Quantum Computing in Telecommunication—A Survey
Abstract
:1. Introduction
2. Optimisation and Machine Learning in Telecommunication
3. Quantum Computing Fundamentals
3.1. Fundamental Concepts
3.2. Computing Paradigms
3.3. Grover’s Algorithm
- Initialisation: Start with a superposition of all possible states. Represent the database items as qubits and put them in an equal superposition of 0 and 1 states.
- Oracle: Create a special quantum oracle that marks the target item. The oracle performs a specific phase inversion on the state corresponding to the target item.
- Amplitude Amplification: Apply a series of operations called amplitude amplification, which consists of two main steps:
- Reflection: Reflect the quantum state about the mean of the amplitudes of all items.
- Amplification: Amplify the amplitude of the target item by flipping its sign.
By repeatedly applying the oracle and amplitude amplification operations, the amplitudes of the target item increase, while those of other items tend to cancel each other out. This leads to a higher probability of measuring the target item. - Measurement: After a sufficient number of iterations (approximately ), perform a measurement. The algorithm outputs the target item with a high probability.
3.4. The QAOA Approach for Optimisation
3.5. QUBO Formulation
3.6. Simulated and Digital Annealing
4. Quantum Computing in Telecommunication Application Areas
4.1. General Problems and Their Quantum Approach
4.2. Optimisation in Wireless Networks
4.2.1. Scheduling Problems
4.2.2. Routing and Assignment Problems
4.2.3. Power Optimisation and Optimal Coding
4.3. Machine Learning in Wireless Networks
4.4. Optimisation in Fixed Networks
4.5. Machine Learning in Fixed Networks
4.6. Searching Problems in Wireless Networks
5. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
3GPP | 3rd Generation Partnership Project |
5G, 6G | The fifth- and sixth-generation mobile networks |
CC | channel capacity |
CVRP | Capacitated Vehicle Routing Problem |
EQPO | Evolutionary Quantum Pareto Optimisation |
EVM | Error Vector Magnitudes |
ICT | Information and Communication Technology |
IoT | Internet of Things |
MIMO | Multiple-Input Multiple-Output |
MWIS | Maximum weight independent set |
PAPR | Peak-to-Average Power Ratio |
PCI | Physical Cell Identifier |
QAOA | Quantum Approximate Optimisation Algorithm |
QAOS | Quantum Approximate Optimisation for Scheduling |
QKD | Quantum key distribution |
QoE | Quality of Experience |
QoS | Quality of Service |
QUBO | Quadratic Unconstrained Binary Optimisation problem |
RAN | Radio Access Network |
SLA | Service Level Agreement |
TSP | Travelling Salesman Problem |
URLLC | ultra-reliable and low-latency communication |
VPP | Vector Perturbation Precoding |
VRP | Vehicle Routing Problem |
WDM | Wavelength-Division Multiplexing |
References
- Martin, V.; Brito, J.P.; Escribano, C.; Menchetti, M.; White, C.; Lord, A.; Wissel, F.; Gunkel, M.; Gavignet, P.; Genay, N.; et al. Quantum technologies in the telecommunications industry. EPJ Quantum Technol. 2021, 8, 19. [Google Scholar] [CrossRef]
- Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko, F.; et al. The quantum technologies roadmap: A European community view. New J. Phys. 2018, 20, 080201. [Google Scholar] [CrossRef]
- Chiani, M.; Paolini, E.; Callegati, F. Open issues and beyond 5G. In 5G Italy White eBook: From Research to Market; Consorzio Nazionale Interuniversitario per le Telecomunicazioni: Parma, Italy, 2018; pp. 1–11. [Google Scholar]
