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Abstract: A comprehensive framework has been developed to apply the monomiality principle
from mathematical physics to various mathematical concepts from special functions. This paper
presents research on a novel family of multivariate Hermite polynomials associated with Apostol-
type Frobenius–Euler polynomials. The study derives the generating expression, operational rule,
differential equation, and other defining characteristics for these polynomials. Additionally, the
monomiality principle for these polynomials is verified. Moreover, the research establishes series
representations, summation formulae, and operational and symmetric identities, as well as recurrence
relations satisfied by these polynomials.

Keywords: multivariate special polynomials; monomiality principle; explicit form; operational
connection; symmetric identities; summation formulae
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1. Introduction and Preliminaries

A current field of study with practical applications involves investigating the con-
volution of multiple polynomials as a method for introducing innovative multivariate
generalized polynomials. These polynomials hold immense importance due to their useful
characteristics, which include recurring and explicit relations, functional and differential
equations, summation formulae, symmetric and convolution identities, determinant forms,
and more.

Multivariate hybrid special polynomials exhibit a wide range of features that show
great promise for their utilization in various areas of pure and practical mathematics, such
as number theory, combinatorics, classical and numerical analysis, theoretical physics, and
approximation theory. The development of diverse new classes of hybrid polynomials is
motivated by the desire to harness their utility and potential for application.

Sequences of polynomials hold significant relevance in various domains of applied
mathematics, theoretical physics, approximation theory, and other branches of mathemat-
ics. Particularly, the Bernstein polynomials of degree n serve as a foundational basis for
the space of polynomials with degrees less than or equal to n. Dattoli and collaborators
utilized operational approaches to examine Bernstein polynomials [1], exploring the Ap-
pell sequences—a broad class encompassing several well-known polynomial sequences,
including the Miller–Lee, Bernoulli, and Euler polynomials, among others.

Mathematics 2023, 11, 3439. https://doi.org/10.3390/math11163439 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163439
https://doi.org/10.3390/math11163439
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3305-7340
https://orcid.org/0000-0001-6484-469X
https://orcid.org/0000-0003-1053-0892
https://doi.org/10.3390/math11163439
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163439?type=check_update&version=1


Mathematics 2023, 11, 3439 2 of 17

The introduction and study of classes of hybrid special polynomials connected to
the Appell sequences, as seen in references [2–7], play a significant role in engineering,
biological, medical, and physical sciences. These hybrid polynomials are of paramount
importance due to their key characteristics, such as differential equations, generating
functions, series definitions, integral representations, and more. In numerous scientific and
technical fields, problems are often expressed as differential equations, and their solutions
typically manifest as special functions. Consequently, the challenges encountered in the
development of scientific fields can be addressed by utilizing the differential equations
satisfied by these hybrid special polynomials.

The multivariate special polynomials are extremely important in many areas of mathe-
matics and have many uses. They are crucial in algebraic geometry, which examines the
geometric properties of algebraic varieties. They are used to define and study significant
geometric objects such as algebraic curves, surfaces, and higher-dimensional varieties.
These polynomials describe the intersection of curves and surfaces, the singularities of
algebraic varieties, and the properties of their coordinate rings. They may also be observed
in many areas of theoretical physics, including quantum mechanics and quantum field
theory. They show up as differential equation solutions in mathematical physics, especially
when eigenvalue issues, boundary value issues, and symmetry analysis are involved. These
polynomials have applications in quantum field theory, statistical mechanics, the study of
integrable systems, etc. Due to such significance, several authors introduced multivariate
Hermite and other special polynomials. Datolli et al. [8] introduced the generating function:

eu1t+u2t2+u3t3
=

∞

∑
n=0

Hn(u1, u2, u3)
tn

n!
, (1)

representing three-variable Hermite polynomials (3VHPs) Hn(u1, u2, u3).
Further, by taking u3 = 0, 3VHPs reduce to the polynomials Hn(u1, u2) widely

known as 2-v Hermite Kampé de Fériet polynomials (2VHKdFPs) [9] and on taking
u3 = 0, u1 = 2u1 and u2 = −1 3VHPs become the classical Hermite polynomials
Hn(u1) [10] (Equation (5.1), p. 167).

