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Abstract: This paper is devoted to developing a more refined mathematical theory for designing the
previously proposed membrane deflection-based rain gauges. The differential-integral equations
governing the large deflection behavior of the membrane are improved by modifying the geometric
equations, and more accurate power-series solutions of the large deflection problem are provided,
resulting in a new and more refined mathematical theory for designing such rain gauges. Examples
are presented to illustrate how to analyze the convergence of the power-series solutions and how to
numerically calibrate membrane deflection-based linear rain gauges. In addition, some important
issues are demonstrated, analyzed, and discussed, such as the superiority of the new mathematical
theory over the old one, the reason why the classical geometric equations cause errors, and the
influence of changing design parameters on the input–output relationships of rain gauges.

Keywords: conductive membrane; transversely loading; axisymmetric deformation; large deflection;
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1. Introduction

Many thin films are able to exhibit large elastic deflections when subjected to external
loads [1–6], which makes it possible to develop devices or instruments based on film de-
flection [7–12]. In our previous study [13], to overcome the shortcomings of the existing
rain gauges, a new type of membrane deflection-based rain gauge was proposed, which in-
volves a liquid–structure interaction of a peripherally fixed circular membrane under liquid
weight loading. Such a fluid–solid coupling problem presents serious analytical difficulties,
which involves the analytical solution to differential-integral governing equations. The
mathematical theory for designing such rain gauges, which is presented in our previous
study [13], is observed to be inaccurate. It is suitable only for the design of nonlinear (rather
than linear) rain gauges, because the ranges of the nearly-linear (seemingly following a
linear-dependent relationship) segments in the nonlinear input–output relationships of the
rain gauges, which it can provide, are too small or too narrow. The main purpose of this
study is to present a new and more accurate mathematical theory suitable for the design of
both nonlinear and linear rain gauges.

The precipitation sensors are generally divided into three major standard categories:
manual rain gauges, tipping-bucket rain gauges [14–18], and weighing rain gauges [19,20],
in addition to novel optical infrared sensors [21–23]. Among them, the most popular are the
tipping-bucket rain gauges, as they are simple, robust, suitable for different data loggers,
and provide an available point measurement, especially suitable for installation in remote
areas. Applications of tipping-bucket gauges (also including weighing rain gauges) usually
presuppose the static or dynamic calibrations in the laboratory and in the field [24–27],
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and although very troublesome, they are necessary to do, otherwise, the measurements
of precipitation will be accompanied by errors [28–31]. In general, due to various factors,
such as calibration errors, the measurements of precipitation may be underestimated by
5% to 40% [32]. In our previous study [13], we proposed developing a new type of rain
gauge using the elastic deflection of conductive membranes, namely the membrane elastic
deflection-based rain gauge. As opposed to tipping-bucket or weighing rain gauges, this
new type of rain gauge does not require performing the calibration for volumetric metering
of rainwater, thus avoiding the measurement errors of precipitation caused by this.

The basic configuration and working principle of a membrane deflection-based rain
gauge are shown in Figure 1. The rainwater is collected by the rainwater collector funnel
that is placed outside. The area of the upward opening of the rainwater collector funnel
will be used to determine the amount of rainfall per unit area. The conductive circular
membrane is used as the upper electrode plate of capacitors and is fixed to the wall of the
circular tank when it is initially flat, resulting in the circular rainwater-collecting tank. The
collected rainwater flows into the circular rainwater-collecting tank from the rainwater
collector funnel, resulting in the deflection of the conductive circular membrane. Therefore,
the upper electrode plate is called a movable electrode plate due to the membrane deflection,
while the lower electrode plate, thickly coated with the insulator layer, which is made of a
conductive circular thin plate, is an unmovable electrode plate because it is fixed on the
substrate. The non-parallel plate variable capacitor between the upper and lower electrode
plates is made of two capacitors in series: one is the non-parallel plate variable capacitor
between the movable upper electrode plate and the insulator layer, and the other is the
parallel plate fixed capacitor between the insulator layer and the unmovable lower electrode
plate. The dielectric material between the upper electrode plate and the insulator layer is
air, and a small hole is opened in the wall of the circular tank to allow air to pass through,
which is located between the upper electrode plate and the insulator layer (see Figure 1).
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Obviously, the collected rainwater in the circular rainwater-collecting tank, as an
external load acting on the conductive circular membrane, causes the elastic deflection of
the conductive circular membrane, determines the spatial geometry of the movable upper
electrode plate (i.e., the deflected conductive circular membrane), and thus, determines
the capacitance of the non-parallel plate variable capacitor between the movable upper
electrode plate and the insulator layer. Therefore, if the magnitude of the external loads
acting on the conductive circular membrane is defined by the volume of the collected
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rainwater in the circular rainwater-collecting tank, then, once the elastic behavior of the
conductive circular membrane under the external loads is analytically solved, the volume
of the collected rainwater in the circular rainwater-collecting tank can be determined by
using the deflection analytical solution. At the same time, the spatial geometry of the
deflected conductive circular membrane (i.e., the movable upper electrode plate) can also
be determined by using the deflection analytical solution; that is, the capacitance of the
non-parallel plate variable capacitor between the movable upper electrode plate and the
insulator layer can be determined by using the deflection analytical solution. On the other
hand, the capacitance of the parallel plate fixed capacitor between the insulator layer
and the unmovable lower electrode plate is constant and, for given design parameters,
can be determined by calculation. Therefore, the total capacitance of the non-parallel
plate variable capacitor between the upper and lower electrode plates, which can be
determined by measurements, is in one-to-one correspondence with the volume of the
collected rainwater in the circular rainwater-collecting tank. In other words, the volume
of the collected rainwater in the circular rainwater-collecting tank can be determined by
measuring the total capacitance of the non-parallel plate variable capacitor between the
upper and lower electrode plates. Usually, it is customary to express the rainfall in terms
of the height of rainfall per unit area per unit time. Therefore, since any two capacitance
measurements will result in two values of volume of the collected rainwater in the circular
rainwater-collecting tank, the height of rainfall per unit area per unit time can finally
be determined by the volume difference between the two measurements divided by the
upward opening area of the rainwater collector funnel, and by the time difference between
the two measurements.

However, it can be seen from Figure 1 that there is an interaction between the applied
rainwater loads and the deflected conductive circular membrane. The rainwater applied
to the conductive circular membrane, as an external load acting on the membrane, gives
rise to the deflection of the membrane. In turn, the deflection change gives rise to the
distribution change of the rainwater on the conductive circular membrane, i.e., the change
in the external loads acting on the membrane. In other words, the liquid action causes
the solid response, and in turn, the solid response changes the liquid action, which is
commonly referred to as the fluid–solid coupling or interaction problem. Previous studies
have shown that the elastic behavior of the conductive circular membrane can be described
or governed by a set of differential-integral equations, and the size of membrane deflections
has a great influence on the accuracy of the established governing equations [33–35]. In
general, it is sufficient to formulate governing equations with lower precision for small
deflection problems, because high-precision governing equations will bring difficulties to
the subsequent analytical solution. However, if the governing equations with low precision
are used for large deflection problems, errors are inevitable. The governing equations
used in [13] are the governing equations with low precision, and therefore, only apply to
small deflection problems, not to large deflection problems. However, the elastic deflection
exhibited by the conductive circular membrane in Figure 1 may reach half of the radius
of the circular membrane; therefore, the governing equations used in [13] are practically
inapplicable in this case. Therefore, it is recommended that the mathematical theory for
designing membrane deflection-based rain gauges, presented in [13], should not be used to
avoid causing errors.

In this paper, the differential-integral equations governing the large deflection be-
havior of the conductive circular membrane are improved by modifying the geometric
equations, and more accurate power-series solutions of the large deflection problem are
presented, resulting in a new and more refined mathematical theory for designing mem-
brane deflection-based rain gauges. The remainder of this paper is organized as follows. In
the following section, the liquid–structure coupling problem in Figure 1: the large deflec-
tion problem of the peripherally fixed conductive circular membrane under liquid weight
loading, is reformulated, the power-series method for differential equations is used to
analytically solve the resulting differential-integral governing equations, and examples are
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presented to illustrate how to numerically analyze the convergence of the resulting power-
series solutions. In Section 3, the analytical relationships between the input capacitance
and the output rainwater volume are derived. Examples are provided to illustrate how to
numerically calculate the nonlinear input–output relationships of the membrane deflection-
based linear rain gauges, and the clear differences between the numerical results calculated
by using the new and old mathematical theories are graphically shown. Then, an example
is presented to illustrate how to numerically calibrate a membrane deflection-based linear
rain gauge. In Section 4, some important issues are analyzed and discussed, such as the
reason why the classical geometric equations cause errors, and the influence of changing
design parameters on the input–output relationships of membrane deflection-based rain
gauges. The concluding remarks are presented in Section 5.

2. Governing Equations and Power-Series Solutions
2.1. Governing Equations

Suppose that an initially flat, conductive, circular membrane with radius a, thickness h,
Poisson’s ratio ν, and Young’s modulus of elasticity E is fixed peripherally at the inner wall
of the rainwater-collecting tank, as shown in Figure 1, and then it is deflected toward the
insulator layer due to the action of the collected rainwater in the rainwater-collecting tank;
that is, the action of the so-called liquid weight loading, denoted by q(r), where the height
of the rainwater above the plane in which the initially flat, peripherally fixed, conductive,
circular membrane is located is denoted by H. A free body is taken from the central portion
of the deflected circular membrane in Figure 1, whose radius is 0 ≤ r ≤ a, to study its
static problem of equilibrium, as shown in Figure 2, where the origin, o, of the introduced
cylindrical coordinate system (r, ϕ, w) is placed in the centroid of the initially flat circular
membrane. The dash-dotted line represents the geometric middle plane of the initially
flat circular membrane in which the polar coordinate plane (r, ϕ) is located, r, ϕ, and w
are the radial, circumferential, and transverse coordinates, respectively, w also denotes the
transverse displacement of the deflected circular membrane under the action of the loads,
q(r), σr denotes the radial stress, and θ denotes the slope angle at a point on the geometric
middle plane of the deflected circular membrane.
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In particular, it is noted that the external loads, q(r), acting on the conductive circular
membrane should include the actions of two parts of rainwater: one is the rainwater with
the height H above the polar plane (r, ϕ), and the other is the rainwater with the height w(r)
below the polar plane (r, ϕ). At point r, the total height of the collected rainwater is equal
to H plus w(r).

The out-of-plane equilibrium equation can be derived as follows. The external force
F(r) acting on the free body, no matter how the circular membrane is deflected, is always
downward, and is given by

F(r) =
∫ r

0
q(r)dr = ρ g

∫ r

0
[H + w(r)] · 2πrdr = ρ gπr2H + 2πρ g

∫ r

0
w(r)rdr. (1)
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The upward force is only the component of the membrane force σrh acting on the boundary
r. Therefore, the out-of-plane equilibrium condition, when the resultant force in the vertical
direction is equal to zero, yields

2πrσrh sin θ = F(r) = ρ gπr2H + 2πρ g
∫ r

0
w(r)rdr, (2)

where
sin θ = 1/

√
1 + 1/ tan2 θ = 1/

√
1 + 1/(−dw/dr)2. (3)

After substituting Equation (3) into Equation (2), the out-of-plane equilibrium equation
may finally be written as

2rσrh√
1 + 1/(−dw/dr)2

= ρgr2H + 2ρg
∫ r

0
w(r)rdr. (4)

The in-plane equilibrium equation is [13]

d
dr

(rσr)− σt = 0, (5)

where σt denotes the circumferential stress.
The classic geometric equations used in [13] do not fully consider the contribution of

deflection to the geometric relationship between radial strain and radial displacement. The
classical geometric equations have been improved in [34]. If the radial and circumferential
strains are denoted by er and et, and the radial displacement is denoted by u, then the
improved geometric equations may be written as

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (6)

and
et =

u
r

. (7)

By comparing Equation (6) here with Equation (6) presented in [13], it can be seen that the
radial geometric equation here more fully considers the contribution of deflection to the
geometric relationship between radial strain and radial displacement.

