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Abstract

:

All-to-all broadcasting means to distribute the exclusive message of each node in the network to all other nodes. It can be handled by rings, and a Hamiltonian cycle is a ring that visits each vertex exactly once. Multiple edge-disjoint Hamiltonian cycles, abbreviated as EDHCs, have two application advantages: (1) parallel data broadcast and (2) edge fault-tolerance in network communications. There are three edge-disjoint Hamiltonian cycles on n-dimensional locally twisted cubes and n-dimensional crossed cubes while n ≥ 6, respectively. Locally twisted cubes, crossed cubes, folded locally twisted cubes (denoted as FLTQn), and folded crossed cubes (denoted as FCQn) are among the hypercube-variant network. The topology of hypercube-variant network has more wealth than normal hypercubes in network properties. Then, the following results are presented in this paper: (1) Using the technique of edge exchange, three EDHCs are constructed in FLTQ5 and FCQ5, respectively. (2) According to the recursive structure of FLTQn and FCQn, there are three EDHCs in FLTQn and FCQn while n ≥ 6. (3) Considering that multiple faulty edges will occur randomly, the data broadcast performance of three EDHCs in FLTQn and FCQn is evaluated by simulation when 5 ≤ n ≤ 9.
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1. Introduction


The design of interconnection networks is one of the important issues in parallel computing systems and data centers. An interconnection network is often modeled by a graph, where vertices represent processing units and edges represent communication links. Hypercubes [1,2] have become one of the most popular interconnection networks due to their attractive features, including regularity, vertex symmetric, link symmetric, small diameter, strong connectivity, recursive construction, partition capability, and small link complexity. Locally twisted cubes (denoted as LTQn), crossed cubes (denoted as CQn), folded locally twisted cubes (denoted as FLTQn), and folded crossed cubes (denoted as FCQn) are among the hypercube-variant network. They are similar to hypercubes in that the vertices can be one-to-one labeled with 0–1 binary strings of length n, and their definition is presented in Section 2. The topology of a hypercube-variant network has more wealth than a normal hypercube in network properties, e.g., its diameter is about half that of the same-dimensional hypercube.



Ring structures are essential to high-performance computing architectures and are often used as a baseband for data transmission in interconnect networks and control flow in parallel and distributed environments. Many efficient algorithms with low communication costs have been developed based on the ring structure [3,4]. A Hamiltonian cycle in a graph is a cycle (or ring) that visits each vertex exactly once. Hamiltonian cycles in the graph are said to be edge-disjoint if they do not share any common edges. In addition, k (≥2) edge-disjoint Hamiltonian cycles, abbreviated as EDHCs, also provide the edge-fault tolerant Hamiltonicity for interconnection networks.



All-to-all broadcast means to distribute the exclusive message of each node in the network to all other nodes. This is an important issue for high-performance computing and communication networks, including data center operations. All-to-all broadcasts have been dealt with previously for several network topologies, such as linear arrays, meshes, toruses, hypercube networks, rings [5], and more. The ring is an important network topology because of its simple structure, easy deployment, and strong fault tolerance. Consider all-to-all communication in a network system with n nodes, where each node needs to send a distinct message to all other nodes. Applying the ring structure, once a message starts sending, a node can receive a new message from the previous node at each step, keep a copy of the new message for itself, and send the received message to the next node. Therefore, the process can be accomplished in n − 1 steps. Furthermore, one way to achieve fault-tolerant inter-processor communication is to efficiently utilize disjoint paths between pairs of source and destination nodes. Especially when link fault tolerance is considered, the technique of using edge-disjoint paths is a common strategy. Therefore, if a fault occurs on one edge of a Hamiltonian ring, messages can be transmitted along the other Hamiltonian ring. Finally, construct multiple EDHCs applications with enhanced edge fault-tolerance in data transmission [6,7].



The following describes the previous related work on EDHCs. Rowley and Bose [7] presented that a slightly modified degree 2r de Bruijn networks can be decomposed into r Hamiltonian cycles when r is a power of a prime. Barth and Raspaud [8] provided two EDHCs on the butterfly networks. Lee and Shin [9] achieved reliable all-to-all broadcasting on meshes and hypercubes using EDHCs. Bae and Bose [6] studied EDHCs in k-ary n-cubes and hypercubes. Petrovic and Thomassen [10] characterized the number of EDHCs in hypertournaments. Hung et al. constructed two or multiple EDHCs in LTQn [11], augmented cubes [12], twisted cubes [13], CQn, transposition networks, and hypercube-like networks [14], respectively. Wang et al. Ref. [15] presented that two EDHCs can be embedded into parity cubes. Hussain et al. Ref. [16] gave a construction of three EDHCs in Eisenstein–Jacobi networks. Albader and Bose showed how to obtain two EDHCs in Gaussian networks [17]. In recent years, Chen obtained two edge-disjoint Hamiltonian cycles of bubble-sort star graphs BSn when n ≥ 4 [18]. Yang proved that there exist two edge-disjoint Hamiltonian cycles in spined cube SQn when n ≥ 4 [19]. Pai [20] provided a parallel algorithm for constructing two EDHCs in CQn. Li et al. Ref. [21] construct two EDHCs in LTQn by using a parallel algorithm. Then, Pai et al. presented that three EDHCs can be embedded in LTQn [22] and CQn [23].