- Zhang, Z.; Xiao, Y.; Ma, Z.; Xiao, M.; Ding, Z.; Lei, X.; Karagiannidis, G.K.; Fan, P. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 2019, 14, 28–41. [Google Scholar] [CrossRef]
- Henrique, P.S.R.; Prasad, R. Quantum Mechanics for the Future 6G Cognitive RAN. J. Mob. Multimed. 2023, 19, 291–310. [Google Scholar] [CrossRef]
- Nawaz, S.J.; Sharma, S.K.; Wyne, S.; Patwary, M.N.; Asaduzzaman, M. Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future. IEEE Access 2019, 7, 46317–46350. [Google Scholar] [CrossRef]
- Suriya, M. Machine learning and quantum computing for 5G/6G communication networks—A survey. Int. J. Intell. Netw. 2022, 3, 197–203. [Google Scholar]
- Koch, D.; Wessing, L.; Alsing, P.M. Introduction to coding quantum algorithms: A tutorial series using Pyquil. arXiv 2019, arXiv:1903.05195. [Google Scholar]
- Ömer, B. Classical concepts in quantum programming. Int. J. Theor. Phys. 2005, 44, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Tolba, A.; Rashad, M.Z.; El-Dosuky, M.A. Q#, a quantum computation package for the. net platform. arXiv 2013, arXiv:1302.5133. [Google Scholar]
- van den Brink, R.F.; Phillipson, F.; Neumann, N.M.P. Vision on Next Level Quantum Software Tooling. In Proceedings of the COMPUTATION TOOLS 2019: The Tenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking, Venice, Italy, 9 May 2019. [Google Scholar]
- Kadowaki, T.; Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 1998, 58, 5355. [Google Scholar] [CrossRef] [Green Version]
- McGeoch, C.C.; Harris, R.; Reinhardt, S.P.; Bunyk, P.I. Practical annealing-based quantum computing. Computer 2019, 52, 38–46. [Google Scholar] [CrossRef]
- Boothby, K.; Bunyk, P.; Raymond, J.; Roy, A. Next-generation topology of d-wave quantum processors. arXiv 2020, arXiv:2003.00133. [Google Scholar]
- Das, A.; Chakrabarti, B.K. Quantum annealing and analog quantum computation. Rev. Mod. Phys. 2008, 80, 1061–1081. [Google Scholar] [CrossRef] [Green Version]
- Grover, L.K. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; pp. 212–219. [Google Scholar]
- Farhi, E.; Goldstone, J.; Gutmann, S. A quantum approximate optimization algorithm. arXiv 2014, arXiv:1411.4028. [Google Scholar]
- Majumdar, R.; Madan, D.; Bhoumik, D.; Vinayagamurthy, D.; Raghunathan, S.; Sur-Kolay, S. Optimizing ansatz design in QAOA for Max-cut. arXiv 2021, arXiv:2106.02812. [Google Scholar]
- Ruan, Y.; Marsh, S.; Xue, X.; Liu, Z.; Wang, J. The quantum approximate algorithm for solving traveling salesman problem. Comput. Mater. Contin. 2020, 63, 1237–1247. [Google Scholar] [CrossRef]
- Bravyi, S.; Kliesch, A.; Koenig, R.; Tang, E. Hybrid quantum-classical algorithms for approximate graph coloring. Quantum 2022, 6, 678. [Google Scholar] [CrossRef]
- Lucas, A. Ising formulations of many NP problems. Front. Phys. 2014, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Glover, F.; Kochenberger, G.; Du, Y. A tutorial on formulating and using QUBO models. arXiv 2018, arXiv:1811.11538. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Sao, M.; Watanabe, H.; Musha, Y.; Utsunomiya, A. Application of digital annealer for faster combinatorial optimization. Fujitsu Sci. Tech. J. 2019, 55, 45–51. [Google Scholar]
- Kole, A.; De, D.; Pal, A.J. Solving Graph Coloring Problem Using Ant Colony Optimization, Simulated Annealing and Quantum Annealing—A Comparative Study. In Intelligence Enabled Research: DoSIER 2021; Springer: Singapore, 2022; pp. 1–15. [Google Scholar]