In addition, the physical equations, i.e., the relations of stress and strain, are still
assumed to follow the generalized Hooke’s law,

σr =
E

1− ν2 (er + νet) (8)

and
σt =

E
1− ν2 (et + νer). (9)

2.2. Boundary Conditions

Equations (4)–(9) are six governing equations for solving stresses σr and σt, strains er
and et, and displacements u and w. Equations (4)–(19) can be solved by using the following
boundary conditions

dw
dr

= 0 at r = 0, (10)

et = 0 at r = a (11)

and
w = 0 at r = a. (12)
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2.3. Power-Series Solutions

Substituting Equations (6) and (7) into Equations (8) and (9) to eliminate er and et in
Equations (8) and (9) yields

σr =
E

1− ν2

{
[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 + ν
u
r

}
(13)

and

σt =
E

1− ν2

{
u
r
+ ν[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− ν

}
. (14)

Eliminating “
[(

1 + du
dr

)2
+
(

dw
dr

)2
]1/2

” from Equations (13) and (14) and then further

eliminating σt by Equation (5) yields

u
r
=

1
E
(σt − νσr) =

1
E
[

d
dr

(rσr)− νσr]. (15)

After substituting the u in Equation (15) into Equation (14), the usually so-called consistency
equation can be written as{

d
dr [r

d
dr (rσrh)]

}2
+ 2Eh d

dr [r
d
dr (rσrh)]− 2v d

dr (rσrh)× d
dr [r

d
dr (rσrh)]

+2vσrh d
dr (rσrh)− 2Eh(σrh)− (σrh)2 + E2h2( dw

dr )
2
= 0

. (16)

Let us proceed to the following nondimensionalization

W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, H0 =
H
a

, G =
ρga2

Eh
, (17)

and transform Equations (4), (5), and (16) into

4x2S2
r (−

dW
dx

)
2
− G2[(−dW

dx
)

2
+ 1][

∫ x

0
2xW(x)dx + x2H0]

2
= 0, (18)

St=Sr + x
dSr

dx
(19)

and {
d

dx [x
d

dx (xSr)]
}2

+ 2 d
dx [x

d
dx (xSr)]− 2v d

dx (xSr)× d
dx [x

d
dx (xSr)]

+2vSr
d

dx (xSr)− 2Sr − S2
r + ( dW

dx )
2
= 0

. (20)

After considering Equations (7) and (15), the boundary conditions, Equations (10)–(12) can
be further transformed into

dW
dx

= 0 at x = 0, (21)

(1− ν)Sr + x
dSr

dx
= 0 at x = 1 (22)

and
W = 0 at x = 1. (23)

Sr and W can be solved from Equations (18) and (20). To this end, let us expand Sr and
W into the power series in powers of the x, i.e., let

Sr =
∞

∑
i=0

cixi (24)
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and

W =
∞

∑
i=0

dixi. (25)

The recursion formulas for the coefficients ci and di in Equations (24) and (25) can be deter-
mined as follows. After substituting Equations (24) and (25) into Equations (18) and (20), the
similar terms are combined to obtain the sums of coefficients of the x with the same powers.
To ensure that Equations (18) and (20), after being substituted into Equations (24) and (25),
still hold regardless of the value taken by the x in the interval [0, 1], all the sums of coefficients
of the x with the same powers have to simultaneously be equal to zero. This gives rise to a
system containing infinitely more equations with respect to the power-series coefficients ci
and di. The recursion formulas for the coefficients ci and di can be determined by successively
solving this infinite system of equations, as shown in Appendix A, where the coefficients ci
and di are always equal to zero when i is odd, or are expressed as the polynomials of c0 and d0
when i is even.

The remaining two coefficients, c0 and d0, are usually known as the undetermined
constants, and they can be determined by using the boundary conditions at x = 1 as follows.
From Equation (24), the boundary condition Equation (22) gives

(1− ν)
∞

∑
i=0

ci +
∞

∑
i=1

ici = 0, (26)

and from Equation (25), the boundary condition Equation (23) gives

∞

∑
i=0

di = 0. (27)

Since all the coefficients ci and di can be expressed as the polynomials of c0 and d0 (see the
recursion formulas in Appendix A), Equations (26) and (27) contain only the undetermined
constants c0 and d0. As a result, the undetermined constants c0 and d0 can be determined by
simultaneously solving Equations (26) and (27), and with the known c0 and d0, the expressions
of Sr and W can finally be determined. The problem under consideration is thus solved
analytically, where the external loads q(r) applied to the circular membrane are defined by the
parameter H, i.e., the height of the collected rainwater above the polar plane (r, ϕ).

2.4. Convergence Analysis of Power-Series Solutions

As can be seen from the Appendix A, the recursion formulas for the coefficients ci
and di are so complicated that the convergences of the power-series solutions Sr and W
have to be numerically analyzed. To this end, a conductive circular membrane with radius
a = 70 mm, thickness h = 0.3 mm, Young’s modulus of elasticity E = 3.05 MPa, and Poisson’s
ratio ν = 0.45, which is subjected to the actions of the collected rainwater with the height
H = 300 mm and H = 1000 mm, respectively, is used as an example to illustrate how to
conduct a convergence analysis of the power-series solutions Sr and W.

For the convenience of practical calculation operation, all the infinite power series in
Equations (26) and (27) have to be truncated and replaced with their nth partial sums, i.e.,

(1− ν)
n

∑
i=0

ci +
n

∑
i=1

ici = 0 (28)

and
n

∑
i=0

di = 0. (29)

The undetermined constants c0 and d0 are calculated by using Equations (28) and (29),
where the value of the parameter n begins first with 2, then n = 4, n = 6, . . ., and does
not stop until the calculated numerical values of c0 and d0 are sufficiently saturated, as
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shown in Table 1, where H = 300 mm. The variations of c0 and d0 with n are shown in
Figures 3 and 4. It can be seen from Figures 3 and 4 that c0 and d0 converge very well as the
parameter n progressively increases. Therefore, the coefficients ci and di can be calculated
using c0 = 0.19801 and d0 = 0.38702301, i.e., the saturated values of b0 and d0 when n = 34
in Table 1, and the calculated results of ci and di are listed in Table 2. The variations of ci
and di with i are shown in Figures 5 and 6. It can be seen from Figures 5 and 6 that ci and
di converge very quickly as i progressively increases. This means that the power-series
solutions of stress and deflection converge very well at the right end of the interval x ∈ [0, 1],
i.e., at x = 1. On the other hand, the power-series solutions of stress and deflection converge
to c0 and d0 at the left end of the interval x ∈ [0, 1] (i.e., at x = 0, see Equations (24) and (25));
therefore, they converge in the whole interval x ∈ [0, 1].

Table 1. The numerical values of c0 and d0 calculated using different n when a = 70 mm, h = 0.3 mm,
E = 3.05 MPa, ν = 0.45, and H = 300 mm.

n c0 d0

2 1.6096321 × 10−1 3.8879863 × 10−1

4 1.8256583 × 10−1 4.0353242 × 10−1

6 1.8997545 × 10−1 4.0096550 × 10−1

8 1.9331984 × 10−1 3.9755283 × 10−1

10 1.9507474 × 10−1 3.9487555 × 10−1

12 1.9608889 × 10−1 3.9291886 × 10−1

14 1.9671601 × 10−1 3.9135900 × 10−1

16 1.9712404 × 10−1 3.9006109 × 10−1

18 1.9739921 × 10−1 3.8969211 × 10−1

20 1.9759256 × 10−1 3.8911582 × 10−1

22 1.9773075 × 10−1 3.8857772 × 10−1

24 1.9783209 × 10−1 3.8804093 × 10−1

26 1.9790780 × 10−1 3.8747951 × 10−1

28 1.9796534 × 10−1 3.8727428 × 10−1

30 1.9799512 × 10−1 3.8715202 × 10−1

32 1.9800913 × 10−1 3.8703145 × 10−1

34 1.9801000 × 10−1 3.8702301 × 10−1
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Table 2. The numerical values of ci and di calculated using c0 = 0.19801 and d0 = 0.38702301 when
a = 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.45, and H = 300 mm.

i ci di

0 1.9801000 × 10−1 3.8702301 × 10−1

2 −2.2503182 × 10−2 −3.1593609 × 10−1

4 −4.7482704 × 10−3 −4.4147582 × 10−2

6 −1.6728142 × 10−3 −1.4480307 × 10−2

8 −7.4018474 × 10−4 −6.0976418 × 10−3

10 −3.7351168 × 10−4 −3.0261953 × 10−3

12 −2.0567441 × 10−4 −1.4010811 × 10−3

14 −1.2065107 × 10−4 −7.9474886 × 10−4

16 −7.4301711 × 10−5 −4.2051265 × 10−4

18 −4.7576760 × 10−5 −2.1235107 × 10−4

20 −3.5862468 × 10−5 −1.9217554 × 10−4

22 −2.1382054 × 10−5 −1.1071414 × 10−4

24 −1.4877621 × 10−5 −7.7178828 × 10−5

26 −1.0567262 × 10−5 −5.0111706 × 10−5

28 −7.6436405 × 10−6 −3.2987094 × 10−5

30 −5.6194073 × 10−6 −2.1986210 × 10−5

32 −4.1919107 × 10−6 −1.4822624 × 10−5

34 −3.1684580 × 10−6 −1.0100267 × 10−5
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Moreover, the calculated numerical values of c0 and d0 for H = 1000 mm are listed in
Table 3. The variations of c0 and d0 with n are shown in Figures 7 and 8. It can be seen from
Figures 7 and 8 that c0 and d0 also converge very well for H = 1000 mm. The coefficients ci
and di are calculated using c0 = 0.49259866 and d0 = 0.55707220, i.e., the saturated values of b0
and d0 when n = 40 in Table 3, and the calculated results of ci and di are listed in Table 4. The
variations of ci and di with i are shown in Figures 9 and 10. It can be seen from Figures 9 and 10
that ci and di also converge very quickly. Therefore, when H = 1000 mm, the power-series
solutions of stress and deflection also converge in the whole interval x ∈ [0, 1].

Table 3. The numerical values of c0 and d0 calculated using different n when a = 70 mm, h = 0.3 mm,
E = 3.05 MPa, ν = 0.45, and H = 1000 mm.

n c0 d0

2 3.3839845 × 10−1 5.8846359 × 10−1

4 4.0702919 × 10−1 6.3457560 × 10−1

6 4.3696963 × 10−1 6.3275950 × 10−1

8 4.5326724 × 10−1 6.2343005 × 10−1

10 4.6334148 × 10−1 6.1364387 × 10−1

12 4.7011936 × 10−1 6.0483459 × 10−1

14 4.7496794 × 10−1 5.9718707 × 10−1

16 4.7860304 × 10−1 5.9059016 × 10−1

18 4.8143206 × 10−1 5.8407944 × 10−1

20 4.8380208 × 10−1 5.7830109 × 10−1

22 4.8587068 × 10−1 5.7262599 × 10−1

24 4.8774255 × 10−1 5.6754944 × 10−1

26 4.8932959 × 10−1 5.6428763 × 10−1

28 4.9000625 × 10−1 5.6247383 × 10−1

30 4.9075866 × 10−1 5.6025188 × 10−1

32 4.9149346 × 10−1 5.5858188 × 10−1

34 4.9227867 × 10−1 5.5723711 × 10−1

36 4.9240450 × 10−1 5.5719711 × 10−1

38 4.9253201 × 10−1 5.5713711 × 10−1

40 4.9259866 × 10−1 5.5707220 × 10−1
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Table 4. The numerical values of ci and di calculated using c0 = 0.49259866 and d0 = 0.5570722 when a
= 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.45, and H = 1000 mm.

i ci di

0 4.9259866 × 10−1 5.5707220 × 10−1

2 −3.2010543 × 10−2 −4.0340122 × 10−1

4 −9.0232331 × 10−3 −7.6012684 × 10−2

6 −4.0233576 × 10−3 −3.0795960 × 10−2

8 −2.2202114 × 10−3 −1.6031626 × 10−2

10 −1.3908635 × 10−3 −9.4849784 × 10−3

12 −9.4956383 × 10−4 −6.0706292 × 10−3

14 −6.9066665 × 10−4 −4.0999474 × 10−3

16 −5.2777370 × 10−4 −2.8805707 × 10−3

18 −4.1977975 × 10−4 −2.0867243 × 10−3

20 −3.0524980 × 10−4 −1.3494309 × 10−3

22 −2.5218835 × 10−4 −1.1744272 × 10−3

24 −2.3349516 × 10−4 −8.0307410 × 10−4

26 −2.2477177 × 10−4 −6.1001658 × 10−4

28 −2.0318916 × 10−4 −5.5124579 × 10−4
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Table 4. Cont.