There are five papers [11,14,20,22,23] that consider the construction of two or three EDHCs in LTQn and CQn. Ref. [11] provided two EDHCs in LTQn while n ≥ 4. Ref. [22] presents three EDHCs in LTQn for n ≥ 6. Similarly, [14] provided two EDHCs in CQn while n ≥ 4. Ref. [23] presents three EDHCs in CQn for n ≥ 6. Then, [20] proposed a parallel algorithm for the construction of EDHCs to improve the sequential construction of [14]. However, there is no article that studied three EDHCs on FLTQn (respectively, FCQn), which is to add folded edges on LTQn (respectively, CQn). In this paper, the following results are presented: (1) Using the technique of edge exchange, three EDHCs are constructed in FLTQ5 and FCQ5, respectively. (2) According to the recursive structure of FLTQn and FCQn, there are three EDHCs in FLTQn and FCQn while n ≥ 6. (3) Considering that multiple faulty edges will occur randomly, the data broadcast performance of three EDHCs in FLTQn and FCQn is evaluated by simulation when 5 ≤ n ≤ 9. The rest of the paper is organized as follows: Section 2 introduces the necessary definitions and theorems for LTQn, CQn, FLTQn, FCQn, and EDHCs. In Section 3, three EDHCs are presented on FLTQn and FCQn, respectively. Next, in Section 4, the performance assessment of data broadcasting by using three EDHCs on FLTQn and FCQn is presented. Section 5 discusses the results of the simulations. The conclusion of this paper will be presented placed in Section 6.




2. Preliminaries


The topology of a network is usually modeled as an undirected graph G = (V(G), E(G)). The neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of vertices adjacent to v in G. A cycle Cm of length m in G, denoted by v1 - v2 - v3 - … - vm−1 - vm - v1, is a sequence (v1, v2, v3, …, vm−1, vm, v1) of vertices such that (vm, v1) ∈ E(G) and (vi, vi+1) ∈ E(G) for 1 ≤ i ≤ m − 1. For convenience, replace e ∈ E(Cm) with e ∈ Cm, and the terms “networks” and “graphs”, “nodes” and “vertices”, “links” and “edges” are often used interchangeably in this paper. Yang et al. gave the following definitions of locally twisted cubes [24]:



Definition 1 

([24]). The n-dimensional locally twisted cube LTQn is the labeled graph with the following recursive fashion:




	(1)

	
LTQ1 is the complete graph on two vertices labeled by 0 and 1. LTQ2 is a graph consisting of four vertices with labels 00, 01, 10, and 11 together with four edges (00, 01), (00, 10), (01, 11), and (10, 11).




	(2)

	
For n ≥ 3, LTQn is composed of two subcubes LTQn−1, denoted as LTQn−10 and LTQn−11, such that each vertex x = 0xn−1xn−2 ⋯ x2x1 ∈ V(LTQ n−10) is connected with the vertex y = 1(xn−1⊕x1) xn−2 ⋯ x2x1 ∈ V(LTQ n−11) by an edge, where x and y are called the n-neighbors to each other.











Definition 2 

([25]). For n ≥ 2, an n-dimensional folded locally twisted cube, denoted by FLTQn, is defined based on the definition of LTQn as follows: FLTQn is a graph obtained from LTQn by adding all complementary edges, which join a vertex u = unun−1 ⋯ u2u1 to another vertex ū = ūnūn−1 ⋯ ū2ū1 for every u ∈ V(LTQn), where ūi = 1 − ui.





For conciseness of representation, sometimes the labels of nodes are changed to the use of decimals. For example, Figure 1 shows LTQ4 and FLTQ4, where each node is labeled by the binary code and its corresponding decimal (inside the circle).



Efe [26] defined two binary strings x = x2x1 and y = y2y1 to be pair-related, denoted x ~ y, if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.



Definition 3 

([26]). The vertex set of CQn is {unun−1 ⋯ u2u1|ui ∈ {0, 1}, 1≤ i ≤ n}. For any two vertices u = unun−1 ⋯ u2u1 and v = vnvn−1 ⋯ v2v1 of CQn, u is adjacent to v if and only if the following conditions are established:




	(1)

	
unun−1⋯ ui+1= vnvn−1⋯ vi+1;




	(2)

	
ui ≠ vi;




	(3)

	
ui−1= vi−1if i is even;




	(4)

	
u2ku2k−1∼ v2kv2k−1for 1 ≤ k ≤ ⌈(i – 1) / 2⌉.











Definition 4. 

For n ≥ 2, an n-dimensional folded crossed cube, denoted by FCQn, is constructed from CQn by adding all complementary edges, which join a vertex u = unun−1 ⋯ u2u1 to another vertex ū = ūnūn−1 ⋯ ū2ū1 for every u ∈ V(LTQn), where ūi = 1 − ui.