- da Silva Coelho, W.; Henriet, L.; Henry, L.P. Quantum pricing-based column-generation framework for hard combinatorial problems. Phys. Rev. A 2023, 107, 032426. [Google Scholar] [CrossRef]
- Phillipson, F.; Neumann, N.; Wezeman, R. Classification of Hybrid Quantum-Classical Computing. arXiv 2022, arXiv:2210.15314. [Google Scholar]
- Osaba, E.; Villar-Rodriguez, E.; Oregi, I. A Systematic Literature Review of Quantum Computing for Routing Problems. IEEE Access 2022, 10, 55805–55817. [Google Scholar] [CrossRef]
- Srinivasan, K.; Satyajit, S.; Behera, B.K.; Panigrahi, P.K. Efficient quantum algorithm for solving travelling salesman problem: An IBM quantum experience. arXiv 2018, arXiv:1805.10928. [Google Scholar]
- Martoňák, R.; Santoro, G.E.; Tosatti, E. Quantum annealing of the traveling-salesman problem. Phys. Rev. E 2004, 70, 057701. [Google Scholar] [CrossRef] [Green Version]
- Zawalska, J.; Rycerz, K. Solving the Traveling Salesman Problem with a Hybrid Quantum-Classical Feedforward Neural Network. In Proceedings of the Parallel Processing and Applied Mathematics: 14th International Conference, PPAM 2022, Gdansk, Poland, 11–14 September 2022; Springer: Cham, Switzerland, 2023; pp. 199–208. [Google Scholar]
- Saleem, Z.H. Max-independent set and the quantum alternating operator ansatz. Int. J. Quantum Inf. 2020, 18, 2050011. [Google Scholar] [CrossRef]
- Yarkoni, S.; Plaat, A.; Back, T. First results solving arbitrarily structured maximum independent set problems using quantum annealing. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar]
- Yin, X.F.; Yao, X.C.; Wu, B.; Fei, Y.Y.; Mao, Y.; Zhang, R.; Liu, L.Z.; Wang, Z.; Li, L.; Liu, N.L.; et al. Solving independent set problems with photonic quantum circuits. Proc. Natl. Acad. Sci. USA 2023, 120, e2212323120. [Google Scholar] [CrossRef]
- Metwalli, S.A.; Le Gall, F.; Van Meter, R. Finding Small and Large k-Clique Instances on a Quantum Computer. IEEE Trans. Quantum Eng. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Pelofske, E.; Hahn, G.; Djidjev, H.N. Solving larger maximum clique problems using parallel quantum annealing. Quantum Inf. Process. 2023, 22, 219. [Google Scholar] [CrossRef]
- Tran, T.; Do, M.; Rieffel, E.; Frank, J.; Wang, Z.; O’Gorman, B.; Venturelli, D.; Beck, J. A hybrid quantum-classical approach to solving scheduling problems. In Proceedings of the International Symposium on Combinatorial Search, Tarrytown, NY, USA, 6–8 July 2016; Volume 7, pp. 98–106. [Google Scholar]
- Kurowski, K.; Pecyna, T.; Slysz, M.; Różycki, R.; Waligóra, G.; Wȩglarz, J. Application of quantum approximate optimization algorithm to job shop scheduling problem. Eur. J. Oper. Res. 2023, 310, 518–528. [Google Scholar] [CrossRef]
- Wang, C.; Chen, H.; Jonckheere, E. Quantum versus simulated annealing in wireless interference network optimization. Sci. Rep. 2016, 6, 25797. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jonckheere, E. Simulated versus reduced noise quantum annealing in maximum independent set solution to wireless network scheduling. Quantum Inf. Process. 2019, 18, 1–25. [Google Scholar] [CrossRef]
- Vista, F.; Iacovelli, G.; Grieco, L.A. Hybrid quantum-classical scheduling optimization in UAV-enabled IoT networks. Quantum Inf. Process. 2023, 22, 47. [Google Scholar] [CrossRef]
- Choi, J.; Oh, S.; Kim, J. Quantum approximation for wireless scheduling. Appl. Sci. 2020, 10, 7116. [Google Scholar] [CrossRef]