i ci di

30 −1.7687008 × 10−4 −4.4422360 × 10−4

32 −1.3653613 × 10−4 −3.5009484 × 10−4

34 −1.0429799 × 10−4 −3.0502913 × 10−4

36 −6.5852655 × 10−5 −2.3420090 × 10−4

38 −4.3771181 × 10−5 −2.0414329 × 10−4

40 −3.0706861 × 10−5 −1.8232860 × 10−4
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3. Numerical Calibration of Membrane Deflection-Based Linear Rain Gauges
3.1. Input–Output Analytical Relationships of Membrane Deflection-Based Rain Gauges

Figure 11 shows the states of a membrane deflection-based rain gauge, where the
initial state refers to the case without the rainwater, and the operating state refers to the
case of the conductive circular membrane (the upper electrode plate) under the rainwater.
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As shown in Figure 11a, before application of the collected rainwater, the conductive
circular membrane (the upper electrode plate) is in its initially flat, undeflected state,
maintains an initial parallel gap g with the insulator layer with thickness t, and forms a
parallel plate capacitor with the insulator layer. Obviously, the total parallel plate capacitor
between the upper and lower electrode plates, whose capacitance is assumed to be denoted
as C0, is comprised of two parallel plate capacitors in series: one is the parallel plate
capacitor between the initially undeflected upper electrode plate and the insulator layer,
whose capacitance is denoted by C1, and the other is the one between the insulator layer
and the lower electrode plate fixed to the substrate, whose capacitance is denoted by C2.
If the vacuum permittivity is denoted by ε0, the relative permittivity of air is εr1, and the
relative permittivity of the insulator layer with thickness t is εr2, then, the capacitance of
the parallel plate capacitor between the initially undeflected upper electrode plate and the
insulator layer may be written as:

C1 =
ε0εr1πa2

g
, (30)

and the capacitance of the parallel plate capacitor between the insulator layer and the lower
electrode plate may be written as:

C2 =
ε0εr2πa2

t
. (31)

Since the reciprocal of the equivalent capacitance of a series capacitor is equal to the sum of
the reciprocal of each series capacitor, the total capacitance of the parallel plate capacitor
between the initially undeflected upper electrode plate and the lower electrode plates may
be written as:

C0 =
C1C2

C1 + C2
=

ε0εr1πa2

g
ε0εr2πa2

t
ε0εr1πa2

g + ε0εr2πa2

t

=
πa2ε0εr1εr2

εr1t + εr2g
. (32)

On the other hand, after application of the collected rainwater, as shown in Fig-
ure 11b, the conductive circular membrane (the upper electrode plate) is in a deflected

state, whose spatial geometry is governed by the deflection solution: w(r) = a
∞
∑

i=0
di(

r
a )

i, see

Equations (17) and (25). Therefore, at this time, the capacitor between the upper electrode
plate and the insulator layer is changed from the original parallel plate capacitor with the
capacitance C1 to the current, non-parallel plate capacitor with the capacitance C′1 . The
expression of capacitance C′1 can be derived as follows. A micro-area element, which is
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formed by the increments of radial coordinate ∆r and circumferential coordinate ∆ϕ, is
taken, whose area ∆S may be written as:

∆S =
(r + ∆r)2∆ϕ

2
− r2∆ϕ

2
= r∆r∆ϕ +

1
2
(∆r)2∆ϕ. (33)

Therefore, ∆S can be reduced to r∆r∆ϕ after ignoring the higher-order terms in
Equation (33). Obviously, this micro-area element still corresponds to a non-parallel plate
capacitor. However, since it can be made very small, this non-parallel plate capacitor can
be approximately regarded as a parallel plate capacitor with a parallel gap g-w(r), whose
capacitance ∆C′1 may be approximated as:

∆C′1 = ε0εr1
r∆r∆ϕ

g− w(r)
. (34)

By integrating both sides of Equation (34), the capacitance C′1 of the non-parallel plate
capacitor between the deflected upper electrode plate and the insulator layer may finally
be written as:

C′1 =
∫ a

0

∫ 2π

0
ε0εr1

r
g− w(r)

dϕdr = 2πε0εr1

∫ a

0

r
g− w(r)

dr. (35)

Therefore, the total capacitance C of the non-parallel plate capacitor between the deflected
upper electrode plate and the lower electrode plate may finally be written as:

C =
C′1C2

C′1 + C2
=

2πa2ε0εr1εr2
∫ a

0
r

g−w(r)dr

2εr1t
∫ a

0
r

g−w(r)dr + εr2a2
. (36)

Obviously, before application of the collected rainwater, the upper electrode plate (the
conductive circular membrane) is in its initially flat, undeflected state, that is, w(r) ≡
0. Therefore, it can be seen by comparing Equation (36) with Equation (32), such that
Equation (36) is able to regress to Equation (32) if w(r) in Equation (36) is set equal to 0. This
implies that the derivation of Equation (36) is correct.

However, as seen in Section 2, the closed-form solutions of the conductive circular
membrane under the action of the liquid loads q(r) are presented in power-series form,
the external loads q(r) applied to the conductive circular membrane are defined by the
parameter H (the height of the collected rainwater above the polar plane (r, ϕ)), and
all the power-series coefficients of the stress and deflection solutions are dependent on
the parameter H (see Appendix A). This means that Equation (36) yields the analytical
relationship between the total capacitance C and the rainwater height H, rather than the
desired analytical relationship between the total capacitance C and the rainwater volume V,
which is essential to the numerical calibration of the rain gauge to be designed. Therefore,
the volume V of the rainwater collected in the rainwater-collecting tank can only be
determined after the deflection solution w(r) is determined with the parameter H. To this
end, a micro-volume element, which is formed by the approximate height, H + w(r), and the
increments of the radial coordinate ∆r and circumferential coordinate ∆ϕ, is taken, whose
volume ∆V may be approximated as:

∆V = [H + w(r)][
(r + ∆r)2∆ϕ

2
− r2∆ϕ

2
] = [H + w(r)][r∆ϕ∆r +

1
2

∆ϕ(∆r)2]. (37)

Therefore, ∆V can be reduced to [H + w(r)]r∆r∆ϕ after ignoring the higher-order terms in
Equation (37). By integrating both sides of Equation (37), the volume V of the rainwater
collected in the rainwater-collecting tank may finally be written as:

V =
∫ a

0

∫ 2π

0
[H + w(r)]rdϕdr = πr2H + 2π

∫ a

0
w(r)rdr. (38)
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As stated in the Introduction Section, the basic principle of this rain gauge is to
determine the rainwater volume V by measuring the total capacitance C, which implies that
the measured capacitance C is used as input and the volume V to be determined is used as
output. This can be achieved by substituting the w(r) in Equations (36)–(38). Obviously,
however, doing so works only in theory, not in practice, due to the strong nonlinearity
therein; that is, the relationship between the input capacitance C and output volume V has
strong nonlinearity.

3.2. Numerical Calculation of Nonlinear Input–Output Relationships

The proposed membrane deflection-based rain gauges generally need to first be
numerically calibrated before the experimental calibration. In other words, in order to
reduce unnecessary economic losses, material purchase, fabrication, and experimental
calibration can only be considered on the basis of sufficient numerical design and calibration.
During the design stage of a membrane deflection-based rain gauge, the stress solution
provided in Section 2 is used to calculate the maximum stress, σm, of the conductive circular
membrane under the action of the collected rainwater, to ensure that the membrane will not
yield during normal operation. The relationship between input capacitance C and output
volume V has to be graphically presented based on numerical calculations, due to its strong
nonlinearity (see Equations (36) and (38)). In the following, an example is provided to
illustrate how to carry out the numerical calculation and calibration of the relationship
between input capacitance C and output volume V.

The total capacitance C of the non-parallel plate capacitor between the deflected upper
electrode plate and the lower electrode plate (see Figure 11) can be calculated by Equation (36),
while the volume V of the rainwater collected in the rainwater-collecting tank can be calculated
by Equation (38). For comparison under the same conditions, the w(r) in Equations (36) and (38)
is determined by using the deflection solutions provided in this paper and in [13], respectively.
Finally, using the calculated results of input capacitance C and output volume V, the relation-
ships between the input capacitance C and output volume V can be graphically presented.
Suppose that in Figure 11, the conductive circular membrane with radius a = 70 mm, thickness
h = 0.3 mm, and Poisson’s ratio ν = 0.45 is subjected to the action of the collected rainwater with
the height H that progressively increases from 0 mm to 1160 mm, and its Young’s modulus of
elasticity, E, is 7.84 MPa, 3.05 MPa, and 1.55 MPa, respectively. The initial parallel gap between
the initially undeflected upper electrode plate (the undeflected conductive circular membrane)
and the insulator layer, g, is 45 mm, the thickness of the insulator layer, t, is 0.1 mm, the vacuum
permittivity, ε0, is 8.854187817 × 10−12 F/m, the relative permittivity of air, εr1, is 1.000585, and
the relative permittivity of the insulator layer (polystyrene), εr2, is 2.5.

The numerical results calculated by using the deflection solutions presented in Section 2,
including the volume V and height H of the applied rainwater, the undetermined constants
c0 and d0, the maximum stress σm and maximum deflection wm of the conductive circular
membrane, and the total capacitance C, are listed in Table 5 for E = 7.84 MPa, in Table 6 for
E = 3.05 MPa, and in Table 7 for E = 1.55 MPa, respectively. The numerical results calculated
by using the deflection solutions presented in [13] are listed in Table 8 for E = 7.84 MPa,
in Table 9 for E = 3.05 MPa, and in Table 10 for E = 1.55 MPa, respectively. The graphical
relationships between the input capacitance C and output volume V are shown in Figure 12
for E = 7.84 MPa, in Figure 13 for E = 3.05 MPa, and in Figure 14 for E = 1.55 MPa, respectively,
where “Solution 1” refers to the results calculated by using the deflection solution provided
in Section 2, and “Solution 2” refers to the results calculated by using the deflection solution
presented in [13].
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Table 5. The calculation results obtained by using the deflection solution presented in Section 2, when
a = 70 mm, h = 0.3 mm, E = 7.84 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
124,575 5 0.00912651 0.08928599 0.072 6.250 3.260
375,589 20 0.01804884 0.12363215 0.142 8.654 3.372
858,653 50 0.03086522 0.16028735 0.242 11.220 3.501

1,334,678 80 0.04136554 0.18472239 0.324 12.931 3.595
1,650,327 100 0.04768439 0.19800761 0.374 13.861 3.649
2,435,732 150 0.06208688 0.22478540 0.487 15.735 3.766
3,218,327 200 0.07514752 0.24648209 0.589 17.254 3.869
4,778,253 300 0.09889744 0.28076362 0.775 19.653 4.049
6,333,912 400 0.12044591 0.30814841 0.944 21.570 4.210
7,888,224 500 0.14112447 0.33158565 1.106 23.211 4.369
9,439,805 600 0.16035428 0.35188757 1.257 24.632 4.515

10,991,294 700 0.17927879 0.37051281 1.406 25.936 4.668
12,542,859 800 0.19780640 0.38824460 1.551 27.177 4.833
14,090,957 900 0.21564079 0.40241204 1.691 28.169 4.967
15,639,301 1000 0.23265806 0.41685058 1.824 29.180 5.117
17,184,907 1100 0.25131599 0.42593509 1.970 29.815 5.221
18,736,165 1200 0.26785971 0.44219936 2.100 30.954 5.462
20,281,633 1300 0.28472526 0.45204828 2.232 31.644 5.670
21,832,194 1400 0.30154191 0.46626571 2.364 32.638 5.848
23,377,102 1500 0.31713399 0.47601986 2.486 33.321 5.058
24,920,726 1600 0.33252186 0.48436690 2.607 33.906 6.251
26,267,341 1700 0.34772280 0.49535388 2.726 34.675 6.451
27,516,958 1800 0.36575166 0.50602041 2.867 35.421 6.637
28,760,027 1900 0.38062130 0.51340029 2.984 35.938 6.860
30,006,149 2000 0.39534296 0.52352253 3.099 36.647 7.082
31,248,954 2100 0.40992652 0.53041230 3.213 37.129 7.347
32,197,815 2200 0.42738078 0.54009150 3.351 37.806 7.582
33,140,390 2300 0.44171346 0.54657935 3.463 38.261 7.840
34,450,957 2400 0.45593168 0.55589281 3.575 38.912 8.214
35,634,503 2500 0.47304169 0.56504691 3.709 39.553 8.586
36,780,016 2600 0.48704925 0.57405502 3.818 40.184 9.068
37,723,326 2700 0.50095953 0.58092913 3.928 40.665 9.546
38,467,637 2800 0.51477727 0.58867998 4.036 41.208 10.288
39,207,668 2900 0.53050684 0.60001726 4.159 42.001 11.555

