD(H′j1(x′, C′)) =


0 if H′j1(x′, C′) < d′j1 ,
(d′rj1

)t− (H′j1
(x′ ,C′))t

(d′rj1
)t−(d′j1 )

t if d′j1 ≤ H′j1(x′, C′) ≤ d′rj1 ,

0 if H′j1(x′, C′) > d′rj1 .

(23)

For (J2 = m1 + 1, . . . , m2),

αJ(H′j2(x′, E′)) =


0 if H′j2(x′, E′) < j′j2 ,
(Hj2 (x′ ,E′))t−(j′rj2

)t

(j′j2
)t−(j′Lj2

)t if j′L
′

j2
≤ H′j2(x′, E′) ≤ j′j2 ,

1 if H′j2(x′, E′) > j′j2 .

(24)

For (J3 = m2 + 1, . . . , m),

αJ(H′j3(x′, I′)) =



0 if H′j3(x′, I′) < I′j3 ,
(H′j3

(x′ ,I′))t−(l′rj3 )
t

(l′j3
)t−(l′lj3 )

t if l′lj3 ≤ H′j3(x′, I′) ≤ l′j3 ,

(l
′r
j3
)t−(H′j3

(x′ ,I′))t

(l′rj3
)t−(l′j3 )

t if l′j3 ≤ H′j3(x′, I′) ≤ l′rj3 ,

0 if H′j3(x′, I′) > l′j3 .

(25)

The LDFNLFPP can be summarized as the question of how to formulate a sound strategy
that will satisfy the DM to the greatest extent given a set of fuzzy objectives and fuzzy
constraints. Between fuzzy objectives and fuzzy constraints, there should be the highest
possible degree of balance.

Let

λ =min


(ℵU(θ(x),ℵD(Hj1(x, C)), j1 = 1, 2, . . . , m1,
ℵJ(Hj2(x, E)), j2 = m1 + 1, 2, . . . , m2,
ℵL(Hj3(x, I)), j3 = m2 + 1, 2, . . . , m,

and

λ′ =min


(αU(θ(x), αD′(H′j1(x′, C′)), j1 = 1, 2, . . . , m1,
αJ′(H′j2(x′, E′)), j2 = m1 + 1, 2, . . . , m2,
αL′(H′j3(x′, I′)), j3 = m2 + 1, 2, . . . , m,

where λ and λ′ are the overall satisfaction levels for the DM.



Mathematics 2023, 11, 3383 12 of 21

Step 8: Ask the DM to select t; then, transform models (16) and (17) into the crisp
model, which can easily be solved via suitable crisp NLPP methods as follows:

Max λ

subject to

ℵU(θ(x) ≥ λ
ℵD(Hj1(x, C) ≥ λ, j1 = 1, . . . , m1,
ℵJ(Hj2(x, E) ≥ λ, j2 = m1 + 1, . . . , m2,
ℵL(Hj3(x, I) ≥ λ, j3 = m2 + 1, . . . , m,

x ≥ 0.

(26)

or

Max λ

subject to

(θ(x))t − Lt ≥ λ
(
Ut − Lt)

(dr
j1
)t − (Hj1(x, C))t ≥ λ((dr

j1
)t − (dj1)

t), j1 = 1, . . . , m1,
(Hj2(x, E))t − (jl

j2
)t ≥ λ((jj2)

t − (jL
j2
)t), j2 = m1 + 1, . . . , m2,

(Hj3(x, I))t − (ll
j3
)t ≥ λ((lj3)

t − (ll
j3
)t), j3 = m2 + 1, . . . , m,

(lr
j3
)t − (Hj3(x, I))t ≥ λ((lr

j3
)t − (lj3)

t), j3 = m2 + 1, . . . , m,
x ≥ 0.

(27)

Similarly,

Max λ′

subject to

αU′(θ
′(x′) ≥ λ′

αD′(H′j1(x′, C′) ≥ λ′, j1 = 1, . . . , m1,
αJ′(H′j2(x′, E′) ≥ λ′, j2 = m1 + 1, . . . , m2,
αL′(H′j3(x′, I′) ≥ λ′, j3 = m2 + 1, . . . , m,

x′ ≥ 0.

(28)

or

Max λ′

subject to

(θ′(x′))t − L′t ≥ λ′
(
U′t − L′t

)
(d′rj1)

t − (H′j1(x′, C′))t ≥ λ′((d′rj1)
t − (d′j1)

t), j1 = 1, . . . , m1,
(H′j2(x′, E′))t − (j′lj2)

t ≥ λ((j′j2)
t − (j′Lj2 )

t), j2 = m1 + 1, . . . , m2,
(H′j3(x′, I′))t − (l′lj3)

t ≥ λ((l′j3)
t − (l′lj3)

t), j3 = m2 + 1, . . . , m,
(l′rj3)

t − (Hj3(x′, I′))t ≥ λ((l′rj3)
t − (l′j3)

t), j3 = m2 + 1, . . . , m,
x′ ≥ 0.