For example, Figure 2 shows CQ4 and FCQ4. According to Definition 2 (respectively, 4), FLTQn (respectively, FCQn) is constructed from LTQn (respectively, FCQn) by adding all complementary edges. For FLTQn and FCQn, when n ≥ 6, the main two theorems in this paper will use the following two theorems, respectively:



Theorem 1 

([22]). For n ≥ 6, there exist three edge-disjoint Hamiltonian cycles in LTQn.





Theorem 2 

([23]). For n ≥ 6, there exist three edge-disjoint Hamiltonian cycles in CQn.





In the research direction of EDHCs, briefly summarize the solution methods in [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]. Most of the articles use the method of recursive construction. Firstly, k (≥2) EDHCs are proposed on the small-dimensional graph class as the basis. Then, based on this, a recursive algorithm was proposed to construct EDHCs. These methods usually remove one or more edges in the original cycles and then connect the endpoint of the cycle to the endpoint of another cycle to form a Hamiltonian cycle on the next dimensional graph. In addition, some articles will go out of the cycle along the edge of a specific direction or a specific dimension. Then, by exchanging some edges, multiple cycles are connected to form EDHCs. In this paper, we use these two approaches at the same time, and the details are presented in Section 3.




3. Methods and Results


Using previous results in [20,21] and the technique of edge exchange, three EDHCs in FLTQ5 and FCQ5 were constructed, respectively. Then, according to the recursive structure of FLTQn and FCQn, there are three EDHCs in FLTQn and FCQn while n ≥ 6.



3.1. Three EDHCs in FLTQn


In this subsection, there are two EDHCs of FLTQ5 that were built from [21]. Then, by fine-tuning some edges in the second Hamiltonian cycle so that the remaining edges are sufficient to configure the third Hamiltonian cycle.



Let HC1 and HC2 be two EDHCs of LTQ4, as shown in Figure 3. According to Definitions 1 and 2, FLTQ5 can be decomposed into two copies of LTQ4, and each copy has two Hamiltonian cycles mentioned above. Divide FLTQ5 into two disjoint subcubes LTQ4i for i ∈ {0, 1}, and let HCki for k ∈ {1, 2} be the corresponding k-th Hamiltonian cycle in the subcube LTQ4i such that each cycle maps to HCk in LTQ4. Then, the two Hamiltonian cycles of FLTQ5, namely HC1′ and HC2′, can be constructed by merging of HCk0 and HCk1 for k = 1, 2 by adjusting two edges in each cycle, which are described as follows:


E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (4, 20)} − {(0, 4), (16, 20)}



(1)




and


E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(2, 18), (6, 22)} − {(2, 6), (18, 22)}



(2)







For example, Figure 4 depicts the Hamiltonian cycles HC1′ and HC2′ of FLTQ5 constructed from Equation (1) and Equation (2), respectively. From the drawing, readers may imagine that the dashed line divides the entire FLTQ5 into two subcubes of equal size, and nodes in the left and right parts are mirrored, and their labels have a difference of ±16.



That E(FLTQ5) - {E(HC1′) ∪ E(HC2′)} includes two C16 cycles: C16A = 0 - 4 - 27 - 3 - 28 - 12 - 19 - 11 - 20 - 16 - 15 - 23 - 8 - 24 - 7 - 31 - 0 and C16B = 1 - 25 - 6 - 2 - 29 - 5 - 26 - 10 - 21 - 13 - 18 - 22 - 9 - 17 - 14 - 30 - 1. The third Hamiltonian cycle of FLTQ5, HC3′, can be constructed as follows:


E(HC3′) = E(C16A) ∪ E(C16B) ∪ {(1, 3), (5, 7), (27, 29), (30, 31)} − {(1, 30), (3, 27), (5, 29), (7, 31)}



(3)







Figure 5a illustrates the construction of HC3′, where the bold lines indicate the edges that will be added to HC3′ in Equation (3). Then, lines with cross marks are the edges that will be removed from HC3′ in Equation (3). In fact, the construction of the third Hamiltonian cycle mentioned above is accomplished using the edge-swapping technique. Therefore, with the above adjustments, it is necessary to modify the edge set of HC2′ obtained from Equation (2) by swapping two edge sets, {(1, 3), (5, 7), (27, 29), (30, 31)} and {(1, 30), (3, 27), (5, 29), (7, 31)}, as follows:


E(HC2′) = E(HC2′) ∪ {(1, 30), (3, 27), (5, 29), (7, 31)} − {(1, 3), (5, 7), (27, 29), (30, 31)}



(4)







Similarly, Figure 5b illustrates the construction of the new HC2′, where the bold dash lines indicate the edges that will be added to HC2′ in Equation (4). Then, lines with cross marks are edges that will be removed from HC2′ in Equation (4). Starting from any starting node, visit the paths formed by the edges in Figure 5a,b in turn, and finally obtain two EDHCs. The results are shown below.



Lemma 1. 

The three Hamiltonian cycles HCi’ for i = 1, 2, 3 constructed from Equations (1)–(4) are edge-disjoint in FLTQ5.