Table 6. The calculation results obtained by using the deflection solution presented in Section 2, when
a = 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
146,691 5 0.01970885 0.13184277 0.060 9.229 3.385
404,127 20 0.03649575 0.17618466 0.111 12.333 3.549
895,034 50 0.06113101 0.22518344 0.186 15.763 3.758

1,376,699 80 0.08160197 0.25830933 0.249 18.082 3.918
1,695,396 100 0.09405417 0.27623054 0.287 19.336 4.014
2,487,441 150 0.12268822 0.31281998 0.374 21.897 4.232
3,275,452 200 0.14901856 0.34230622 0.455 23.961 4.435
4,842,819 300 0.19812768 0.38702300 0.604 27.091 4.802
6,409,229 400 0.24266300 0.42806925 0.740 29.965 5.232
7,969,683 500 0.28553745 0.46027746 0.871 32.219 5.653
9,527,928 600 0.32846954 0.48689881 1.002 34.083 6.094

11,080,313 700 0.36913154 0.50797866 1.126 35.556 6.496
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Table 6. Cont.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

12,632,618 800 0.40776782 0.52917831 1.244 37.042 6.989
14,184,999 900 0.45054965 0.54504372 1.374 38.153 7.479
15,733,468 1000 0.49259866 0.55707220 1.502 38.995 8.067
17,293,779 1100 0.52902425 0.58434882 1.614 40.904 9.136
18,219,213 1159 0.55081967 0.59296547 1.680 41.508 9.784

Table 7. The calculation results obtained by using the deflection solution presented in Section 2, when
a = 70 mm, h = 0.3 mm, E = 1.55 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
169,813 5 0.03504216 0.17636915 0.054 12.346 3.530
433,003 20 0.06160905 0.22908031 0.095 16.036 3.758
931,308 50 0.10161546 0.28875958 0.157 20.213 4.069

1,418,300 80 0.13536348 0.32949594 0.209 23.065 4.327
1,740,528 100 0.15660160 0.35132099 0.243 24.592 4.491
2,539,208 150 0.20501025 0.39658974 0.318 27.761 4.882
3,332,226 200 0.24990568 0.43276906 0.387 30.294 5.272
4,911,306 300 0.33517697 0.49068028 0.519 34.348 6.145
6,485,216 400 0.41408249 0.54065885 0.642 37.846 7.336
8,057,472 500 0.49541046 0.58106523 0.768 40.674 9.070
8,843,439 550 0.53204470 0.60338329 0.824 42.237 10.704
9,623,917 600 0.56810397 0.62001403 0.880 43.401 12.794

Table 8. The calculation results obtained by using the deflection solution presented in [13], when
a = 70 mm, h = 0.3 mm, E = 7.84 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
124,588 5 0.00913051 0.08929323 0.072 6.251 3.261
375,633 20 0.01806282 0.12365775 0.142 8.656 3.375
858,691 50 0.03089858 0.16029982 0.242 11.221 3.504

1,334,723 80 0.04141489 0.18475348 0.325 12.933 3.599
1,650,384 100 0.04775642 0.19802746 0.374 13.862 3.657
2,435,884 150 0.06217947 0.22494449 0.487 15.741 3.777
3,218,461 200 0.07526571 0.24665732 0.590 17.260 3.881
4,778,663 300 0.09906146 0.28128970 0.777 19.690 4.073
6,335,174 400 0.12084574 0.30925282 0.944 21.648 4.245
7,889,134 500 0.14131148 0.33286392 1.108 23.300 4.409
9,441,679 600 0.16090029 0.35370677 1.261 24.759 4.575

10,992,711 700 0.17955734 0.37244376 1.408 26.071 4.732
12,543,452 800 0.19807130 0.38955350 1.553 27.269 4.905
14,092,787 900 0.21580643 0.40516165 1.692 28.361 5.091
15,641,994 1000 0.23326902 0.42000069 1.829 29.400 5.349
17,191,522 1100 0.25243719 0.43374474 1.971 30.362 5.649
18,739,873 1200 0.27177709 0.44517926 2.131 31.162 5.958
20,290,603 1300 0.29002133 0.47212330 2.274 33.049 6.315
21,850,279 1400 0.30683175 0.49023351 2.406 34.316 6.770
23,810,192 1500 0.31957734 0.51393343 2.505 35.975 7.440
24,921,876 1600 0.33516431 0.53469018 2.628 37.428 8.040
26,273,301 1700 0.35079983 0.55535388 2.750 38.875 8.850
27,526,771 1800 0.36873324 0.58255698 2.891 40.779 9.950
28,771,321 1900 0.38242337 0.60046679 2.998 42.033 11.221
30,029,618 2000 0.39749640 0.62254338 3.116 43.578 12.750
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Table 9. The calculation results obtained by using the deflection solution presented in [13], when
a = 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
146,724 5 0.06016640 0.13186295 0.060 9.230 3.386
404,212 20 0.03655238 0.17621740 0.111 12.335 3.551
895,253 50 0.06128064 0.22528736 0.187 15.770 3.759

1,376,928 80 0.08183265 0.25841407 0.250 18.092 3.920
1,695,731 100 0.09432359 0.27647647 0.288 19.353 4.017
2,488,099 150 0.12303213 0.31351195 0.375 21.946 4.238
3,276,555 200 0.14965178 0.34321310 0.456 24.025 4.446
4,846,461 300 0.19821688 0.39148280 0.605 27.404 4.850
6,411,526 400 0.24471626 0.42924903 0.746 30.047 5.261
7,978,001 500 0.29208802 0.46270729 0.891 32.389 5.755
9,540,106 600 0.33782439 0.49102081 1.030 34.371 6.272

11,101,273 700 0.38000127 0.51981346 1.159 36.387 6.926
12,661,746 800 0.42426305 0.54443643 1.294 38.111 7.690
14,221,573 900 0.46737880 0.56833220 1.426 39.783 8.692
15,776,926 1000 0.50487106 0.59139964 1.540 41.398 10.034
17,328,075 1100 0.54153188 0.61012303 1.652 42.709 11.750
18,253,522 1159 0.56126944 0.62057931 1.712 43.441 13.246

Table 10. The calculation results obtained by using the deflection solution presented in [13], when
a = 70 mm, h = 0.3 mm, E = 1.55 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
169,902 5 0.03509797 0.17643908 0.054 12.351 3.530
433,137 20 0.06176587 0.22910474 0.096 16.037 3.759
931,759 50 0.10190303 0.28922995 0.158 20.246 4.074

1,419,348 80 0.13587112 0.33052673 0.211 23.137 4.338
1,741,524 100 0.15675307 0.35309502 0.243 24.717 4.504
2,541,171 150 0.20535898 0.39945876 0.318 27.962 4.953
3,335,829 200 0.25076296 0.43702251 0.389 30.592 5.503
4,917,064 300 0.33611589 0.49773713 0.521 34.846 6.827
6,491,273 400 0.41649287 0.54717865 0.646 38.303 8.776
8,061,359 500 0.49382544 0.58981307 0.765 41.287 11.898
8,845,243 550 0.53214314 0.60880232 0.825 42.616 14.857
9,629,215 600 0.56999709 0.62751931 0.883 43.926 18.896

It can be seen from Figures 12–14 that the C-V relationships are indeed nonlinear,
and that the difference between the C-V relationship calculated by using the deflection
solution provided in this paper and that calculated by using the deflection solution in [13],
i.e., the difference between “Solution 1” and “Solution 2” in Figures 12–14, is very clear,
and it increases with the increase of the Young’s modulus of elasticity E. This difference is
caused by the use of the improved differential-integral governing equations (see Section 2).
In addition, from Figures 12–14, it can be observed that the ranges of the nearly-linear
segments (which seem to follow a linear variation trend) in the nonlinear C-V relationships
calculated by using the deflection solution in this paper are wider than the ranges of the
nearly-linear segments (which seem to follow a linear variation trend) in the nonlinear C-V
relationships calculated by using the deflection solution presented in [13] (see “Solution 1”
and “Solution 2” in Figures 12–14). For instance, the ranges of the nearly-linear segments of
E = 3.05 MPa are about C = 3.5 pF–8 pF and V = 15,733,468 mm3 in “Solution 1”, and C = 3.5
pF–6 pF and V = 9,540,106 mm3 in “Solution 2”, respectively (see Figure 13). The differences
of 2 pF and 6,193,362 mm3 are very valuable for designing linear rain gauges, especially the
2 pF input capacitance, C. This is caused by the use of the improved differential-integral
governing equations in Section 2.
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Figure 13. The relationships between the input capacitance C and output volume V when a = 70 mm,
h = 0.3 mm, E = 3.05 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm, where “Solution 1” refers to the
results calculated by using the deflection solution presented in Section 2, and “Solution 2” refers to
the results calculated by using the deflection solution provided in [13].



Mathematics 2023, 11, 3438 20 of 32Mathematics 2023, 11, x FOR PEER REVIEW 21 of 39 
 

 

 
Figure 14. The relationships between the input capacitance C and output volume V when a = 70 mm, 
h = 0.3 mm, E = 1.55 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm, where “Solution 1” refers to the results 
calculated by using the deflection solution presented in Section 2, and “Solution 2” refers to the 
results calculated by using the deflection solution provided in [13]. 

It can be seen from Figures 12–14 that the C-V relationships are indeed nonlinear, and 
that the difference between the C-V relationship calculated by using the deflection solu-
tion provided in this paper and that calculated by using the deflection solution in [13], i.e., 
the difference between “Solution 1” and “Solution 2” in Figures 12–14, is very clear, and 
it increases with the increase of the Young’s modulus of elasticity E. This difference is 
caused by the use of the improved differential-integral governing equations (see Section 
2). In addition, from Figures 12–14, it can be observed that the ranges of the nearly-linear 
segments (which seem to follow a linear variation trend) in the nonlinear C-V relation-
ships calculated by using the deflection solution in this paper are wider than the ranges 
of the nearly-linear segments (which seem to follow a linear variation trend) in the non-
linear C-V relationships calculated by using the deflection solution presented in [13] (see 
“Solution 1” and “Solution 2” in Figures 12–14). For instance, the ranges of the nearly-
linear segments of E = 3.05 MPa are about C = 3.5 pF–8 pF and V = 15733468 mm3 in “So-
lution 1”, and C = 3.5 pF–6 pF and V = 9540106 mm3 in “Solution 2”, respectively (see 
Figure 13). The differences of 2 pF and 6193362 mm3 are very valuable for designing linear 
rain gauges, especially the 2 pF input capacitance, C. This is caused by the use of the im-
proved differential-integral governing equations in Section 2. 

3.3. An Example of Numerical Calibration for Linear Rain Gauges 
The reason why in [13], only nonlinear rain gauges are discussed, and linear rain 

gauges are not considered, is that the range of the nearly-linear segment obtained is too 
narrow for linear fitting. We will not discuss nonlinear fitting here, but only provide an 
example to illustrate how to conduct the linear fitting for numerically calibrating a linear 
rain gauge. The data for the output volume V and input capacitance C in Table 6, i.e., 
146,691 mm3–15,733,468 mm3 for the output volume V and 3.385 pF–8.067 pF for the input 
capacitance C, are used to numerically calibrate a linear rain gauge, and the obtained lin-
ear relationship between the output volume V and input capacitance C is, via least-squares 
straight-line-fitting,  

= −3524947 12176469V C . (39) 

Figure 14. The relationships between the input capacitance C and output volume V when a = 70 mm,
h = 0.3 mm, E = 1.55 MPa, ν = 0.45, t = 0.1 mm, and g = 45 mm, where “Solution 1” refers to the
results calculated by using the deflection solution presented in Section 2, and “Solution 2” refers to
the results calculated by using the deflection solution provided in [13].