(29)

5. Numerical Example

Let us consider the following LDFNLFPP :

Max θ(x̃L) =
7̃x2

1+6̃x2
2+8̃

7̃x2
1+8̃x2

2+5̃

subject to
9̃x1 + 3̃x2 ≤ 2̃8
4̃x1 + 3̃x2 ≤ 1̃9

x1, x2 ≥ 0.

(30)
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where

7̃ =

{
(5, 6, 7, 8, 9)
(2, 4, 7, 9, 10)

, 6̃ =

{
(4, 6, 8, 9, 10)
(3, 4, 8, 11, 12)

, 8̃ =

{
(8, 9, 10, 11, 12)
(5, 8, 10, 13, 15)

,

5̃ =

{
(2, 3, 4, 5, 6)
(1, 2, 4, 6, 8)

, 9̃ =

{
(1, 2, 3, 4, 5)
(0, 2, 3, 7, 8)

, 3̃ =

{
(2, 4, 6, 8, 9)
(1, 3, 6, 9, 10)

,

4̃ =

{
(6, 7, 8, 9, 10)
(5, 6, 8, 11, 13)

, 2̃6 =

{
(18, 19, 22, 26, 28)
(17, 18, 22, 27, 30)

, 1̃9 =

{
(19, 20, 23, 27, 29)
(17, 18, 23, 30, 32)

.

Taking

Max θ(x) =
7̃x2

1+6̃x2
2+8̃

7̃x2
1+8̃x2

2+5̃

subject to
9̃x1 + 3̃x2 ≤ 2̃8
4̃x1 + 3̃x2 ≤ 1̃9

x1, x2 ≥ 0.

Suppose that the DM determines α = 0.5 ∈ [0, 1]. The membership function (6) is
used to convert an LDFN of the above problem (30) into its linear Diophantine non-fuzzy
numbers (α-LDFNs) referring to problem (10).

Let the LDFNs and α-LDFNs be given by the values listed in the Table 1 below.

Table 1. LDFNs and their corresponding α-LDFNs.

LDFNs α-LDFNs

7̃ = (5, 6, 7, 8, 9) 7 = (6, 6.5, 7, 7.5, 8)
6̃ = (4, 6, 8, 9, 10) 6 = (6, 7, 8, 8.5, 9)
8̃ = (8, 9, 10, 11, 12) 8 = (9, 9.5, 10, 10.5, 11)
5̃ = (2, 3, 4, 5, 6) 5 = (3, 3.5, 4, 4.5, 5)
9̃ = (1, 2, 3, 4, 5) 9 = (2, 2.5, 3, 3.5, 4)
3̃ = (2, 4, 6, 8, 9) 3 = (4, 5, 6, 7, 7.5)
4̃ = (6, 7, 8, 9, 10) 4 = (7, 7.5, 8, 8.5, 9)
2̃6 = (18, 19, 22, 26, 28) 26 = (20, 20.5, 22, 24, 25)
1̃9 = (19, 20, 23, 27, 29) 19 = (21, 21.5, 23, 25, 26)

Problem (30) is equivalent to the following LDMONLFPP:

Max θ1(x) =
6x2

1+6x2
2+9

8x2
1+11x2

2+5
,

Max θ2(x) =
6.5x2

1+7x2
2+9.5

7.5x2
1+10.5x2

2+4.5
,

Max θ3(x) =
7x2

1+8x2
2+10

7x2
1+10x2

2+4
,

Max θ4(x) =
7.5x2

1+8.5x2
2+10.5

6.5x2
1+9.5x2

2+3.5
,

Max θ5(x) =
8x2

1+9x2
2+11

6x2
1+9x2

2+3
,

subject to 2x1 + 4x2 ≤ 20,
2.5x1 + 5x2 ≤ 20.5,
3x1 + 6x2 ≤ 22,
3.5x1 + 7x2 ≤ 24,
4x1 + 7.5x2 ≤ 25,
7x1 + 4x2 ≤ 21,
7.5x1 + 5x2 ≤ 21.5,
8x1 + 6x2 ≤ 23,
8.5x1 + 7x2 ≤ 25,
9x1 + 7.5x2 ≤ 26,
x1, x2 ≥ 0.