- Saravanan, M.; Sircar, R.P. Quantum evolutionary algorithm for Scheduling Resources in Virtualized 5G RaN environment. In Proceedings of the 2021 IEEE 4th 5G World Forum (5GWF), Montreal, QC, Canada, 13–15 October 2021; pp. 111–116. [Google Scholar]
- Kasi, S.; Warburton, P.; Kaewell, J.; Jamieson, K. A cost and power feasibility analysis of quantum annealing for NextG cellular wireless networks. arXiv 2021, arXiv:2109.01465. [Google Scholar]
- Kim, M.; Kasi, S.; Lott, P.A.; Venturelli, D.; Kaewell, J.; Jamieson, K. Heuristic quantum optimization for 6G wireless communications. IEEE Netw. 2021, 35, 8–15. [Google Scholar] [CrossRef]
- Kim, M.; Venturelli, D.; Jamieson, K. Towards hybrid classical-quantum computation structures in wirelessly-networked systems. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks, Virtual Event, 4–6 November 2020; pp. 110–116. [Google Scholar]
- Barillaro, G.; Boella, A.; Gandino, F.; Vakili, M.G.; Giusto, E.; Mondo, G.; Montrucchio, B.; Scarabosio, A.; Scionti, A.; Terzo, O.; et al. Comparison of heuristic approaches to PCI planning for Quantum Computers. In Proceedings of the 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2023; pp. 1–6. [Google Scholar]
- Urgelles, H.; Picazo-Martinez, P.; Garcia-Roger, D.; Monserrat, J.F. Multi-Objective Routing Optimization for 6G Communication Networks Using a Quantum Approximate Optimization Algorithm. Sensors 2022, 22, 7570. [Google Scholar] [CrossRef]
- Alanis, D.; Botsinis, P.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Hanzo, L. Quantum-aided multi-objective routing optimization using back-tracing-aided dynamic programming. IEEE Trans. Veh. Technol. 2018, 67, 7856–7860. [Google Scholar] [CrossRef]
- Alanis, D.; Botsinis, P.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Hanzo, L. A quantum-search-aided dynamic programming framework for pareto optimal routing in wireless multihop networks. IEEE Trans. Commun. 2018, 66, 3485–3500. [Google Scholar] [CrossRef]
- Alanis, D.; Botsinis, P.; Ng, S.X.; Hanzo, L. Quantum-assisted routing optimization for self-organizing networks. IEEE Access 2014, 2, 614–632. [Google Scholar] [CrossRef]
- Wurtz, J.; Lopes, P.; Gemelke, N.; Keesling, A.; Wang, S. Industry applications of neutral-atom quantum computing solving independent set problems. arXiv 2022, arXiv:2205.08500. [Google Scholar]
- Bass, G.; Tomlin, C.; Kumar, V.; Rihaczek, P.; Dulny, J. Heterogeneous quantum computing for satellite constellation optimization: Solving the weighted k-clique problem. Quantum Sci. Technol. 2018, 3, 024010. [Google Scholar] [CrossRef] [Green Version]
- Bern, D. Quantum Annealing Algorithms for PAPR Minimisation in Wireless Networks. Master’s Thesis, Uppsala University, Uppsala, Sweden, 2022. [Google Scholar]
- Kasi, S.; Singh, A.K.; Venturelli, D.; Jamieson, K. Quantum annealing for large MIMO downlink vector perturbation precoding. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Zaman, F.; Farooq, A.; Ullah, M.A.; Jung, H.; Shin, H.; Win, M.Z. Quantum Machine Intelligence for 6G URLLC. IEEE Wirel. Commun. 2023, 30, 22–30. [Google Scholar] [CrossRef]
- Phillipson, F.; Wezeman, R.S.; Chiscop, I. Three Quantum Machine Learning Approaches for Mobile User Indoor-Outdoor Detection. In Proceedings of the Machine Learning for Networking: Third International Conference, MLN 2020, Paris, France, 24–26 November 2020; Springer: Cham, Switzerland, 2021; pp. 167–183. [Google Scholar]