Clearly, |E(FLTQ5)| = (6 × 32) / 2 = 96. Since each Hamiltonian cycle has 32 edges in FLTQ5, all edges of FLTQ5 are exhausted when the above three EDHCs are constructed. Finally, the construction algorithm was provided as follows (Algorithm 1):



	Algorithm 1: Constructing 3 EDHCs in FLTQ5



	Input: FLTQ5



	Output: 3 EDHCs HC1′, HC2′, HC3′



	Step 1 HC1 = 0 - 1 - 13 - 15 - 9 - 11 - 7 - 6 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0;

Step 2 HC2 = 0 - 2 - 6 - 4 - 12 - 13 - 11 - 10 - 14 - 15 - 3 - 1 - 7 - 5 - 9 - 8 - 0;

Step 3 E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (4, 20)} – {(0, 4), (16, 20)};

Step 4 E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(2, 18), (6, 22)} – {(2, 6), (18, 22)};

Step 5 C16A = 0 - 4 - 27 - 3 - 28 - 12 - 19 - 11 - 20 - 16 - 15 - 23 - 8 - 24 - 7 - 31 - 0;

Step 6 C16B = 1 - 25 - 6 - 2 - 29 - 5 - 26 - 10 - 21 - 13 - 18 - 22 - 9 - 17 - 14 - 30 - 1;

Step 7 E(HC3′) = E(C16A) ∪ E(C16B) ∪ {(1, 3), (5, 7), (27, 29), (30, 31)} – {(1, 30), (3, 27), (5, 29), (7, 31)};

Step 8 E(HC2′) = E(HC2′) ∪ {(1, 30), (3, 27), (5, 29), (7, 31)} − {(1, 3), (5, 7), (27, 29), (30, 31)};

Step 9 Return HC1′, HC2′, HC3′;








Theorem 3. 

For n ≥ 5, there exist three edge-disjoint Hamiltonian cycles in FLTQn.





Proof of Theorem 3. 

First, according to Lemma 1, this theorem holds when n = 5. By Definition 2, FLTQn is a graph obtained from LTQn by adding all complementary edges. According to Theorem 1, there exist three EDHCs in LTQn while n ≥ 6. Therefore, this theorem is proved. □






3.2. Three EDHCs in FCQn


There are two EDHCs of FCQ5 that were built from [20]. Then, we adjust some of the edges in the second Hamiltonian cycle so that the remaining edges can be used to construct the third Hamiltonian cycle.



Let HC1 and HC2 be two EDHCs of CQ4, as shown in Figure 6. According to Definitions 3 and 4, FCQ5 can be decomposed into two copies of CQ4, and each with two of the aforementioned Hamiltonian cycles. Partition FCQ5 into two disjoint subcubes CQ4i for i ∈ {0, 1}, and let HCki for k ∈ {1, 2} be the corresponding k-th Hamiltonian cycle in the subcube CQ4i such that each cycle maps to HCk in CQ4. Next, the two Hamiltonian cycles of FCQ5, HC1′ and HC2′, can be constructed by merging HCk0 and HCk1 for k = 1, 2 by adjusting two edges in each cycle, which are described as follows:


E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (2, 18)} − {(0, 2), (16, 18)}



(5)




and


E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(8, 24), (10, 26)} − {(8, 10), (24, 26)}



(6)







For example, Figure 7 depicts the Hamiltonian cycles HC1′ and HC2′ of FCQ5 according to Equations (5) and (6), respectively. From the drawing, readers may imagine that the dotted line divides the whole FCQ5 into two subcubes of equal size, and nodes in the left and right parts are mirrored, and their labels differ by ±16.



That E(FCQ5) − { E(HC1′) ∪ E(HC2′) } includes four C8 cycles: C8A = 0 - 2 - 29 - 7 - 24 - 26 - 5 - 31 - 0, C8B = 1 - 19 - 12 - 20 - 11 - 25 - 6 - 30 - 1, C8C = 3 - 17 - 14 - 22 - 9 - 27 - 4 - 28 - 3, and C16D = 8 - 10 - 21 - 15 - 16 - 18 - 13 - 23 - 8. The third Hamiltonian cycle of FCQ5, HC3′, can be constructed as follows:


E(HC3′) = E(C8A) ∪ E(C8B) ∪ E(C8C) ∪ E(C8D) ∪ {(0, 1), (2, 3), (16, 17), (18, 19)} − {(0, 2), (1, 19), (3, 17), (16, 18)}



(7)







Figure 8a depicts the construction of HC3′, where the bold lines indicate the edges that will be added to HC3′ by Equation (7). Then, lines marked with crosses are the edges that will be removed from HC3′ by Equation (7). Again, the construction of the third Hamiltonian cycle mentioned above is obtained using the edge-swapping technique. Therefore, with the above fine-tuning, it is necessary to adjust the edge set of HC2′ obtained from Equation (6) by swapping two edge sets, {(0, 1), (2, 3), (16, 17), (18, 19)} and {(0, 2), (1, 19), (3, 17), (16, 18)}, as follows:


E(HC2′) = E(HC2′) ∪ {(0, 2), (1, 19), (3, 17), (16, 18)} − {(0, 1), (2, 3), (16, 17), (18, 19)}



(8)







Similarly, Figure 8b illustrates the construction of the new HC2′, where the bold dash lines indicate the edges that will be added to HC2′ in Equation (8). Then, lines with cross marks are edges that will be removed from HC2′ in Equation (8). Starting from any node, visit the paths formed by the edges in Figure 8a,b in sequence, and finally obtain two EDHCs, and hence the result is shown below.