(31)
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Using the transformation of Charnes and Cooper, problem (31) is equivalent to the
following LDMONLPP:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 8y2

1 + 11y2
2 + 5t2 ≤ 1,

7.5y2
1 + 10.5y2

2 + 4.5t2 ≤ 1,
7y2

1 + 10y2
2 + 4t2 ≤ 1,

6.5y2
1 + 9.5y2

2 + 3.5t2 ≤ 1,
6y2

1 + 9y2
2 + 3t2 ≤ 1,

2y1 + 4y2 − 20t ≤ 0,
2.5y1 + 5y2 − 20.5t ≤ 0,
3y1 + 6y2 − 22t ≤ 0,
3.5y1 + 7x2 − 24t ≤ 0,
4y1 + 7.5y2 − 25t ≤ 0,
7y1 + 4y2 − 21t ≤ 0
7.5y1 + 5y2 − 21.5t ≤ 0
8y1 + 6y2 − 23t ≤ 0
8.5y1 + 7y2 − 25t ≤ 0
9y1 + 7.5y2 − 26t ≤ 0
y1, y2 ≥ 0, t > 0.

(32)

The above problem (32) can be transformed into the following five sub-problems of
MONLPPs:

P1:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 8y2

1 + 11y2
2 + 5t2 ≤ 1,

2y1 + 4y2 − 20t ≤ 0,
7y1 + 4y2 − 21t ≤ 0
y1, y2 ≥ 0, t > 0.

P2:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 7.5y2

1 + 10.5y2
2 + 4.5t2 ≤ 1,

2.5y1 + 5y2 − 20.5t ≤ 0,
7.5y1 + 5y2 − 21.5t ≤ 0,
y1, y2 ≥ 0, t > 0.
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P3:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 7y2

1 + 10y2
2 + 4t2 ≤ 1,

3y1 + 6y2 − 22t ≤ 0,
8y1 + 6y2 − 23t ≤ 0
y1, y2 ≥ 0, t > 0.

P4:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 6.5y2

1 + 9.5y2
2 + 3.5t2 ≤ 1,

3.5y1 + 7x2 − 24t ≤ 0,
8.5y1 + 7y2 − 25t ≤ 0
y1, y2 ≥ 0, t > 0.

P5:

Max θ1(y/t) = 6y2
1 + 6y2

2 + 9t2,
Max θ2(y/t) = 6.5y2

1 + 7y2
2 + 9.5t2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ4(y/t) = 7.5y2

1 + 8.5y2
2 + 10.5t2,

Max θ5(y/t) = 8y2
1 + 9y2

2 + 11t2,
subject to 6y2

1 + 9y2
2 + 3t2 ≤ 1,

4y1 + 7.5y2 − 25t ≤ 0
9y1 + 7.5y2 − 26t ≤ 0
y1, y2 ≥ 0, t > 0.

Solve models Pi, i = 1, 2, 3, 4, 5 as single-objective NLPPs. The lower and upper bounds
L and U, respectively, for the objective functions are L = 1.800000 and U = 3.666667.

The LDMONLFPP (31) is equivalent to the following fuzzy model:

Find x

subject to

8x2
1+9x2

2+11
6x2

1+9x2
2+3
≥ 3.666667

9x1 + 3x2 ≤ 26
4x1 + 3x2 ≤ 19

x1, x2 ≥ 0.

(33)

Further, using the membership functions in (18)–(21), model (33) is equivalent to the
following crisp model:

Max λ

subject to
(

8x2
1+9x2

2+11
6x2

1+9x2
2+3

)t − (1.800000)t ≥ (3.666667)t − (1.800000)t

9x1 + 3x2 ≤ 26
4x1 + 3x2 ≤ 19

x1, x2 ≥ 0.
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Using LINGO, taking t = 2, the solution is (x1, x2) = (1.234568, 1.234568), θ(x) =
(0.803613, 0.941796, 1.098683, 1.251017, 1.427196) with satisfaction level λ = 1.

Now, suppose that the DM determines α = 0.5 ∈ [0, 1]. The membership function (7)
is used to convert an LDFN of the above problem (30) into its linear Diophantine non-fuzzy
numbers (α-LDFNs) referring to problem (11).

Now,

Max θ′(x) =
7̃x′21 +6̃x′22 +8̃
7̃x′21 +8̃x′22 +5̃

subject to
9̃x′1 + 3̃x′2 ≤ 2̃8
4̃x′1 + 3̃x′2 ≤ 1̃9

x′1, x′2 ≥ 0.

Let the LDFNs and α-LDFNs be given by the values listed in the Table 2 below.

Table 2. LDFNs and their corresponding α-LDFNs.