- Milić, D.; Petrović, N.; Suljović, S.; Stefanović, R.; Vujović, V. Quantum Machine Learning Approach to QoS Prediction Leveraging Capacity of 5G wireless system with L-branch SC combining in Nakagami-m fading and Nakagami-m interference channel. In Proceedings of the XVI International SAUM Conference on Systems, Automatic Control and Measurements, Niš, Serbia, 17–18 November 2022. [Google Scholar]
- Boev, A.S.; Usmanov, S.R.; Semenov, A.M.; Ushakova, M.M.; Salahov, G.V.; Mastiukova, A.S.; Kiktenko, E.O.; Fedorov, A.K. Quantum-inspired optimization for routing and wavelength assignment. arXiv 2022, arXiv:2211.00317. [Google Scholar]
- Engel, S.; Münch, C.; Schinkel, F.; Holschke, O.; Geitz, M.; Schüller, T. Segment routing with digital annealing. In Proceedings of the NOMS 2022–2022 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 25–29 April 2022; pp. 1–9. [Google Scholar]
- Feld, S.; Friedrich, M.; Linnhoff-Popien, C. Optimizing geometry compression using quantum annealing. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Godar, B.; Roch, C.; Stein, J.; Geitz, M.; Lehmann, B.; Gunkel, M.; Fürst, V.; Hofmann, F. Optimization of QKD Networks with Classical and Quantum Annealing. arXiv 2022, arXiv:2206.14109. [Google Scholar]
- Krauss, T.; McCollum, J. Solving the network shortest path problem on a quantum annealer. IEEE Trans. Quantum Eng. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- Nicesio, O.K.; Leal, A.G.; Gava, V.L. Quantum Machine Learning for Network Intrusion Detection Systems, a Systematic Literature Review. In Proceedings of the 2023 IEEE 2nd International Conference on AI in Cybersecurity (ICAIC), Houston, TX, USA, 7–9 February 2023; pp. 1–6. [Google Scholar]
- Shara, J. Quantum Machine Learning and Cybersecurity. Quantum 2023, 12, 47–56. [Google Scholar]
- Payares, E.; Martinez-Santos, J. Quantum machine learning for intrusion detection of distributed denial of service attacks: A comparative overview. Quantum Comput. Commun. Simul. 2021, 11699, 35–43. [Google Scholar]
- Kalinin, M.; Krundyshev, V. Security intrusion detection using quantum machine learning techniques. J. Comput. Virol. Hacking Tech. 2023, 19, 125–136. [Google Scholar] [CrossRef]
- Gong, C.; Guan, W.; Gani, A.; Qi, H. Network attack detection scheme based on variational quantum neural network. J. Supercomput. 2022, 78, 16876–16897. [Google Scholar] [CrossRef]
- Gao, M.; Tian, J. Network intrusion detection method based on improved simulated annealing neural network. In Proceedings of the 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 11–12 April 2009; Volume 3, pp. 261–264. [Google Scholar]
- Wu, J.; Feng, G.R. Intrusion detection based on simulated annealing and fuzzy c-means clustering. In Proceedings of the 2009 International Conference on Multimedia Information Networking and Security, Wuhan, China, 18–19 November 2009; Volume 2, pp. 382–385. [Google Scholar]
- Dixit, V.; Selvarajan, R.; Aldwairi, T.; Koshka, Y.; Novotny, M.A.; Humble, T.S.; Alam, M.A.; Kais, S. Training a quantum annealing based restricted boltzmann machine on cybersecurity data. IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 417–428. [Google Scholar] [CrossRef]
- Barletta, V.S.; Caivano, D.; De Vincentiis, M.; Magrì, A.; Piccinno, A. Quantum optimization for iot security detection. In Proceedings of the International Symposium on Ambient Intelligence, L’Aquila, Italy, 13–15 July 2022; Springer: Cham, Switzerland, 2022; pp. 187–196. [Google Scholar]
- Roy, K.; Kim, M.K. Applying Quantum Search Algorithm to Select Energy-Efficient Cluster Heads in Wireless Sensor Networks. Electronics 2022, 12, 63. [Google Scholar] [CrossRef]