3.3. An Example of Numerical Calibration for Linear Rain Gauges

The reason why in [13], only nonlinear rain gauges are discussed, and linear rain
gauges are not considered, is that the range of the nearly-linear segment obtained is too
narrow for linear fitting. We will not discuss nonlinear fitting here, but only provide an
example to illustrate how to conduct the linear fitting for numerically calibrating a linear
rain gauge. The data for the output volume V and input capacitance C in Table 6, i.e.,
146,691 mm3–15,733,468 mm3 for the output volume V and 3.385 pF–8.067 pF for the input
capacitance C, are used to numerically calibrate a linear rain gauge, and the obtained linear
relationship between the output volume V and input capacitance C is, via least-squares
straight-line-fitting,

V = 3524947C− 12176469. (39)

The fitting effect is shown in Figure 15. Therefore, such a linear rain gauge should
be calibrated to about 3525 mm3 per 1 pF input capacitance C, when designing its analog
circuit. Obviously, for any two capacitance measurements, the difference in measured
capacitances, ∆C, corresponds to the difference in the rainwater volumes to be measured,
∆V, while the volume difference, ∆V, divided by the time difference between the two
capacitance measurements, ∆t, is the rainfall volume per unit time. However, it is usually
customary to express rainfall by the height of the rainfall per unit area per unit time. For
example, if the upward opening area A of the rainwater collector funnel (see Figure 1) is
equal to one square meter, and if the height of rainfall is expressed in centimeters, then the
rainfall Rf, measured by this linear rain gauge, can be simply calibrated as:

R f = (0.352∆C− 1.218)/∆t, (40)

where Rf is measured in units per centimeter per square meter per unit time, and ∆t can be
measured in units per second, per minute, per hour, per day, per month, or even per year.



Mathematics 2023, 11, 3438 21 of 32

Mathematics 2023, 11, x FOR PEER REVIEW 22 of 39 
 

 

The fitting effect is shown in Figure 15. Therefore, such a linear rain gauge should be 
calibrated to about 3525 mm3 per 1 pF input capacitance C, when designing its analog 
circuit. Obviously, for any two capacitance measurements, the difference in measured ca-
pacitances, ΔC, corresponds to the difference in the rainwater volumes to be measured, 
ΔV, while the volume difference, ΔV, divided by the time difference between the two ca-
pacitance measurements, Δt, is the rainfall volume per unit time. However, it is usually 
customary to express rainfall by the height of the rainfall per unit area per unit time. For 
example, if the upward opening area A of the rainwater collector funnel (see Figure 1) is 
equal to one square meter, and if the height of rainfall is expressed in centimeters, then 
the rainfall Rf, measured by this linear rain gauge, can be simply calibrated as: 

= Δ − Δ(0.352 1.218) /fR C t , (40) 

where Rf is measured in units per centimeter per square meter per unit time, and Δt can 
be measured in units per second, per minute, per hour, per day, per month, or even per 
year. 

 
Figure 15. The least-squares straight-line-fitting for the nearly-linear segment of “Solution 1” in Fig-
ure 13. 

4. Results and Discussion 
The membrane elastic deflection-based rain gauges proposed here have the following 

advantages, in comparison to the traditional tipping-bucket rain gauges (TBRGs) [14–18]. 
First, unlike tipping-bucket rain gauges, these new types of rain gauges do not need to 
conduct the calibration for volumetric metering of rainwater, thus avoiding the measure-
ment errors of precipitation caused by this. Second, these new types of rain gauges can 
achieve continuous rainfall measurements, because the magnitude of the time interval Δt 
between two measurements of the input capacitance C can be arbitrary, while the time 
taken to fill a TBRG bucket with rainwater under a given rainfall intensity is basically 
constant (i.e., the time between two rainfall measurements is basically constant for TBRGs, 

Figure 15. The least-squares straight-line-fitting for the nearly-linear segment of “Solution 1” in
Figure 13.

4. Results and Discussion

The membrane elastic deflection-based rain gauges proposed here have the following
advantages, in comparison to the traditional tipping-bucket rain gauges (TBRGs) [14–18].
First, unlike tipping-bucket rain gauges, these new types of rain gauges do not need to con-
duct the calibration for volumetric metering of rainwater, thus avoiding the measurement
errors of precipitation caused by this. Second, these new types of rain gauges can achieve
continuous rainfall measurements, because the magnitude of the time interval ∆t between
two measurements of the input capacitance C can be arbitrary, while the time taken to fill a
TBRG bucket with rainwater under a given rainfall intensity is basically constant (i.e., the
time between two rainfall measurements is basically constant for TBRGs, so the continuous
rainfall measurements cannot be achieved.) Therefore, these new types of rain gauges
can be used in cases where continuous rainfall measurements are required but cannot be
satisfied by TBRGs.

It can be seen from Section 3.2 that the closed-form solution presented in Section 2 is
more suitable for designing linear rain gauges, in comparison to the closed-form solution
in [13]. It can be seen by comparing Section 2 in this paper with Section 2 in [13] that the out-of-
plane and in-plane equilibrium equations, physical equations, and circumferential geometric
equation used in this paper are the same as those used in [13], and only the radial geometric
equation used in this paper is different from that used in [13]. Therefore, the difference
between the power-series solutions presented in this paper and those in [13] is entirely caused
by the different radial geometric equations used. The difference between the radial geometric
equation used in this paper and that used in [13] can be seen in Section 4.1 below.

The reason for the emphasis on linear rain gauges is that the circuit design of linear
sensors is much easier than that of nonlinear sensors. Linear sensors can use analog circuit
technology, while nonlinear sensors often can only use digital circuits. Therefore, under the
same conditions, the use of a linear sensor has more advantages than the use of a nonlinear
sensor, such as simple, easy to implement, low cost, good stability, and strong adaptability
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to the use environment. However, if a linear rain gauge is to be designed and calibrated,
then the ranges of the input capacitance C as well as the output volume V are usually
difficult to fully meet the actual use requirements. At this time, it is often necessary to
consider making some compromises, otherwise, the rain gauge design cannot proceed,
as is often the case with the solutions of many engineering problems [35–40]. Therefore,
in this sense, linear rain gauge designs are usually much more difficult, in comparison to
nonlinear rain gauge designs.

In addition, it is obvious that the power-series solutions must be shown to converge
before they can be used in practical computational applications. In other words, a par-
ticular solution in the form of a power series must be analyzed for convergence before
it can be used, otherwise it cannot be used. However, the problem dealt with here, the
liquid–structure interaction of the circular membrane under liquid weight loading (see
Figure 1 and Equation (1)), presents a strong nonlinearity. This leads to the phenomenon
that the characteristic parameters of the problem, the undetermined constants c0 and d0,
strictly depend on the external action q(r) applied to the circular membrane, which is de-
fined by the height H of the collected rainwater above the polar plane (r, ϕ) (see Figure 11).
Therefore, every value of H corresponds to a statics problem, a pair of saturated values
of c0 and d0, which are calculated by progressively increasing the parameter n, and a pair
of particular solutions of stress and deflection, which need to be shown to converge, as
detailed in Section 2.4. As a result, a lot of numerical calculations and convergence analyses
are needed to obtain a usable pair of particular solutions of stress and deflection. Therefore,
from this point of view, it is very important to carry out research on various computational
approaches [41,42].

As can be seen in Section 3.2, the closed-form solution presented in this paper has a
positive effect on changing the range of the nearly-linear segment. In addition, changing some
design parameters, such as Young’s modulus of elasticity E and Poisson’s ratio ν, can also
influence the range of the nearly-linear segment in the nonlinear relationships between the
input capacitance C and the output volume V, as can be seen in Sections 4.2 and 4.3 below.

4.1. Difference between Geometric Equations Used Here and Those Used in [13]

The geometric equations, i.e., the analytical relationships between displacements and
strains, are derived by taking radial and circumferential micro-line elements on the circular
membrane before and after deformation. Imagine that the conductive circular membrane
undergoes an axisymmetric deformation with large deflection under the collected rainwater
(see Figure 11); therefore, a radial micro-straight-line element A′B′ on the initially flat

circular membrane before deformation becomes a radial micro-curve element
_

AB on the
circular membrane after deformation, as shown in Figure 16a, while a circumferential micro-

curve element
_

A′D′ on the initially flat circular membrane before deformation becomes

a circumferential micro-curve element
_

AD on the circular membrane after deformation,
as shown in Figure 16b. The initial length of A′B′ is ∆r, see Figure 16a, and the increment
of the polar angle coordinate ϕ is ∆ϕ; that is, the angle of counterclockwise rotation from
the point A′ to the point D′, see Figure 16b. The coordinate of the point A′ is (r, ϕ, 0), and
its radial and transverse displacements are denoted by u and w, respectively; that is, the
coordinate of the point A is (r + u, ϕ, w). The coordinate of the point B′ is (r + ∆r, ϕ, 0),
and its radial and transverse displacements may be expressed as u(r + ∆r) and w(r + ∆r),
respectively. Therefore, after expanding u(r + ∆r) and w(r + ∆r) into the Taylor series and
ignoring the higher-order terms therein, that is, letting

u(r + ∆r) = u(r) +
du(r)

dr
∆r +

1
2!

d2u(r)
dr2 (∆r)2 + . . . ∼= u(r) +

du(r)
dr

∆r (41)
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and

w(r + ∆r) = w(r) +
dw(r)

dr
∆r +

1
2!

d2w(r)
dr2 (∆r)2 + . . . ∼= w(r) +

dw(r)
dr

∆r, (42)

the geometric dimensions marked on Figure 16a can be obtained.
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_
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_

A′D′ before deformation and a circumferential micro-curve
element

_
AD after deformation.

According to the definition of line strain, the radial line strain when the radial micro-

straight-line element A′B′ becomes the radial micro-curve element
_

AB may be written as
(see Figure 16a)

er =
L _

AB
− LA′B′

LA′B′
, (43)

while the circumferential line strain when the circumferential micro-curve element
_

A′D′

becomes the circumferential micro-curve element
_

AD may be written as (see Figure 16b)

et =
L _

AD
− L _

A′D′

L _
A′D′

. (44)

Obviously, the length of the curve
_

AB may be approximated by that of the straight line AB
(see Figure 16a), that is,

L _
AB
∼= LAB =

√
(∆r +

du
dr

∆r)
2
+ (−dw

dr
∆r)

2
. (45)

Therefore, the radial line strain er may finally be written as

er =
L _

AB
− LA′B′

LA′B′
=

√
(∆r + du

dr ∆r)
2
+ (−dw

dr ∆r)
2 − ∆r

∆r
=

√
(1 +

du
dr

)
2
+ (−dw

dr
)

2
− 1. (46)
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On the other hand, due to L _
AD

= (r + u) · ∆ϕ and L _
A′D′

= r · ∆ϕ (see Figure 16b), the
circumferential line strain et may finally be written as

et =
L _

AD
− L _

A′D′

L _
A′D′

=
(r + u) · ∆ϕ− r · ∆ϕ

r · ∆ϕ
=

u
r

. (47)

Equations (46) and (47) are the radial and circumferential geometric equations used in
this paper, see Equations (6) and (7) in Section 2.1. However, in the derivation of the classical
radial geometric equation, a very inappropriate “assumption”, instead of the “approximation”
in Equation (45), is used. The classical radial geometric equation is derived as follows. With
the assumption of L _

AB
= LA′B′ , it is found that, from Equation (43)

er =
L _

AB
− LA′B′

LA′B′
=

(L _
AB

+ LA′B′)•(L _
AB
− LA′B′)

(L _
AB

+ LA′B′)•LA′B′
=

L2
_

AB
− L2

A′B′

(L _
AB

+ LA′B′)•LA′B′
≈

L2
_

AB
− L2

A′B′

(2LA′B′)•LA′B′
=

L2
_

AB
− L2

A′B′

2L2
A′B′

. (48)

After considering Equation (45) and LA′B′ = ∆r (see Figure 16a), the classical radial geo-
metric equation is finally written as

er =
L _

AB
−L

A′B′
L

A′B′
≈

L2
_
AB
−L2

A′B′

2L2
A′B′

=
(∆r+ du

dr ∆r)
2
+(− dw

dr ∆r)
2−(∆r)2

2(∆r)2 = du
dr + 1

2 (
du
dr )

2
+ 1

2 (−
dw
dr )

2 ∼= du
dr + 1

2 (−
dw
dr )

2
. (49)

From the above derivation, it can be concluded that the classical radial geometric
equation used in [13], i.e., Equation (6) in [13], or Equation (49) in this paper, only applies to
small deflection membranes, and that, no matter how small the deflections, it is essentially
invalid, because the adopted assumption of L _

AB
= LA′B′ does not hold, even for very small

deflections. On the other hand, however, the radial geometric equation used in this paper,
i.e., Equation (6) or (46), is not affected by the size of the deflections, because it uses only
the “approximation” in Equation (45). It is worth noting that the smaller ∆r is, the more
accurate Equation (45) is, and the length of the taken radial micro-straight-line element
A′B′, ∆r, itself is a quantity that can be as small as expected, because the “micro” here
means ∆r→ 0. Therefore, in this sense, the radial geometric equation used in this paper,
i.e., Equation (6) or (46), is, in fact, an exact geometric equation for the large deflection
problems of thin plates or membranes, while the classical one, i.e., Equation (6) in [13] or
Equation (49) in this paper, should be abandoned.