LDFNs α-LDFNs

7̃ = (2, 4, 7, 9, 10) 7 = (4.5, 5.5, 7, 8, 8.5)
6̃ = (3, 4, 8, 11, 12) 6 = (5.5, 6, 8, 9.5, 19)
8̃ = (5, 8, 10, 13, 15) 8 = (7.5, 9, 10, 11.5, 12.5)
5̃ = (1, 2, 4, 6, 8) 5 = (2.5, 3, 4, 5, 6)
9̃ = (0, 2, 3, 7, 8) 9 = (1.5, 2.5, 3, 5, 5.5)
3̃ = (1, 3, 6, 9, 10) 3 = (3.5, 4.5, 6, 7.5, 8)
4̃ = (5, 6, 8, 11, 13) 4 = (6.5, 7, 8, 9.5, 10.5)
2̃6 = (17, 18, 22, 27, 30) 26 = (19.5, 20, 22, 24.5, 26)
1̃9 = (17, 18, 23, 30, 32) 19 = (20, 20.5, 23, 26.5, 27.5)

Problem (30) is equivalent to the following LDMONLFPP:

Max θ′1(x) =
4.5x′21 +5.5x′22 +7.5
8.5x′21 +12.5x′22 +6

,

Max θ′2(x) =
5.5x′21 +6x′22 +9

8x′21 +11.5x′22 +5

Max θ3(x) =
7x2

1+8x2
2+10

7x2
1+10x2

2+4
,

Max θ′4(x) =
8x′21 +9.5x′22 +11.5

5.5x′21 +9x′22 +3
,

Max θ′5(x) =
8.5x′21 +10x′22 +12.5

4.5x′21 +7.5x′22 +2.5
,

subject to 1.5x′1 + 3.5x′2 ≤ 19.5,
2.5x′1 + 4.5x′2 ≤ 20,
3x1 + 6x2 ≤ 22,
5x′1 + 7.5x′2 ≤ 24.5,
5.5x′1 + 8x′2 ≤ 26,
6.5x′1 + 3.5x′2 ≤ 20,
7x′1 + 4.5x′2 ≤ 20.5,
8x1 + 6x2 ≤ 23,
9.5x′1 + 7.5x′2 ≤ 26.5,
10.5x′1 + 8x′2 ≤ 27.5,
x′1, x′2 ≥ 0.

(34)
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Using the transformation of Charnes and Cooper, problem (34) is equivalent to the
following LDMONLPP:

Max θ′1(y
′/t′) = 4.5y′21 + 5.5y′22 + 7.5t′2

Max θ′2(y
′/t′) = 5.5y′21 + 6y′22 + 9t′2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ′4(y

′/t′) = 8y′21 + 9.5y′22 + 11.5t′2,
Max θ′5(y

′/t′) = 8.5y′21 + 10y′22 + 12.5t′2,
subject to 8.5y′21 + 12.5y′22 + 6t′2 ≤ 1,

8y′21 + 11.5y′22 + 5t′2 ≤ 1,
7y2

1 + 10y2
2 + 4t2 ≤ 1,

5.5y′21 + 9y′22 + 3t′2 ≤ 1
4.5y′21 + 7.5y

′2
2 + 2.5t′2 ≤ 1

1.5y′1 + 3.5y′2 − 19.5t′ ≤ 0,
2.5y′1 + 4.5′y2 − 20t′ ≤ 0,
3y1 + 6y2 − 22t ≤ 0
5y′1 + 7.5y′2 − 24.5t′ ≤ 0
5.5y′1 + 8y′2 − 26t′ ≤ 0
6.5y′1 + 3.5y′2 − 20t′ ≤ 0
7y′1 + 4.5y′2 − 20.5t′ ≤ 0
8y1 + 6y2 − 23t ≤ 0
9.5y′1 + 7.5y′2 − 25t′ ≤ 0
10.5y′1 + 8y′2 − 27.5t′ ≤ 0
y′1, y′2 ≥ 0, t′ > 0.

(35)

The above problem (35) can be transformed into the following four sub-problems of
MONLPPs:

P′1:

Max θ′1(y
′/t′) = 4.5y′21 + 5.5y′22 + 7.5t′2

Max θ′2(y
′/t′) = 5.5y′21 + 6y′22 + 9t′2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ′4(y

′/t′) = 8y′21 + 9.5y′22 + 11.5t′2,
Max θ′5(y

′/t′) = 8.5y′21 + 10y′22 + 12.5t′2,
subject to 8.5y′21 + 12.5y′22 + 6t′2 ≤ 1,

1.5y′1 + 3.5y′2 − 19.5t′ ≤ 0,
6.5y′1 + 3.5y′2 − 20t′ ≤ 0
y′1, y′2 ≥ 0, t′ > 0.