Lemma 2. 

The three Hamiltonian cycles HCi’ for i = 1, 2, 3 constructed from Equations (5)–(8) are edge-disjoint in FCQ5.





Clearly, |E(FCQ5)| = (6 × 32) / 2 = 96. Since each Hamiltonian cycle of FCQ5 has 32 edges, all edges of FCQ5 are exhausted when the above three EDHCs are constructed. Finally, the construction algorithm was provided as follows (Algorithm 2):



	Algorithm 2: Constructing 3 EDHCs in FCQ5



	Input: FCQ5



	Output: 3 EDHCs HC1′, HC2′, HC3′



	Step 1 HC1 = 0 - 2 - 6 - 4 - 12 - 13 - 11 - 10 - 14 - 15 - 5 - 7 - 1 - 3 - 9 - 8 - 0;

Step 2 HC2 = 0 - 1 - 11 - 9 - 15 - 13 - 7 - 6 - 14 - 12 - 8 - 10 - 2 - 3 - 5 - 4 - 0;

Step 3 E(HC1′) = E(HC10) ∪ E(HC11) ∪ {(0, 16), (2, 18)} – {(0, 2), (16, 18)};

Step 4 E(HC2′) = E(HC20) ∪ E(HC21) ∪ {(8, 24), (10, 26)} – {(8, 10), (24, 26)};

Step 5 C8A = 0 - 2 - 29 - 7 - 24 - 26 - 5 - 31 - 0;

Step 6 C8B = 1 - 19 - 12 - 20 - 11 - 25 - 6 - 30 - 1;

Step 7 C8C = 3 - 17 - 14 - 22 - 9 - 27 - 4 - 28 - 3;

Step 8 C16D = 8 - 10 - 21 - 15 - 16 - 18 - 13 - 23 - 8;

Step 9 E(HC3′) = E(C8A) ∪ E(C8B) ∪ E(C8C) ∪ E(C8D) ∪ {(0, 1), (2, 3), (16, 17), (18, 19)} – {(0, 2), (1, 19), (3, 17), (16, 18)};

Step 10 E(HC2′) = E(HC2′) ∪ {(0, 2), (1, 19), (3, 17), (16, 18)} – {(0, 1), (2, 3), (16, 17), (18, 19)};

Step 11 Return HC1′, HC2′, HC3′;








Theorem 4. 

For n ≥ 5, there exist three edge-disjoint Hamiltonian cycles in FCQn.





Proof of Theorem 4. 

First, when n = 5, this theorem holds by Lemma 2. Then, according to Definition 4, FCQn is constructed by adding all complementary edges to CQn. By Theorem 2, there exist three EDHCs in CQn while n ≥ 6. Therefore, this theorem is proved. □







4. Performance Evaluation


In this section, considering that multiple faulty edges will occur randomly, the performance of data broadcasting is simulated and evaluated by two and three EDHCs in FLTQn and FCQn when 5 ≤ n ≤ 9. In this paper, three EDHCs of FLTQn (respectively, FCQn) are improved from the two EDHCs of LTQn [11] (respectively, CQn [14]). Therefore, the construction of three EDHCs has adopted the method in Section 3, and the construction of two EDHCs has adopted the method of [11] and [14]. For two kinds of networks, some C programs are used to implement data broadcasting according to two and three EDHCs, respectively. To speed up the evaluation, the simulation was carried out by using a 5.10 GHz Intel® Core™ i9−12900 CPU and 32 GB RAM under the Linux operating system.



For each dimension n and number of faulty edges m while 6 ≤ n ≤ 9 and 1 ≤ m ≤ 10, the program randomly generates 1,000,000 instances of number-list (s, f1, f2, …, fm) with f1 ≠ f2 ≠ … ≠ fm for FLTQn and FCQn, where s and fi are the source node and faulty edge label, respectively. In general, when the source node s needs to send a distinct message to all other nodes. Applying the ring structure, once a message starts sending, a node can receive a new message from the previous node at each step, keep a copy of the new message for itself, and send the received message to the next node. Considering that m faulty edges will appear randomly and increase the probability of successful broadcast to all nodes, the source node s send the messages to the next nodes simultaneously in two directions through three Hamiltonian cycles.



Firstly, this study is interested in evaluating the broadcast success rate, abbreviated as BSR, which is the ratio of the number of successful data broadcasts over generated instances. Then, when the broadcast fails, the program computes three statistical quantities related to the number of unreachable nodes: (a) mean, (b) standard deviation, and (c) maximum number. More descriptions of the simulation process are available on the website [27] as Supplementary Materials.



Table 1 (respectively, Table 2) shows the simulation results of BSR for data broadcasting in FLTQn adopting two EDHCs (respectively, three EDHCs) as the broadcasting channels in two directions, respectively. When the number of faulty edges m ≥ 4 in Table 1 and m ≥ 6 in Table 2, sometimes the broadcast fails. Then, Table 3 and Table 4 show two quantities mentioned above that are calculated by the usual way in statistics.