At this point, it is noteworthy to mention that many semi-classical orthogonal poly-
nomials, serving as generalizations of classical orthogonal polynomials such as Hermite,
Laguerre, and Jacobi polynomials, have been extensively studied in recent years. Enthusias-
tic readers are encouraged to explore the works of [11,12] (and the references cited therein),
along with the valuable insights presented in the book [13]. Furthermore, other interesting
results concerning recurrence relations for generalized Appell polynomials and summation
problems involving simplex lattice points or operators with a summing effect can be found
in [14–16].

Recently, the polynomials represented by Y [m]
n (u1, u2, . . . , um), known as multivariate

Hermite polynomials (MHPs), were introduced in [17] and are given by generating relation:

exp(u1ξ + u2ξ2 + · · ·+ umξm) =
∞

∑
n=0
Y [m]

n (u1, u2, . . . , um)
ξn

n!
, (2)

with the operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

)
un

1 = Y [m]
n (u1, u2, . . . , um), (3)

and series representation:

Y [m]
n (u1, u2, . . . , um) = n!

[n/m]

∑
r=0

ur
m Y

[m]
n−mr(u1, u2, . . . , um−1)

r! (n−mr)!
. (4)

Several mathematicians are keen to introduce different forms of various special poly-
nomials. The unified forms of Apostol-type polynomials are introduced in the study of [18].
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These polynomials are known as the Apostol-type Frobenius–Euler polynomials and they
are represented mathematically by the symbol Fn(u1; u) [19]. For λ = 1, these polynomials
reduce to the Frobenius–Euler polynomials [20]. We now recall the generating expression
of these Frobenius–Euler polynomials, which is as follows:(

1− u
eξ − u

)
eu1ξ =

∞

∑
n=0

Fn(u1; u)
ξn

n!
, (5)

where u ∈ C, u 6= 1.
Therefore, on taking u1 = 0, expression (5) gives the Frobenius–Euler numbers (FENs)

Fn(u), defined by
1− u
eξ − u

=
∞

∑
n=0

Fn(u)
ξn

n!
. (6)

Further, on taking u = −1, the FEPs becomes Euler polynomials (EPs) An(u1) [21].
Extensive research has been dedicated to the advancement and integration of the

monomiality principle, operational rules, and other properties within the domain of hy-
brid special polynomials. This line of investigation traces its roots back to 1941 when
Steffenson initially proposed the concept of poweroids as a means to understanding
monomiality [22]. Building upon Steffenson’s work, Dattoli further refined the theory,
offering valuable insights and refinements [2]. Their contributions have paved the way
for a more comprehensive understanding of the monomiality principle and its appli-
cation within the context of the so-called hybrid special polynomials. Therefore, on a
combination of multivariate Hermite polynomials Y [m]

n (u1, u2, . . . , um) given by (2) and
Frobenius–Euler polynomials [23,24] given by (5) by using the concept of the monomiality
principle and operational rules, the convoluted new polynomial, namely, multivariate
Hermite–Frobenius–Euler polynomials are given by the formal expression:(

1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) :=

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (7)

The rest of the article is as follows: The multivariate Hermite–Frobenius–Euler poly-
nomials are introduced and studied in Section 2. Also, operational formulae for these
polynomials are derived. In Section 3, the monomiality principle is verified and the dif-
ferential equation is deduced. Further, several identities satisfied by these multivariate
Hermite–Frobenius–Euler polynomials are established by using operational formalism. In
Section 4, summation formulae and symmetric identities for these polynomials are estab-
lished. Further, several special cases of these polynomials are taken and the corresponding
results are deduced. Section 5 is devoted to some illustrative examples. Finally, Section 6
consists of concluding remarks.