P′2:

Max θ′1(y
′/t′) = 4.5y′21 + 5.5y′22 + 7.5t′2

Max θ′2(y
′/t′) = 5.5y′21 + 6y′22 + 9t′2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ′4(y

′/t′) = 8y′21 + 9.5y′22 + 11.5t′2,
Max θ′5(y

′/t′) = 8.5y′21 + 10y′22 + 12.5t′2,
subject to 8y′21 + 11.5y′22 + 5t′2 ≤ 1,

2.5y′1 + 4.5′y2 − 20t′ ≤ 0,
7y′1 + 4.5y′2 − 20.5t′ ≤ 0
y′1, y′2 ≥ 0, t′ > 0.
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P′4:
Max θ′1(y

′/t′) = 4.5y′21 + 5.5y′22 + 7.5t′2

Max θ′2(y
′/t′) = 5.5y′21 + 6y′22 + 9t′2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ′4(y

′/t′) = 8y′21 + 9.5y′22 + 11.5t′2,
Max θ′5(y

′/t′) = 8.5y′21 + 10y′22 + 12.5t′2,
subject to 5.5y′21 + 9y′22 + 3t′2 ≤ 1,

5y′1 + 7.5y′2 − 24.5t′ ≤ 0
9.5y′1 + 7.5y′2 − 25t′ ≤ 0,
y′1, y′2 ≥ 0, t′ > 0.

P′5:

Max θ′1(y
′/t′) = 4.5y′21 + 5.5y′22 + 7.5t′2

Max θ′2(y
′/t′) = 5.5y′21 + 6y′22 + 9t′2,

Max θ3(y/t) = 7y2
1 + 8y2

2 + 10t2,
Max θ′4(y

′/t′) = 8y′21 + 9.5y′22 + 11.5t′2,
Max θ′5(y

′/t′) = 8.5y′21 + 10y′22 + 12.5t′2,
subject to 4.5y′21 + 7.5y

′2
2 + 2.5t2 ≤ 1,

5.5y′1 + 8y′2 − 26t′ ≤ 0,
10.5y′1 + 8y′2 − 27.5t′ ≤ 0,
y′1, y′2 ≥ 0, t′ > 0.

Solve models P′i , i′ = 1, 2, 4, 5 as single-objective NLPPs. The lower and upper bounds
L and U, respectively, for the objective functions are L = 1.250000 and U = 5.000000.

The LDMONLFPP (34) is equivalent to the following fuzzy model:

Find x′

subject to

8.5x′21 +10x′22 +12.5
4.5x′21 +7.5x′22 +2.5

≥ 5.000000

9x′1 + 3x′2 ≤ 26
4x′1 + 3x′2 ≤ 19

x′1, x′2 ≥ 0.

(36)

Further, using the membership functions in (21)–(24), model (36) is equivalent to the
following crisp model:

Max λ′

subject to
(

8.5x′21 +10x′22 +12.5
4.5x′21 +7.5x′22 +2.5

)t − (1.250000)t ≥ (5.000000)t − (1.250000)t

9x′1 + 3x′2 ≤ 26
4x′1 + 3x′2 ≤ 19

x′1, x′2 ≥ 0.

Using LINGO, taking t = 2, the solution is (x1, x2) = (1.234568, 1.234568),
θ′(x) = (0.598347, 0.764026, 1.098683, 1.5208096, 1.957533) with satisfaction level λ = 1.

Hence, the optimal solution of the above TFLDFLP problem is{
(θ1, θ2, θ3, θ4, θ5)
(θ′1, θ′2, θ3, θ′4, θ′5)

=

{
(0.803613, 0.941796, 1.098683, 1.251017, 1.427196)
(0.598347, 0.764026, 1.098683, 1.5208096, 1.957533)

.

The flow chart is given in Figure 1.
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Figure 1. Problem-solving flow chart.

6. Conclusions

This study suggests an interactive technique to solve the LDFNLFPP in which the
coefficients of the objective function and the constraints are taken as TLDFNs based on α-cut
analysis defined by the DM. In the suggested methodology, the problem is transformed from
an LDFNLFPP to an IMONLFPP using a fuzzy mathematical programming approach, and
then the solution is transformed into an NLPP. For problems with uncertain and hesitant
decision-making in manufacturing, planning, and scheduling systems, the suggested
methodology will be highly beneficial. The approach can be modified in the future to
address bi-level multi-objective nonlinear fractional programming problems using the goal
linear Diophantine fuzzy method.
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