According to Table 1, Table 2, Table 3 and Table 4, Figure 9a,b are drawn, respectively. Obviously, BSR decreases as the number of faulty edges increases, and the mean of the number of unreachable nodes increases as the dimension of FLTQn increases.



Table 5 (respectively, Table 6) shows the simulation results of BSR for data broadcasting in FCQn adopting two EDHCs (respectively, three EDHCs) as the broadcasting channels in two directions, respectively. Then, Table 7 and Table 8 show two quantities mentioned above that are calculated by the usual way in statistics.



According to Table 5, Table 6, Table 7 and Table 8, Figure 10a,b are drawn, respectively. Clearly, BSR decreases as the number of faulty edges increases, and the mean of unreachable nodes increases as the dimension of FCQn increases.




5. Discussion


From Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 and Figure 9 and Figure 10, the simulation results of FLTQn and FCQn are very similar, and there are four phenomena as follows:




	
According to the main Theorems 3 and 4, there exist three edge-disjoint Hamiltonian cycles in FLTQn and FCQn while n ≥ 5. The research results provide three EDHCs as broadcasting channels and transmission in two directions, no matter what scale of FLTQn and FCQn for 5 ≤ n ≤ 9, its transmission can reach 100% success when the number of faulty edges m ≤ 5. The intuitive prediction is that BSR should present a decreasing function to the number of faulty edges. As expected, all simulations are consistent with this phenomenon. For example, take FCQ5 in Table 5 as an example for illustration. If BSR ≥ 80% is required, then it only allows seven faulty edges. It can tolerate eight faulty edges while allowing no more than half of the broadcasts to fail. Accordingly, this means that the least number of faulty edges, the larger the corresponding BSR.



	
For m ≥ 6, BSR increases with expanding the scale of FLTQn and FCQn. The reason is obvious since when m is fixed, the edge failures that occur in Hamiltonian cycles will reduce their probability as the network expands, thus leading to an increase in the success rate. For example, take FLTQ5 and FLTQ6 in Table 1 as an example for illustration. All edges of FLTQ5 are used in 3 EDHCs, but 6/7 edges of FLTQ6 are used in 3 EDHCs. When m = 10, BSR increases from 0.348 in FLTQ5 to 0.545 in FLTQ6.



	
For m ≥ 6, the number of unreachable nodes increases with expanding the scale of FLTQn and FCQn. The size of Hamiltonian cycles is equal to the size of the network. The larger the scale of networks, the larger the number of unreachable nodes. For example, take FCQ8 and FCQ9 in Table 8 as an example for illustration. The size of FCQn is 2n, then |V(FCQ8)| = 256 and |V(FCQ9)| = 512. When m = 10, the mean of the unreachable nodes increases from 37.3 in FCQ8 to 80.8 in FCQ9.



	
In this paper, three EDHCs of FLTQn (respectively, FCQn) are compared with the two EDHCs of LTQn [11] (respectively, CQn [14]). According to Figure 9a and Figure 10a, the BSR of three EDHCs is better than that of two EDHCs in both FLTQn and FCQn. Moreover, the smaller the size of the network, the greater the gap between the BSRs. In addition, observing Figure 9b and Figure 10b, it can be found that the average number of unreachable nodes of the three EDHCs is 0.3~0.7 of that of the two EDHCs. In broadcast applications on FLTQn and FCQn, the three EDHCs in this paper are better than the two EDHCs in [11,14].









6. Conclusions


This paper first investigates the construction of three EDHCs in FLTQn. Then, the same method is also applied to FCQn, thus, the research results of the three EDHCs of FCQn are also obtained. Next, use the three EDHCs of FLTQn and FCQn as transmission channels to realize fault-tolerant data broadcasting. Considering that multiple faulty edges will appear randomly, the performance of data broadcasting is evaluated by simulation with three EDHCs in FLTQn and FCQn when 5 ≤ n ≤ 9. The research results provide three EDHCs as broadcasting channels and transmission in two directions, and the transmission can reach 100% success when the number of faulty edges m ≤ 5. Generally, networks with higher edge connectivity can construct more EDHCs. As future work, the study is interested in seeing if there are four EDHCs on FLTQn or FCQn when n ≥ 7. The question of whether a Hamiltonian cycle exists in a given graph is NP-complete. While the number of edges of seven-dimensional FLTQ or FCQ has been increased to 128, it may not be easy to find the answer only by using the technique of edge exchange. So, this remains an open question.
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Figure 1. (a) LTQ4 and (b) FLTQ4 where thick lines indicate complementary edges. 






Figure 1. (a) LTQ4 and (b) FLTQ4 where thick lines indicate complementary edges.
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Figure 2. (a) CQ4 and (b) FCQ4 where thick lines indicate complementary edges. 






Figure 2. (a) CQ4 and (b) FCQ4 where thick lines indicate complementary edges.
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Figure 3. Two EDHCs in LTQ4. Thick red lines (respectively, thin blue line) indicate the first (respectively, second) Hamiltonian cycle. 