2. Multivariate Hermite–Frobenius–Euler Polynomials

In this section, a novel and comprehensive method is introduced for determining
the multivariate Hermite–Frobenius–Euler polynomials (MHFEPs) YF[m]

n (u1, u2, . . . , um; u).
The approach presents an alternative viewpoint and methodology when compared to
existing methods. By employing this innovative technique, our objective is to enrich the
comprehension and investigation of these polynomial sequences, offering a new outlook
on their properties and potential applications. As a result, we have introduced a fresh
perspective to advance the understanding and utilization of these polynomials.

Now, we will use two different approaches to show that the representation series (7) is
meaningful. Thus, MHFEPs are well-defined through the generating function method.
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Theorem 1. The MHFEPs represented by YF[m]
n (u1, u2, · · · , um; u) satisfy the generating expres-

sion: (
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) =

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (8)

Proof. We prove the result in two alternative ways:

(i) Expanding the product of terms
(

1−u
eξ−u

)
and exp(u1ξ + u2ξ2 + · · ·+ umξm) by New-

ton series and ordering the product of the developments of functions
(

1−u
eξ−u

)
and

exp(u1ξ + u2ξ2 + · · · + umξm) w.r.t. the powers of ξ, we obtain the polynomials

YF[m]
n (u1, u2, . . . , um; u) expressed in (7) as coefficients of ξn

n! .
(ii) Substituting the multiplicative operator M̂ = u1 + 2u2∂u1 + 3u3∂2

u1
+ · · ·+ mum∂m−1

u1
of MHFEPs given in [17] in expression (5) in place of u1 on both sides, we find(

1− u
eξ − u

)
e(u1+2u2∂u1+3u3∂2

u1
+···+mum∂m−1

u1
)ξ =

∞

∑
n=0

Fn(u1 + 2u2∂u1 + 3u3∂2
u1
+ · · ·+ mum∂m−1

u1
; u)

ξn

n!
(9)

In view of the identity given in [5], (Equation (7)) gives the l.h.s. of (8) and, denoting
the r.h.s. YFn(u1 + 2u2∂u1 + 3u3∂2

u1
+ . . . + mum∂m−1

u1
; u) by YFn(u1, u2, . . . , um; u),

assertion (8) is deduced.

The following result shows that the MHFEPs behave component-wise as Appell-type
polynomial sequences.

Theorem 2. The multivariate Hermite–Frobenius–Euler polynomials YF[m]
n (u1, u2, . . . , um; u)

satisfy the following differential relations:

∂

∂uj
[YF[m]

n (u1, u2, . . . , um; u)] = (n)j YF[m]
n−j(u1, u2, . . . , um; u), 1 ≤ j ≤ m ≤ n, (10)

where (n)j denotes the falling factorial, given by

(n)j =


1, if j = 0,

∏
j
i=1(n− i + 1), if j ≥ 1,

0, if j < 0.

Proof. By taking derivatives of expression (7) w.r.t. u1, it follows that

∂

∂u1

[(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
= ξ

[(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
. (11)

Substituting the r.h.s. of (7) into (11), we find

∂

∂u1

[
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!

]
=

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn+1

n!
, (12)

By replacing n → n− 1 on the r.h.s. of the previous expression and then equating
the coefficients of like exponents of ξ, the first expression of the system of expressions (10)
is deduced.

Next, on taking derivatives of expression (7) w.r.t. u2, it follows that

∂

∂u2

[(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
= ξ2

[(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm)

]
. (13)
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Substituting the r.h.s. of expression (7) into (13), we find

∂

∂u2

[
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!

]
=

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn+2

n!
, (14)

by replacing n → n − 2 on the r.h.s. of the previous expression and then equating the
coefficients of like exponents of ξ, the second expression of the system of expressions (10)
is deduced.

Similarly, continuing in the same fashion, we deduce other expressions of system (10).

Concerning the operational formalism satisfied by the multivariate polynomials
YFn(u1, u2, . . . , um; u), we have the following:

Theorem 3. For MHFEPs YFn(u1, u2, . . . , um; u), the operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

){
Fn(u1; u)

}
= YF[m]

n (u1, u2, . . . , um; u) (15)

holds true.