By comparing the governing equations used in Section 2.1 in this paper with those used
in Section 2 in [13], it can be seen that only the radial geometric equation is different, while
other governing equations, such as the circumferential geometry equation, out-of-plane
and in-plane equilibrium equations, and radial and circumferential physical equations,
are completely the same. Therefore, the radial geometric equation used in this paper, i.e.,
Equation (6) or (46), plays a crucial role in improving the performance of the obtained
closed-form solutions, in comparison to the classical radial geometric equation used in [13],
i.e., Equation (6) in [13], or Equation (49) in this paper. Such an improvement results in a
wider range of the nearly-linear segment in the nonlinear C-V relationship calculated by
using the deflection solution obtained in this paper, in comparison with the range calculated
by using the deflection solution obtained in [13] (see Figures 12–14). Such a wider range
of the nearly-linear segment can be used to develop linear rain gauges; therefore, the
closed-form solutions obtained in Section 2 in this paper open up a larger research and
development space for linear rain gauges, while the closed-form solutions in [13] should
be abandoned.

4.2. Effect of Changes in Elasticity Modulus on Input–Output Relationships

The results of the numerical calculation, which are listed in Table 5 for E = 7.84 MPa,
in Table 6 for E = 3.05 MPa, and in Table 7 for E = 1.55 MPa, are used here. The influence of
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changing Young’s modulus of elasticity E on the relationships of the input capacitance C
and output volume V is shown in Figure 17, showing that the degree of linearization of
the C-V relationships can be improved by increasing the value of the Young’s modulus of
elasticity E; in other words, the nonlinearity of the C-V relationships becomes stronger with
the decrease of Young’s modulus of elasticity E. From Figure 17, it can be observed that the
nearly-linear segments in the C-V relationships are about 3–5.6 pF and 18,126,666 mm3 for
E = 7.84 MPa, 3–8 pF and 15,733,468 mm3 for E = 3.05 MPa, and 3–5.6 pF and 4,911,306 mm3

for E = 1.55 MPa.
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4.3. Effect of Changes in Poisson’s Ratio on Input–Output Relationships

In this section, the parameters used in Section 3.2 are still used, except for the Poisson’s
ratio ν; that is, a = 70 mm, thickness h = 0.3 mm, E = 3.05 MPa, t = 0.1 mm, g = 45 mm,
ε0 = 8.854187817 × 10−12 F/m, εr1 = 1.0000585, and εr2 = 2.5. Poisson’s ratio ν here is 0.35
and 0.25, respectively, in order to compare with the case of using v = 0.45 in Section 3.2.
The numerical results calculated by using the deflection solution in Section 2 are listed in
Table 11 for v = 0.35, and in Table 12 for v = 0.25, in addition to the results of numerical
calculation for v = 0.45, which are listed in Table 6. The influence of changing Poisson’s
ratio ν on the relationships of the input capacitance C and output volume V is shown in
Figure 18, showing that the degree of linearization of the C-V relationships can be improved
by increasing the value of Poisson’s ratio ν. In other words, the nonlinearity of the C-V
relationships becomes stronger with the decrease of Poisson’s ratio ν. From Figure 18, it
can be observed that the nearly-linear segments of the C-V relationships are about 3–8 pF
and 15,733,468 mm3 for v = 0.45, 3–6.7 pF and 9,547,325 mm3 for v = 0.35, and 3–6.3 pF and
6,436,267 mm3 for v = 0.25.

Table 11. The calculation results obtained by using the deflection solution presented in Section 2,
when a = 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.35, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
151,249 5 0.01960065 0.13970727 0.060 9.779 3.412
409,891 20 0.03584467 0.18571549 0.109 13.001 3.616
902,358 50 0.05981112 0.23675734 0.182 16.573 3.831
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Table 11. Cont.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

1,385,079 80 0.07975804 0.27130274 0.243 18.991 4.045
1,704,436 100 0.09193828 0.29000494 0.280 20.301 4.145
2,498,392 150 0.11995604 0.32807286 0.366 22.965 4.422
3,287,069 200 0.14605552 0.35864799 0.445 25.105 4.650
4,862,035 300 0.19400944 0.40680981 0.592 28.477 5.121
6,428,063 400 0.23822218 0.44559751 0.726 31.192 5.610
7,973,715 500 0.28096429 0.47906534 0.857 33.534 6.106
9,547,325 600 0.32334823 0.50876616 0.982 35.614 6.658

11,103,956 700 0.36364397 0.53606178 1.109 37.524 7.361
12,660,576 800 0.40189638 0.56152032 1.226 39.306 8.287
14,215,831 900 0.44027831 0.58559057 1.343 40.991 9.758
15,652,977 1000 0.47591760 0.61058872 1.4515 42.741 11.896

Table 12. The calculation results obtained by using the deflection solution presented in Section 2,
when a = 70 mm, h = 0.3 mm, E = 3.05 MPa, ν = 0.25, t = 0.1 mm, and g = 45 mm.

V/mm3 H/mm c0 d0 σm/MPa wm/mm C/pF

0 0 0 0 0 0 3.031
155,370 5 0.01955022 0.14669016 0.059 10.268 3.436
415,069 20 0.03537019 0.19413305 0.107 13.589 3.694
908,752 50 0.05875659 0.24695086 0.179 17.286 3.966

1,392,544 80 0.07835133 0.28269779 0.239 19.789 4.190
1,712,554 100 0.09031799 0.30215501 0.275 21.151 4.326
2,507,038 150 0.11785215 0.34171298 0.359 23.920 4.651
3,296,568 200 0.14306985 0.37344014 0.436 26.141 4.953
4,869,168 300 0.19031987 0.42400135 0.580 29.680 5.545
6,436,267 400 0.23500158 0.46421485 0.717 32.495 6.251
8,002,575 500 0.27645352 0.50295479 0.843 35.207 7.114
9,560,993 600 0.31807374 0.53012719 0.970 37.109 8.122

11,129,019 700 0.34882488 0.57852073 1.064 40.496 9.503
12,031,455 750 0.37620298 0.58646151 1.147 41.052 10.904
12,702,326 800 0.39534789 0.60851844 1.206 42.596 13.009
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5. Concluding Remarks

The main contribution of this paper is that by modifying the geometric equations, the
differential-integral equations governing the elastic behavior of the deflected membrane
were improved, new and more accurate closed-form solutions were presented, and a new
and more accurate mathematical theory for designing membrane deflection-based rain
gauges was provided. The newly provided mathematical theory can be used to design and
numerically calibrate both nonlinear and linear membrane deflection-based rain gauges.
From this study, the following conclusions were drawn.

The classical geometric equations are only applicable to small deflection problems
due to the use of an inappropriate assumption, while the geometric equations used here
abandoned this inappropriate assumption and fully considered the influence of deflection
on geometric relationships, and thus apply to the case of arbitrary deflections.

The ranges of the nearly-linear segments in the nonlinear input–output relationships
of membrane deflection-based rain gauges, obtained by using the newly presented mathe-
matical theory, were indeed larger or wider than those obtained by using the previously
presented mathematical theory. This leads to greater possibilities for developing membrane
deflection-based linear rain gauges.

The nonlinear input–output relationships of membrane deflection-based rain gauges
can be adjusted by changing some important design parameters, such as Young’s modulus
of elasticity E and Poisson’s ratio ν, which provides a direction for selecting an appropriate
conductive circular membrane to meet the range requirements of the input capacitance C
and output volume V, when designing linear or nonlinear rain gauges.

The work presented here is still in the stage of theoretical design, and the future works
will focus on the dynamic problems that may arise when the conductive circular membrane
is loaded by the collected rainwater, as well as the fabrication and experimental calibration
of the rain gauges. In short, there may be some potential limitations or challenges that need
to be addressed.
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Appendix A
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2 − 23040c2c4d2d4 − 23040c0c6d2d4

+960G2d3
2d4 + 20G2d2

4 − 11520c2
2d2

4 − 23040c0c4d2
4 + 4800G2d0d2d2

4 + 45G2d2d6 − 17280c2
2d2d6

−34560c0c4d2d6 + 4680G2d0d2
2d6 − 69120c0c2d4d6 + 8640G2d2

0d4d6 − 25920c2
0d2

6 + 72G2d0d8
−46080c0c2d2d8 + 5760G2d2

0d2d8 − 46080c2
0d4d8 + 4800G2d2d2

4H0 + 4680G2d2
2d6H0

+17280G2d0d4d6H0 + 72G2d8H0 + 11520G2d0d2d8H0 + 8640G2d4d6H2
0 + 5760G2d2d8H2

0)
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d12 = 1
17280c2

0d2
(−2880c4c6d2

2 − 2880c2c8d2
2 − 2880c0c10d2

2 − 5760c2
4d2d4 − 11520c2c6d2d4

−11520c0c8d2d4 − 11520c2c4d2
4 − 11520c0c6d2

4 + 880G2d2
2d2

4 + 960G2d0d3
4 − 17280c2c4d2d6

−17280c0c6d2d6 + 630G2d3
2d6 + 15G2d4d6 − 17280c2

2d4d6 − 34560c0c4d4d6 + 6480G2d0d2d4d6
−25920c0c2d2

6 + 3240G2d2
0d2

6 + 18G2d2d8 − 11520c2
2d2d8 − 23040c0c4d2d8 + 3024G2d0d2

2d8
−46080c0c2d4d8 + 5760G2d2

0d4d8 − 34560c2
0d6d8 + 30G2d0d10 − 28800c0c2d2d10

+3600G2d2
0d2d10 − 28800c2

0d4d10 + 960G2d3
4H0 + 6480G2d2d4d6H0 + 6480G2d0d2

6H0
+3024G2d2

2d8H0 + 11520G2d0d4d8H0 + 30G2d10H0 + 7200G2d0d2d10H0 + 3240G2d2
6H2

0
+5760G2d4d8H2

0 + 3600G2d2d10H2
0)

d14 = 1
1128960c2

0d2
(−80640c2

6d2
2 − 161280c4c8d2

2 − 161280c2c10d2
2 − 161280c0c12d2

2

−645120c4c6d2d4 − 645120c2c8d2d4 − 645120c0c10d2d4 − 322560c2
4d2

4 − 645120c2c6d2
4

−645120c0c8d2
4 + 35840G2d2d3

4 − 483840c2
4d2d6 − 967680c2c6d2d6 − 967680c0c8d2d6

−1935360c2c4d4d6 − 1935360c0c6d4d6 + 124320G2d2
2d4d6 + 201600G2d0d2

4d6 + 315G2d2
6

−725760c2
2d2

6 − 1451520c0c4d2
6 + 241920G2d0d2d2

6 − 1290240c2c4d2d8 − 1290240c0c6d2d8
+44352G2d3

2d8 + 672G2d4d8 − 1290240c2
2d4d8 − 2580480c0c4d4d8 + 462336G2d0d2d4d8

−3870720c0c2d6d8 + 483840G2d2
0d6d8 − 1290240c2

0d2
8 + 840G2d2d10 − 806400c2

2d2d10
−1612800c0c4d2d10 + 208320G2d0d2

2d10 − 3225600c0c2d4d10 + 403200G2d2
0d4d10

−2419200c2
0d6d10 + 1440G2d0d12 − 1935360c0c2d2d12 + 241920G2d2

0d2d12 − 1935360c2
0d4d12

+201600G2d2
4d6H0 + 241920G2d2d2

6H0 + 462336G2d2d4d8H0 + 967680G2d0d6d8H0
+208320G2d2

2d10H0 + 806400G2d0d4d10H0 + 1440G2d12H0 + 483840G2d0d2d12H0
+483840G2d6d8H2

0 + 403200G2d4d10H2
0 + 241920G2d2d12H2

0)

d16 = 1
322560c2

0d2
(−40320c6c8d2

2 − 40320c4c10d2
2 − 40320c2c12d2

2 − 40320c0c14d2
2

−80640c2
6d2d4 − 161280c4c8d2d4 − 161280c2c10d2d4 − 161280c0c12d2d4 − 161280c4c6d2

4
−161280c2c8d2

4 − 161280c0c10d2
4 + 2240G2d4

4 − 241920c4c6d2d6 − 241920c2c8d2d6
−241920c0c10d2d6 − 241920c2

4d4d6 − 483840c2c6d4d6 − 483840c0c8d4d6 + 31920G2d2d2
4d6

−362880c2c4d2
6 − 362880c0c6d2

6 + 19215G2d2
2d2

6 + 60480G2d0d4d2
6 − 161280c2

4d2d8
−322560c2c6d2d8 − 322560c0c8d2d8 − 645120c2c4d4d8 − 645120c0c6d4d8 + 38304G2d2