Figure 3. Two EDHCs in LTQ4. Thick red lines (respectively, thin blue line) indicate the first (respectively, second) Hamiltonian cycle.
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Figure 4. The Hamiltonian cycles (a) HC1′ and (b) HC2′ of FLTQ5 were constructed from Equation (1) and Equation (2), respectively, where thick lines indicate the edges of the cycle. Complementary edges are omitted because it is easy to judge visually and the two Hamiltonian cycles do not use them. 






Figure 4. The Hamiltonian cycles (a) HC1′ and (b) HC2′ of FLTQ5 were constructed from Equation (1) and Equation (2), respectively, where thick lines indicate the edges of the cycle. Complementary edges are omitted because it is easy to judge visually and the two Hamiltonian cycles do not use them.
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Figure 5. The Hamiltonian cycles (a) HC3′ and (b) new HC2′ of FLTQ5 were constructed from Equations (3) and (4), respectively. 
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Figure 6. Two EDHCs in CQ4. Thick red lines and thin blue lines indicate the first and second Hamiltonian cycles, respectively. 






Figure 6. Two EDHCs in CQ4. Thick red lines and thin blue lines indicate the first and second Hamiltonian cycles, respectively.
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Figure 7. The Hamiltonian cycles (a) HC1′ and (b) HC2′ of FCQ5 according to Equation (5) and Equation (6), respectively, where thick lines indicate the edges of the cycle. Complementary edges are omitted because it is convenient for intuitive judgment and the two Hamiltonian cycles do not use them. 






Figure 7. The Hamiltonian cycles (a) HC1′ and (b) HC2′ of FCQ5 according to Equation (5) and Equation (6), respectively, where thick lines indicate the edges of the cycle. Complementary edges are omitted because it is convenient for intuitive judgment and the two Hamiltonian cycles do not use them.
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Figure 8. The Hamiltonian cycles (a) HC3′ and (b) new HC2′ of FCQ5 were constructed from Equation (7) and Equation (8), respectively. 






Figure 8. The Hamiltonian cycles (a) HC3′ and (b) new HC2′ of FCQ5 were constructed from Equation (7) and Equation (8), respectively.



[image: Mathematics 11 03384 g008]







[image: Mathematics 11 03384 g009 550] 





Figure 9. (a) BSR and (b) the mean and standard deviation of the number of unreachable nodes in FLTQn while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10. 
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[image: Mathematics 11 03384 g009]







[image: Mathematics 11 03384 g010 550] 





Figure 10. (a) BSR and (b) the mean and standard deviation of the number of unreachable nodes in FCQn while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10. 






Figure 10. (a) BSR and (b) the mean and standard deviation of the number of unreachable nodes in FCQn while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10.
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Table 1. BSR of fault-tolerant data broadcasting in FLTQn using two EDHCs while 1 ≤ m ≤ 10.






Table 1. BSR of fault-tolerant data broadcasting in FLTQn using two EDHCs while 1 ≤ m ≤ 10.





	m
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10





	FLTQ5
	1.000
	1.000
	1.000
	0.943
	0.829
	0.686
	0.540
	0.410
	0.303
	0.216



	FLTQ6
	1.000
	1.000
	1.000
	0.970
	0.903
	0.807
	0.696
	0.583
	0.476
	0.382



	FLTQ7
	1.000
	1.000
	1.000
	0.984
	0.942
	0.877
	0.795
	0.704
	0.612
	0.522



	FLTQ8
	1.000
	1.000
	1.000
	0.990
	0.963
	0.918
	0.858
	0.786
	0.709
	0.629



	FLTQ9
	1.000
	1.000
	1.000
	0.993
	0.975
	0.943
	0.898
	0.842
	0.779
	0.711
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Table 2. BSR of fault-tolerant data broadcasting in FLTQn using three EDHCs while 1 ≤ m ≤ 10.
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	m
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10





	FLTQ5
	1.000
	1.000
	1.000
	1.000
	1.000
	0.930
	0.796
	0.636
	0.481
	0.348



	FLTQ6
	1.000
	1.000
	1.000
	1.000
	1.000
	0.970
	0.897
	0.790
	0.668
	0.545



	FLTQ7
	1.000
	1.000
	1.000
	1.000
	1.000
	0.989
	0.955
	0.897
	0.820
	0.730



	FLTQ8
	1.000
	1.000
	1.000
	1.000
	1.000
	0.994
	0.976
	0.940
	0.887
	0.822



	FLTQ9
	1.000
	1.000
	1.000
	1.000
	1.000
	0.997
	0.987
	0.967
	0.934
	0.889
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Table 3. In FLTQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using two EDHCs.






Table 3. In FLTQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using two EDHCs.





	m
	6
	7
	8
	9
	10





	FLTQ5
	6.7 (5.8)
	7.5 (6.1)
	8.3 (6.4)
	9.2 (6.7)
	10.1 (6.9)



	FLTQ6
	13.8 (11.7)
	15.1 (12.2)
	16.4 (12.6)
	17.8 (13.1)
	19.3 (13.4)



	FLTQ7
	28.0 (23.1)
	30.0 (23.9)
	32.1 (24.6)
	34.5 (25.5)
	36.8 (26.1)



	FLTQ8
	56.2 (45.6)
	59.5 (46.8)
	63.2 (48.3)
	66.9 (49.5)
	70.6 (50.8)



	FLTQ9
	112.1 (89.8)
	118.1 (92.1)
	123.9 (94.7)
	130.0 (96.8)
	136.1 (98.9)







Numbers in parentheses are standard deviations.
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Table 4. In FLTQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using three EDHCs.