Proof. To prove result (15), we proceed by taking derivatives of expression (7) as:

∂

∂u1
[YF[m]

n (u1, u2, . . . , um; u)] = n YF[m]
n−1(u1, u2, . . . , um; u),

∂2

∂u1
2 [YF[m]

n (u1, u2, . . . , um; u)] = n(n− 1) YF[m]
n−2(u1, u2, . . . , um; u),

∂3

∂u1
3 [YF[m]

n (u1, u2, . . . , um; u)] = n(n− 1)(n− 2) YF[m]
n−3(u1, u2, . . . , um; u),

...
...

∂m

∂u1
m [YF[m]

n (u1, u2, . . . , um; u)] = (n)m YF[m]
n−m(u1, u2, . . . , um; u), (16)

and

∂

∂u2
[YF[m]

n (u1, u2, . . . , um; u)] = n(n− 1) YF[m]
n−2(u1, u2, . . . , um; u),

∂

∂u3
[YF[m]

n (u1, u2, . . . , um; u)] = n(n− 1)(n− 2) YF[m]
n−3(u1, u2, . . . , um; u),

...
...

∂

∂um
[YF[m]

n (u1, u2, . . . , um; u)] = (n)m YF[m]
n−m(u1, u2, . . . , um; u). (17)

In consideration of the system of Equations (16) and (17), we find that the MHFEPs
are solutions of the equations:
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∂

∂u2
[YF[m]

n (u1, u2, . . . , um; u)] =
∂2

∂u1
2 [YF[m]

n (u1, u2, . . . , um; u)],

∂

∂u3
[YF[m]

n (u1, u2, . . . , um; u)] =
∂3

∂u1
3 [YF[m]

n (u1, u2, . . . , um; u)],

...
...

∂

∂um
[YF[m]

n (u1, u2, . . . , um; u)] =
∂m

∂u1
m [YF[m]

n (u1, u2, . . . , um; u)], (18)

under the initial conditions:

YF[m]
n (u1, 0, 0, . . . , 0; u) = Fn(u1; u). (19)

Therefore, in cognizance of previous expressions (18) and (19), assertion (15) is ob-
tained.

Next, we will obtain the series representation of MHFEPs YFn(u1, u2, . . . , um; u) by
proving the succeeding results:

Theorem 4. For MHFEPs YFn(u1, u2, . . . , um; u), the succeeding series representations are demon-
strated:

YF[m]
n (u1, u2, . . . , um; u) =

n

∑
s=0

(
n
s

)
Fs(u)Y [m]

n−s(u1, u2, . . . , um) (20)

and

YF[m]
n (u1, u2, . . . , um; u) =

n

∑
s=0

(
n
s

)
Fs(u1; u)Y [m]

n−s(u2, u3, . . . , um). (21)

Proof. Inserting expressions (6) and (2) on the l.h.s. of (7), we find

∞

∑
s=0

Fs(u)
ξs

s!

∞

∑
n=0
Y [m]

n (u1, u2, . . . , um)
ξn

n!
=

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (22)

Interchanging the expressions and replacing n→ n− s in the resultant expression in
view of the Cauchy product rule, it follows that

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
=

∞

∑
n=0

n

∑
s=0

Fs(u)Y [m]
n (u1, u2, . . . , um)

ξn

(n− s)! s!
. (23)

Multiplying and dividing by n! on the r.h.s. of the previous expression and then
equating the coefficients of the same exponents of ξ on both sides, assertion (20) is deduced.

In a similar fashion, inserting expressions (5) and (2) (with u1 = 0) on the l.h.s. of (7),
we find

∞

∑
s=0

Fs(u1; u)
ξs

s!