2d4d8
+61824G2d0d2

4d8 + 126G2d6d8 − 483840c2
2d6d8 − 967680c0c4d6d8 + 153216G2d0d2d6d8

−645120c0c2d2
8 + 80640G2d2

0d2
8 − 403200c2c4d2d10 − 403200c0c6d2d10 + 13440G2d3

2d10
+140G2d4d10 − 403200c2

2d4d10 − 806400c0c4d4d10 + 141120G2d0d2d4d10 − 1209600c0c2d6d10
+151200G2d2

0d6d10 − 806400c2
0d8d10 + 180G2d2d12 − 241920c2

2d2d12 − 483840c0c4d2d12
+61920G2d0d2

2d12 − 967680c0c2d4d12 + 120960G2d2
0d4d12 − 725760c2

0d6d12 + 315G2d0d14
−564480c0c2d2d14 + 70560G2d2

0d2d14 − 564480c2
0d4d14 + 60480G2d4d2

6H0 + 61824G2d2
4d8H0

+153216G2d2d6d8H0 + 161280G2d0d2
8H0 + 141120G2d2d4d10H0 + 302400G2d0d6d10H0

+61920G2d2
2d12H0 + 241920G2d0d4d12H0 + 315G2d14H0 + 141120G2d0d2d14H0 + 80640G2d2

8H2
0

+151200G2d6d10H2
0 + 120960G2d4d12H2

0 + 70560G2d2d14H2
0)

d18 = 1
3628800c2

0d2
(−201600c2

8d2
2 − 403200c6c10d2

2 − 403200c4c12d2
2 − 403200c2c14d2

2

−403200c0c16d2
2 − 1612800c6c8d2d4 − 1612800c4c10d2d4 − 1612800c2c12d2d4

−806400c2
6d2

4 − 1612800c4c8d2
4 − 1612800c2c10d2

4 − 1612800c0c12d2
4 − 1209600c2

6d2d6
−2419200c4c8d2d6 − 2419200c2c10d2d6 − 2419200c0c12d2d6 − 4838400c4c6d4d6
−4838400c0c10d4d6 + 100800G2d3

4d6 − 1814400c2
4d2

6 − 3628800c2c6d2
6 − 3628800c0c8d2

6
+365400G2d2d4d2

6 + 226800G2d0d3
6 − 3225600c4c6d2d8 − 3225600c2c8d2d8

−3225600c2
4d4d8 − 6451200c2c6d4d8 − 6451200c0c8d4d8 + 380800G2d2d2

4d8
−9676800c0c6d6d8 + 468720G2d2

2d6d8 + 1451520G2d0d4d6d8 + 504G2d2
8 − 3225600c2

2d2
8

−6451200c0c4d2
8 + 967680G2d0d2d2

8 − 2016000c2
4d2d10 − 4032000c2c6d2d10

−8064000c2c4d4d10 − 8064000c0c6d4d10 + 459200G2d2
2d4d10 + 739200G2d0d2

4d10
−6048000c2

2d6d10 − 12096000c0c4d6d10 + 1864800G2d0d2d6d10 − 16128000c0c2d8d10
+2016000G2d2

0d8d10 − 5040000c2
0d2

10 − 4838400c2c4d2d12 − 4838400c0c6d2d12
+158400G2d3

2d12 + 1200G2d4d12 − 4838400c2
2d4d12 − 9676800c0c4d4d12

−14515200c0c2d6d12 + 1814400G2d2
0d6d12 − 9676800c2

0d8d12 + 1575G2d2d14
−5644800c0c4d2d14 + 718200G2d0d2

2d14 − 11289600c0c2d4d14 + 1411200G2d2
0d4d14

+2800G2d0d16 − 6451200c0c2d2d16 + 806400G2d2
0d2d16 − 6451200c2

0d4d16
+1451520G2d4d6d8H0 + 967680G2d2d2

8H0 + 739200G2d2
4d10H0 + 1864800G2d2d6d10H0

+4032000G2d0d8d10H0 + 1670400G2d2d4d12H0 + 3628800G2d0d6d12H0+
718200G2d2

2d14H0 + 2822400G2d0d4d14H0 + 2800G2d16H0 + 1612800G2d0d2d16H0
−1612800c0c14d2d4 − 4838400c2c8d4d6 − 3225600c0c10d2d8 − 9676800c2c4d6d8
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−4032000c0c8d2d10 + 1050G2d6d10 + 1670400G2d0d2d4d12 − 2822400c2
2d2d14

−8467200c2
0d6d14 + 2016000G2d8d10H2

0 + 1814400G2d6d12H2
0 + 1411200G2d4d14H2

0
+226800G2d3

6H0 + 806400G2d2d16H2
0)

d20 = 1
2016000c2

0d2
(−201600c8c10d2

2 − 201600c6c12d2
2 − 201600c4c14d2

2 − 201600c2c16d2
2

−201600c0c18d2
2 − 403200c2

8d2d4 − 806400c6c10d2d4 − 806400c4c12d2d4 − 806400c2c14d2d4
−806400c0c16d2d4 − 806400c6c8d2

4 − 806400c4c10d2
4 − 806400c2c12d2

4 − 806400c0c14d2
4

−1209600c6c8d2d6 − 1209600c4c10d2d6 − 1209600c2c12d2d6 − 1209600c0c14d2d6
−2419200c4c8d4d6 − 2419200c2c10d4d6 − 2419200c0c12d4d6 − 1814400c4c6d2

6
−1814400c0c10d2

6 + 81900G2d2
4d2

6 + 66150G2d2d3
6 − 806400c2

6d2d8 − 1612800c4c8d2d8
−1612800c2c10d2d8 − 1612800c0c12d2d8 − 3225600c4c6d4d8 − 3225600c2c8d4d8
+58240G2d3

4d8 − 2419200c2
4d6d8 − 4838400c2c6d6d8 − 4838400c0c8d6d8

+393120G2d0d2
6d8 − 3225600c2c4d2

8 − 3225600c0c6d2
8 + 142128G2d2

2d2
8

−2016000c4c6d2d10 − 2016000c2c8d2d10 − 2016000c0c10d2d10 − 2016000c2
4d4d10

−4032000c2c6d4d10 − 4032000c0c8d4d10 + 224000G2d2d2
4d10 − 6048000c2c4d6d10

−6048000c0c6d6d10 + 279300G2d2
2d6d10 + 856800G2d0d4d6d10 + 420G2d8d10

−4032000c2
2d8d10 − 8064000c0c4d8d10 + 1176000G2d0d2d8d10 − 5040000c0c2d2

10
+630000G2d2

0d2
10 − 1209600c2

4d2d12 − 2419200c2c6d2d12 − 2419200c0c8d2d12
−4838400c2c4d4d12 − 4838400c0c6d4d12 + 268800G2d2

2d4d12 + 432000G2d0d2
4d12

+450G2d6d12 − 3628800c2
2d6d12 − 7257600c0c4d6d12 + 1101600G2d0d2d6d12

+1209600G2d2
0d8d12 − 6048000c2

0d10d12 − 2822400c2c4d2d14 − 2822400c0c6d2d14
+91350G2d3

2d14 + 525G2d4d14 − 2822400c2
2d4d14 − 5644800c0c4d4d14 + 966000G2d0d2d4d14

−8467200c0c2d6d14 + 1058400G2d2
0d6d14 − 5644800c2

0d8d14 + 700G2d2d16 − 1612800c2
2d2d16

−3225600c0c4d2d16 + 408800G2d0d2
2d16 − 6451200c0c2d4d16 + 806400G2d2

0d4d16
−4838400c2

0d6d16 + 1260G2d0d18 − 3628800c0c2d2d18 + 453600G2d2
0d2d18 − 3628800c2

0d4d18
+393120G2d2

6d8H0 + 430080G2d4d2
8H0 + 856800G2d4d6d10H0 + 1176000G2d2d8d10H0

+1260000G2d0d2
10H0 + 432000G2d2

4d12H0 + 1101600G2d2d6d12H0 + 2419200G2d0d8d12H0
+966000G2d2d4d14H0 + 2116800G2d0d6d14H0 + 408800G2d2

2d16H0 + 1612800G2d0d4d16H0
+1260G2d18H0 + 907200G2d0d2d18H0 + 630000G2d2

10H2
0 + 1209600G2d8d12H2

0
−1209600c2

6d4d6 − 1814400c2c8d2
6 − 3225600c0c10d4d8 + 426720G2d2d4d6d8

+430080G2d0d4d2
8 − 9676800c0c2d8d12 + 1058400G2d6d14H2

0 + 806400G2d4d16H2
0

+453600G2d2d18H2
0)

Appendix B

c2 = G2(H0+d0)
2

64c0
2(vc0−c0−1)

c4 = 4G2 H0
2d2

2+8G2 H0d0d2
2+4G2d0

2d2
2−192vc0

2c2
2+G2 H0d2+G2d0d2+320c0

2c2
2−32c0c2d2

2

192c0
2(vc0−c0−1)

c6 = 1
4608c0

2(vc0−c0−1)

(
192G2 H0

2d2d4 + 384G2 H0d0d2d4 + 48G2 H0d2
3 + 192G2d0

2d2d4

+48G2d0d2
3 − 10752vc0

2c2c4 + 8G2 H0d4 + 8G2d0d4 + 3G2d2
2 + 21504c0

2c2c4 − 1536c0c2d2d4
−384c0c4d2

2 − 192c2
2d2

2)
c8 = 1

3840c0
2(vc0−c0−1)

(144G2 H0
2d2d6 + 96G2 H0

2d4
2 + 288G2 H0d0d2d6 + 192G2 H0d0d4

2

+112G2 H0d2
2d4 + 144G2d0

2d2d6 + 96G2d0
2d4

2 + 112G2d0d2
2d4 + 6G2d2

4 − 9600vc0
2c2c6

−5760vc0
2c4

2 + 3G2 H0d6 + 3G2d0d6 + 2G2d2d4 + 21120c0
2c2c6 + 14976c0

2c4
2 − 1152c0c2d2d6

−768c0c2d4
2 − 768c0c4d2d4 − 192c0c6d2

2 − 384c2
2d2d4 − 192c2c4d2

2)
c10 = 1

172800c0
2(vc0−c0−1)

(5760G2 H0
2d2d8 + 8640G2 H0

2d4d6 + 11520G2 H0d0d2d8

+17280G2 H0d0d4d6 + 4680G2 H0d2
2d6 + 4800G2 H0d2d4

2 + 5760G2d0
2d2d8 + 8640G2d0

2d4d6
+4680G2d0d2

2d6 + 4800G2d0d2d4
2 + 960G2d2

3d4 − 449280vc0
2c2c8 − 587520vc0

2c4c6
+72G2 H0d8 + 72G2d0d8 + 45G2d2d6 + 20G2d4

2 + 1048320c0
2c2c8 + 1762560c0

2c4c6
−46080c0c2d2d8 − 69120c0c2d4d6 − 34560c0c4d2d6 − 23040c0c4d4

2 − 23040c0c6d2d4
−5760c0c8d2

2 − 17280c2
2d2d6 − 11520c2

2d4
2 − 23040c2c4d2d4 − 5760c2c6d2

2 − 2880c4
2d2

2)
c12 = 1

120960c0
2(vc0−c0−1)

(3600G2 H0
2d2d10 + 5760G2 H0

2d4d8 + 3240G2 H0
2d6

2 + 7200G2 H0d0d2d10

+11520G2 H0d0d4d8 + 6480G2 H0d0d6
2 + 3024G2 H0d2

2d8 + 6480G2 H0d2d4d6 + 960G2 H0d4
3

+3600G2d0
2d2d10 + 5760G2d0

2d4d8 + 3240G2d0
2d6

2 + 3024G2d0d2
2d8 + 6480G2d0d2d4d6 + 960G2d0d4

3

+630G2d2
3d6 + 880G2d2

2d4
2 − 322560vc0

2c2c10 − 443520vc0
2c4c8 − 241920vc0

2c6
2 + 30G2 H0d10

+30G2d0d10 + 18G2d2d8 + 15G2d4d6 + 783360c0
2c2c10 + 1457280c0

2c4c8 + 864000c0
2c6

2

−28800c0c2d2d10 − 46080c0c2d4d8 − 25920c0c2d6
2 − 23040c0c4d2d8 − 34560c0c4d4d6 − 17280c0c6d2d6