Table 4. In FLTQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using three EDHCs.





	m
	6
	7
	8
	9
	10





	FLTQ5
	2.5 (2.7)
	3.0 (3.2)
	3.6 (3.5)
	4.3 (4.0)
	5.0 (4.4)



	FLTQ6
	4.6 (5.3)
	5.4 (5.9)
	6.3 (6.6)
	7.3 (7.3)
	8.4 (8.0)



	FLTQ7
	9.1 (10.4)
	10.2 (11.3)
	11.4 (12.1)
	12.8 (13.1)
	14.2 (14.0)



	FLTQ8
	25.3 (27.4)
	28.2 (29.4)
	31.1 (31.5)
	34.1 (33.3)
	37.4 (35.1)



	FLTQ9
	58.9 (61.4)
	65.9 (65.7)
	70.1 (67.8)
	74.8 (70.5)
	81.1 (73.7)







Numbers in parentheses are standard deviations.
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Table 5. BSR of fault-tolerant data broadcasting in FCQn using two EDHCs while 1 ≤ m ≤ 10.
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	m
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10





	FCQ5
	1.000
	1.000
	1.000
	0.943
	0.830
	0.688
	0.542
	0.412
	0.304
	0.218



	FCQ6
	1.000
	1.000
	1.000
	0.970
	0.901
	0.804
	0.692
	0.578
	0.471
	0.375



	FCQ7
	1.000
	1.000
	1.000
	0.983
	0.941
	0.875
	0.793
	0.701
	0.607
	0.516



	FCQ8
	1.000
	1.000
	1.000
	0.990
	0.963
	0.917
	0.857
	0.785
	0.707
	0.627



	FCQ9
	1.000
	1.000
	1.000
	0.993
	0.975
	0.942
	0.897
	0.842
	0.778
	0.709
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Table 6. BSR of fault-tolerant data broadcasting in FCQn using three EDHCs while 1 ≤ m ≤ 10.
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	m
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10





	FCQ5
	1.000
	1.000
	1.000
	1.000
	1.000
	0.933
	0.802
	0.645
	0.492
	0.360



	FCQ6
	1.000
	1.000
	1.000
	1.000
	1.000
	0.970
	0.898
	0.792
	0.670
	0.547



	FCQ7
	1.000
	1.000
	1.000
	1.000
	1.000
	0.989
	0.955
	0.896
	0.818
	0.727



	FCQ8
	1.000
	1.000
	1.000
	1.000
	1.000
	0.994
	0.940
	0.940
	0.888
	0.821



	FCQ9
	1.000
	1.000
	1.000
	1.000
	1.000
	0.997
	0.987
	0.967
	0.934
	0.889
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Table 7. In FCQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using two EDHCs.






Table 7. In FCQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using two EDHCs.





	M
	6
	7
	8
	9
	10





	FCQ5
	6.3 (5.5)
	7.0 (5.8)
	7.8 (6.1)
	8.6 (6.4)
	9.5 (6.7)



	FCQ6
	13.4 (11.4)
	14.6 (11.9)
	15.9 (12.4)
	17.3 (12.8)
	18.7 (13.2)



	FCQ7
	27.4 (23.0)
	29.5 (23.9)
	31.6 (24.6)
	33.9 (25.4)
	36.2 (26.1)



	FCQ8
	55.3 (45.4)
	59.0 (46.9)
	62.6 (48.4)
	66.3 (49.6)
	70.2 (50.8)



	FCQ9
	111.9 (90.4)
	116.7 (92.0)
	123.2 (94.6)
	129.7 (96.9)
	136.0 (99.2)







Numbers in parentheses are standard deviations.













[image: Table] 





Table 8. In FCQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using three EDHCs.






Table 8. In FCQn, while 5 ≤ n ≤ 9 and 6 ≤ m ≤ 10, the mean and standard deviation of the number of unreachable nodes by using three EDHCs.





	m
	6
	7
	8
	9
	10





	FCQ5
	2.6 (2.7)
	3.1 (3.1)
	3.6 (3.6)
	4.3 (3.9)
	5.0 (4.3)



	FCQ6
	4.4 (5.0)
	5.2 (5.7)
	6.0 (6.4)
	7.0 (7.1)
	8.1 (7.7)



	FCQ7
	9.3 (10.6)
	10.3 (11.4)
	11.6 (12.4)
	12.9 (13.3)
	14.4 (14.3)



	FCQ8
	25.3 (27.6)
	31.0 (31.5)
	31.0 (31.5)
	33.9 (33.3)
	37.3 (35.2)



	FCQ9
	60.0 (62.6)
	64.9 (64.3)
	70.2 (67.5)
	75.5 (70.8)
	80.8 (73.8)







Numbers in parentheses are standard deviations.
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