∞

∑
n=0
Y [m]

n (u2, u3, . . . , um)
ξn

n!
=

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
. (24)

Interchanging the expressions and replacing n→ n− s in the resultant expression in
view of the Cauchy product rule, it follows that

∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn

n!
=

∞

∑
n=0

n

∑
s=0

Fs(u1; u)Y [m]
n (u2, u3, . . . , um)

ξn

(n− s)! s!
. (25)

Multiplying and dividing by n! on the r.h.s. of the previous expression and then equat-
ing the coefficients of the same exponents of ξ on both sides, assertion (21) is deduced.
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3. Monomiality Principle

The development and incorporation of the monomiality principle, operational rules,
and other properties in hybrid special polynomials have been extensively studied. The
concept of monomiality was first introduced by Steffenson in 1941 through the notion
of poweroids [22] and was further refined by Dattoli [2]. In this context, the M̂ and D̂
operators play a crucial role as multiplicative and derivative operators for a polynomial set
bk(u1)k∈N. These operators satisfy the following expressions:

bk+1(u1) = M̂{bk(u1)} (26)

and
k bk−1(u1) = D̂{bk(u1)}. (27)

Subsequently, the polynomial set bk(u1)m∈N under the manipulation of multiplicative
and derivative operators is known as a quasi-monomial. It is essential for this quasi-
monomial to adhere to the following formula:

[D̂,M̂] = D̂M̂ − M̂D̂ = 1̂, (28)

and, as a result, it shows a Weyl group structure.
The significance and usage of the operators M̂ and D̂ can be exploited to extract the

significance of the set {bk(u1)}k∈N, provided it is quasi-monomial. Hence, the succeeding
axioms hold:

(i) bk(u1) gives the differential equation

M̂D̂{bk(u1)} = k bk(u1), (29)

provided M̂ and D̂ exhibit differential traits.
(ii) The expression

bk(u1) = M̂k {1}, (30)

gives the explicit form, with b0(u1) = 1.
(iii) Further, the expression

ewM̂{1} =
∞

∑
k=0

bk(u1)
wk

k!
, |w| < ∞ , (31)

behaves as a generating expression, which is derived by usage of identity (30).

Many branches of mathematical physics, quantum mechanics, and classical optics
still employ these methods today. As a result, these methods offer strong and efficient
research tools. We thus confirm the monomiality concept for MHFEPs by taking into
account the importance of this method. Thus we verify the monomiality principle for
MHFEPs YF[m]

n (u1, u2, . . . , um; u) in this section by demonstrating the succeeding results:

Theorem 5. The MHFEPs YF[m]
n (u1, u2, . . . , um; u) satisfy the succeeding multiplicative and

derivative operators:

M̂YF = u1 + 2u2∂u1 + 3u3∂2
u1
+ · · ·+ mum∂m−1

u1
− e∂u1

e∂u1 − u
(32)

and
ˆDYF = ∂u1 , (33)

where ∂u1 = ∂
∂u1

.

Proof. By differentiating expression (7) w.r.t. ξ on both sides, we find
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(
u1 + 2u2ξ + 3u3ξ2 + · · ·+ mumξm−1 − eξ

eξ − u

)(
1− u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
=

∞

∑
n=0

n YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!
. (34)

which further can be written as follows:

(
u1 + 2u2ξ + 3u3ξ2 + · · ·+ mumξm−1 − eξ

eξ − u

)( ∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)

=
∞

∑
n=0

n YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!
. (35)

Also, by taking a derivative of (7) w.r.t. u1, we find the identity

∂

∂u1

(
1− u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
= ξ

(
1− u
eξ − u

exp(u1ξ + u2ξ2 + · · ·+ umξm)

)
,

∂

∂u1

(
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
= ξ

(
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
. (36)

By replacing n → n + 1 on the r.h.s. of (35) and equating the coefficients of same
exponents of ξ in view of expressions (37) and (26) in the resultant expression, asser-
tion (32) is demonstrated.

Moreover, the second part of expression (36) can be written as:

∂

∂u1

(
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn−1

n!

)
=

(
∞

∑
n=0

YF[m]
n (u1, u2, . . . , um; u)

ξn+1

n!

)
. (37)

By replacing n→ n− 1 on the r.h.s. of (37) and equating the coefficients of the same
exponents of ξ in view of (27) in the resultant expression, assertion (33) is demonstrated.