- Botsinis, P.; Alanis, D.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Hanzo, L. Quantum search algorithms for wireless communications. Ieee Commun. Surv. Tutor. 2018, 21, 1209–1242. [Google Scholar] [CrossRef] [Green Version]
- Botsinis, P.; Ng, S.X.; Hanzo, L. Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design. IEEE Access 2013, 1, 94–122. [Google Scholar] [CrossRef]
- Botsinis, P.; Alanis, D.; Feng, S.; Babar, Z.; Nguyen, H.V.; Chandra, D.; Ng, S.X.; Zhang, R.; Hanzo, L. Quantum-assisted indoor localization for uplink mm-wave and downlink visible light communication systems. IEEE Access 2017, 5, 23327–23351. [Google Scholar] [CrossRef]
- Griol-Barres, I.; Milla, S.; Cebrián, A.; Mansoori, Y.; Millet, J. Variational quantum circuits for machine learning. an application for the detection of weak signals. Appl. Sci. 2021, 11, 6427. [Google Scholar] [CrossRef]
Work | Paradigm | Topic | Network |
---|---|---|---|
Alanis [51] | gate-based | routing | wireless |
Alanis [49] | gate-based | routing | wireless |
Alanis [50] | gate-based | routing | wireless |
Barillaro [47] | annealing | planning | wireless |
Barletta [72] | annealing | classification | cyber |
Bass [53] | annealing | coverage | satellite |
Bern [54] | annealing | power optimisation | wireless |
Boev [59] | QUBO | Assignment | fixed |
Botsinis [75] | gate-based | searching | wireless |
Botsinis [76] | gate-based | searching | wireless |
Botsinis [74] | gate-based | searching | wireless |
Choi [42] | gate-based | scheduling | wireless |
Dixit [71] | annealing | classification | cyber |
Engel [60] | digital annealing | flow problem | fixed |
Feld [61] | annealing | compression | data |
Gao [69] | annealing | classification | cyber |
Godar [62] | annealing | planning | fixed |
Gong [68] | gate-based | classification | cyber |
Griol [77] | gate-based | classification | wireless |
Kalinin [67] | gate-based | classification | cyber |
Kasi [44] | annealing | scheduling | wireless |
Kim [46] | annealing | scheduling | wireless |
Kim [45] | annealing | decoding | wireless |
Krauss [63] | annealing | shortest path | general |
Milic [58] | gate-based | prediction | wireless |
Nicesio [64] | gate-based | classification | cyber |
Payares [66] | gate-based | classification | cyber |
Phillipson [57] | annealing+gate-based | classification | wireless |
Roy [73] | gate-based | searching | wireless |
Saravanan [43] | annealing | scheduling | wireless |
Urgelles [48] | gate-based | routing | wireless |
Vista [41] | annealing | scheduling | IoT |
Wang [39] | annealing | scheduling | wireless |
Wang [40] | annealing | scheduling | wireless |
Wu [70] | annealing | classification | cyber |
Wurtz [52] | gate-based | routing | wireless |
Zaman [56] | gate-based | scheduling | wireless |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phillipson, F. Quantum Computing in Telecommunication—A Survey. Mathematics 2023, 11, 3423. https://doi.org/10.3390/math11153423
Phillipson F. Quantum Computing in Telecommunication—A Survey. Mathematics. 2023; 11(15):3423. https://doi.org/10.3390/math11153423
Chicago/Turabian StylePhillipson, Frank. 2023. "Quantum Computing in Telecommunication—A Survey" Mathematics 11, no. 15: 3423. https://doi.org/10.3390/math11153423
APA StylePhillipson, F. (2023). Quantum Computing in Telecommunication—A Survey. Mathematics, 11(15), 3423. https://doi.org/10.3390/math11153423