−11520c0c6d4
2 − 11520c0c8d2d4 − 2880c0c10d2

2 − 11520c2
2d2d8 − 17280c2

2d4d6 − 17280c2c4d2d6
−11520c2c4d4

2 − 11520c2c6d2d4 − 2880c2c8d2
2 − 5760c4

2d2d4 − 2880c4c6d2
2)
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c14 = 1
9031680c0

2(vc0−c0−1)
(241920G2 H0

2d2d12 + 403200G2 H0
2d4d10 + 483840G2 H0

2d6d8

+483840G2 H0d0d2d12 + 806400G2 H0d0d4d10 + 967680G2 H0d0d6d8 + 208320G2 H0d2
2d10

+462336G2 H0d2d4d8 + 241920G2 H0d2d6
2 + 201600G2 H0d4

2d6 + 241920G2d0
2d2d12

+403200G2d0
2d4d10 + 483840G2d0

2d6d8 + 208320G2d0d2
2d10 + 462336G2d0d2d4d8

+241920G2d0d2d6
2 + 201600G2d0d4

2d6 + 44352G2d2
3d8 + 124320G2d2

2d4d6
+35840G2d2d4

3 − 24514560vc0
2c2c12 − 34836480vc0

2c4c10 − 39997440vc0
2c6c8 + 1440G2 H0d12

+1440G2d0d12 + 840G2d2d10 + 672G2d4d8 + 315G2d6
2 + 61286400c0

2c2c12 + 121927680c0
2c4c10

+159989760c0
2c6c8 − 1935360c0c2d2d12 − 3225600c0c2d4d10 − 3870720c0c2d6d8

−1612800c0c4d2d10 − 2580480c0c4d4d8 − 1451520c0c4d6
2 − 1290240c0c6d2d8 − 1935360c0c6d4d6

−967680c0c8d2d6 − 645120c0c8d4
2 − 645120c0c10d2d4 − 161280c0c12d2

2 − 806400c2
2d2d10

−1290240c2
2d4d8 − 725760c2

2d6
2 − 1290240c2c4d2d8 − 1935360c2c4d4d6 − 967680c2c6d2d6

−645120c2c6d4
2 − 645120c2c8d2d4 − 161280c2c10d2

2 − 483840c4
2d2d6 − 322560c4

2d4
2

−645120c4c6d2d4 − 161280c4c8d2
2 − 80640c6

2d2
2)

c16 = 1
2903040c0

2(vc0−c0−1)
(70560G2 H0

2d2d14 + 120960G2 H0
2d4d12 + 151200G2 H0

2d6d10

+80640G2 H0
2d8

2 + 141120G2 H0d0d2d14 + 241920G2 H0d0d4d12 + 302400G2 H0d0d6d10
+161280G2 H0d0d8

2 + 61920G2 H0d2
2d12 + 141120G2 H0d2d4d10 + 153216G2 H0d2d6d8

+61824G2 H0d4
2d8 + 60480G2 H0d4d6

2 + 70560G2d0
2d2d14 + 120960G2d0

2d4d12 + 151200G2d0
2d6d10

+80640G2d0
2d8

2 + 61920G2d0d2
2d12 + 141120G2d0d2d4d10 + 153216G2d0d2d6d8 + 61824G2d0d4

2d8
+60480G2d0d4d6

2 + 13440G2d2
3d10 + 38304G2d2

2d4d8 + 19215G2d2
2d6

2 + 31920G2d2d4
2d6

+2240G2d4
4 − 7983360vc0

2c2c14 − 11612160vc0
2c4c12 − 13789440vc0

2c6c10 − 7257600vc0
2c8

2

+315G2 H0d14 + 315G2d0d14 + 180G2d2d12 + 140G2d4d10 + 126G2d6d8 + 20401920c0
2c2c14

+42577920c0
2c4c12 + 59754240c0

2c6c10 + 33062400c0
2c8

2 − 564480c0c2d2d14 − 967680c0c2d4d12
−1209600c0c2d6d10 − 645120c0c2d8

2 − 483840c0c4d2d12 − 806400c0c4d4d10 − 967680c0c4d6d8
−403200c0c6d2d10 − 645120c0c6d4d8 − 362880c0c6d6

2 − 322560c0c8d2d8 − 483840c0c8d4d6
−241920c0c10d2d6 − 161280c0c10d4

2 − 161280c0c12d2d4 − 40320c0c14d2
2 − 241920c2

2d2d12
−403200c2

2d4d10 − 483840c2
2d6d8 − 403200c2c4d2d10 − 645120c2c4d4d8 − 362880c2c4d6

2

−322560c2c6d2d8 − 483840c2c6d4d6 − 241920c2c8d2d6 − 161280c2c8d4
2 − 161280c2c10d2d4

−40320c2c12d2
2 − 161280c4

2d2d8 − 241920c4
2d4d6 − 241920c4c6d2d6 − 161280c4c6d4

2 − 161280c4c8d2d4
−40320c4c10d2

2 − 80640c6
2d2d4 − 40320c6c8d2

2)
c18 = 1

36288000c0
2(vc0−c0−1)

(806400G2 H0
2d2d16 + 1411200G2 H0

2d4d14 + 1814400G2 H0
2d6d12

+2016000G2 H0
2d8d10 + 1612800G2 H0d0d2d16 + 2822400G2 H0d0d4d14 + 3628800G2 H0d0d6d12

+4032000G2 H0d0d8d10 + 718200G2 H0d2
2d14 + 1670400G2 H0d2d4d12 + 1864800G2 H0d2d6d10

+967680G2 H0d2d8
2 + 739200G2 H0d4

2d10 + 1451520G2 H0d4d6d8 + 226800G2 H0d6
3

+806400G2d0
2d2d16 + 1411200G2d0

2d4d14 + 1814400G2d0
2d6d12 + 2016000G2d0

2d8d10
+718200G2d0d2

2d14 + 1670400G2d0d2d4d12 + 1864800G2d0d2d6d10 + 967680G2d0d2d8
2

+739200G2d0d4
2d10 + 1451520G2d0d4d6d8 + 226800G2d0d6

3 + 158400G2d2
3d12 + 459200G2d2

2d4d10
+468720G2d2

2d6d8 + 380800G2d2d4
2d8 + 365400G2d2d4d6

2 + 100800G2d4
3d6 − 100800000vc0

2c2c16
−149184000vc0

2c4c14 − 181440000vc0
2c6c12 − 197568000vc0

2c8c10 + 2800G2 H0d16 + 2800G2d0d16
+1575G2d2d14 + 1200G2d4d12 + 1050G2d6d10 + 504G2d8

2 + 262080000c0
2c2c16 + 566899200c0

2c4c14
+834624000c0

2c6c12 + 987840000c0
2c8c10 − 6451200c0c2d2d16 − 11289600c0c2d4d14

−14515200c0c2d6d12 − 16128000c0c2d8d10 − 5644800c0c4d2d14 − 9676800c0c4d4d12
−12096000c0c4d6d10 − 6451200c0c4d8

2 − 4838400c0c6d2d12 − 8064000c0c6d4d10 − 9676800c0c6d6d8
−4032000c0c8d2d10 − 6451200c0c8d4d8 − 3628800c0c8d6

2 − 3225600c0c10d2d8 − 4838400c0c10d4d6
−2419200c0c12d2d6 − 1612800c0c12d4

2 − 1612800c0c14d2d4 − 403200c0c16d2
2 − 2822400c2

2d2d14
−4838400c2

2d4d12 − 6048000c2
2d6d10 − 3225600c2

2d8
2 − 4838400c2c4d2d12 − 8064000c2c4d4d10

−9676800c2c4d6d8 − 4032000c2c6d2d10 − 6451200c2c6d4d8 − 3628800c2c6d6
2 − 3225600c2c8d2d8

−4838400c2c8d4d6 − 2419200c2c10d2d6 − 1612800c2c10d4
2 − 1612800c2c12d2d4 − 403200c2c14d2

2

−2016000c4
2d2d10 − 3225600c4

2d4d8 − 1814400c4
2d6

2 − 3225600c4c6d2d8 − 4838400c4c6d4d6
−2419200c4c8d2d6 − 1612800c4c8d4

2 − 1612800c4c10d2d4 − 403200c4c12d2
2 − 1209600c6

2d2d6
−806400c6

2d4
2 − 1612800c6c8d2d4 − 403200c6c10d2

2 − 201600c8
2d2

2)

c20 = 1
22176000c0

2(vc0−c0−1)
(453600G2 H0

2d2d18 + 806400G2 H0
2d4d16 + 1058400G2 H0

2d6d14

+1209600G2 H0
2d8d12 + 630000G2 H0

2d10
2 + 907200G2 H0d0d2d18 + 1612800G2 H0d0d4d16

+2116800G2 H0d0d6d14 + 2419200G2 H0d0d8d12 + 1260000G2 H0d0d10
2 + 408800G2 H0d2

2d16
+966000G2 H0d2d4d14 + 1101600G2 H0d2d6d12 + 1176000G2 H0d2d8d10 + 432000G2 H0d4

2d12
+856800G2 H0d4d6d10 + 430080G2 H0d4d8

2 + 393120G2 H0d6
2d8 + 453600G2d0

2d2d18
+806400G2d0

2d4d16 + 1058400G2d0
2d6d14 + 1209600G2d0

2d8d12 + 630000G2d0
2d10

2

+408800G2d0d2
2d16 + 966000G2d0d2d4d14 + 1101600G2d0d2d6d12 + 1176000G2d0d2d8d10

+432000G2d0d4
2d12 + 856800G2d0d4d6d10 + 430080G2d0d4d8

2 + 393120G2d0d6
2d8 + 91350G2d2

3d14
+268800G2d2

2d4d12 + 279300G2d2
2d6d10 + 142128G2d2

2d8
2 + 224000G2d2d4

2d10 + 426720G2d2d4d6d8
+66150G2d2d6

3 + 58240G2d4
3d8 + 81900G2d4

2d6
2 − 62092800vc0

2c2c18 − 93139200vc0
2c4c16

−115315200vc0
2c6c14 − 128620800vc0

2c8c12 − 66528000vc0
2c10

2 + 1260G2 H0d18 + 1260G2d0d18
+700G2d2d16 + 525G2d4d14 + 450G2d6d12 + 420G2d8d10 + 163699200c0

2c2c18 + 364089600c0
2c4c16

+555609600c0
2c6c14 + 689875200c0

2c8c12 + 368928000c0
2c10

2 − 3628800c0c2d2d18 − 6451200c0c2d4d16
−8467200c0c2d6d14 − 9676800c0c2d8d12 − 5040000c0c2d10

2 − 3225600c0c4d2d16 − 5644800c0c4d4d14
−7257600c0c4d6d12 − 8064000c0c4d8d10 − 2822400c0c6d2d14 − 4838400c0c6d4d12 − 6048000c0c6d6d10
−3225600c0c6d8

2 − 2419200c0c8d2d12 − 4032000c0c8d4d10 − 4838400c0c8d6d8 − 2016000c0c10d2d10
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−3225600c0c10d4d8 − 1814400c0c10d6
2 − 1612800c0c12d2d8 − 2419200c0c12d4d6 − 1209600c0c14d2d6

−806400c0c14d4
2 − 806400c0c16d2d4 − 201600c0c18d2

2 − 1612800c2
2d2d16 − 2822400c2

2d4d14
−3628800c2

2d6d12 − 4032000c2
2d8d10 − 2822400c2c4d2d14 − 4838400c2c4d4d12 − 6048000c2c4d6d10

−3225600c2c4d8
2 − 2419200c2c6d2d12 − 4032000c2c6d4d10 − 4838400c2c6d6d8 − 2016000c2c8d2d10

−3225600c2c8d4d8 − 1814400c2c8d6
2 − 1612800c2c10d2d8 − 2419200c2c10d4d6 − 1209600c2c12d2d6

−806400c2c12d4
2 − 806400c2c14d2d4 − 201600c2c16d2

2 − 1209600c4
2d2d12 − 2016000c4

2d4d10
−2419200c4

2d6d8 − 2016000c4c6d2d10 − 3225600c4c6d4d8 − 1814400c4c6d6
2 − 1612800c4c8d2d8

−2419200c4c8d4d6 − 1209600c4c10d2d6 − 806400c4c10d4
2 − 806400c4c12d2d4 − 201600c4c14d2

2

−806400c6
2d2d8 − 1209600c6

2d4d6 − 1209600c6c8d2d6 − 806400c6c8d4
2 − 806400c6c10d2d4

−201600c6c12d2
2 − 403200c8

2d2d4 − 201600c8c10d2
2)
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