Next, we deduce the differential equation for MHFEPs YF[m]
n (u1, u2, . . . , um; u) by

demonstrating the succeeding result:

Theorem 6. The MHFEPs YF[m]
n (u1, u2, . . . , um; u) satisfy the differential equation:(

u1∂u1 + 2u2∂2
u1
+ 3u3∂3

u1
+ · · ·+ mum∂m

u1
− e∂u1

e∂u1 − u
∂u1 − n

)
YF[m]

n (u1, u2, . . . , um; u) = 0. (38)

Proof. Inserting expression (32) and (33) into the expression (29), assertion (38) is proved.

The operational formalism developed in Theorem 6 can be applied to numerous
identities related to the Frobenius–Euler polynomials, which are widely investigated to
produce MHFEPs YF[m]

n (u1, u2, . . . , um; u). To do this, we carry out the subsequent action
of operator (O) given by exp

(
u2

∂2

∂u1
2 + u3

∂3

∂u1
3 + · · ·+ um

∂m

∂u1
m

)
on the identities involving

Frobenius–Euler polynomials Fn(u1; u) [25]:

u Fn(u1; u−1) + Fn(u1; u) = (1 + u)
n

∑
k=0

(
n
k

)
Fn−k(u−1)Fk(u1; u), (39)

1
n + 1

Fk(u1; u) + Fn−k(u1; u) =
n−1

∑
k=0

(n
k)

n− k + 1

n

∑
l=k

((−u)Fl−k(u)Fn−l(u) + 2uFn−k(u))Fk(u1; u)Fn(u1; u), (40)
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Fn(u1; u) =
n

∑
k=0

(
n
k

)
Fn−k(u)Fk(u1; u), n ∈ Z+ = N∪ {0}. (41)

The MHFEPs YF[m]
n (u1, u2, . . . , um; u) are obtained after operating (O) on both sides

of (39)–(41):

u YF[m]
n (u1, u2, . . . , um; u−1; u) + YF[m]

n (u1, u2, . . . , um; u) = (1 + u)
n

∑
k=0

(
n
k

)
YF[m]

n−k(u
−1) YF[m]

k (u1, u2, . . . , um; u),

1
n + 1 Y

F[m]
k (u1, u2, u3, · · · , um; u) + YF[m]

n−k(u1, u2, u3, . . . , um; u)

=
n−1

∑
k=0

(n
k)

n− k + 1

n

∑
l=k

((−u)Fn−l(u)Fl−k(u) + 2uFn−k(u)) YF[m]
k (u1, u2, u3, . . . , um; u)YF[m]

n (u1, u2, u3, . . . , um; u),

YF[m]
n (u1, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
Fn−k(u) YF[m]

k (u1, u2, u3, . . . , um; u), n ∈ Z+ = N∪ {0}.

4. Summation Formulae and Symmetric Identities

To derive the summation formulae for the MHFEPs YF[m]
n (u1, u2, u3, . . . , um; u), the

succeeding results are demonstrated:

Theorem 7. For the MHFEPs YF[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:

YF[m]
n (u1 + w, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF[m]

k (u1, u2, u3, . . . , um; u)wn−k. (42)

Proof. On taking u1 → u1 + w in expression (7), it follows that(
1− u
eξ − u

)
exp((u1 + w)ξ + u2ξ2 + · · ·+ umξm) =

∞

∑
n=0

YF[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!

which further can be written as(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) exp(wξ) =

∞

∑
n=0

YF[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!
,

By making use of the series expansion of exp(wξ) on the l.h.s. of the previous expres-
sion, we have

∞

∑
k=0
YF[m]

n (u1 + w, u2, . . . , um; u)wn ξn+k

n!k!
=

∞

∑
n=0

YF[m]
n (u1 + w, u2, . . . , um; u)

ξn

n!
. (43)

This results in the deduction of assertion (42) by substituting n→ n− k into the r.h.s.
of consequent expression and then equating the coefficients of the identical powers of ξ in
the resulting equation.

Corollary 1. For w = 1 in expression (42), we have

YF[m]
n (u1 + 1, u2, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF[m]

k (u1, u2, u3, . . . , um; u). (44)

Theorem 8. For the MHFEPs YF[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:
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YF[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF[m]

n−k(u1, u2, u3, . . . , um; u)Yk(x, y, z). (45)

Proof. On taking u1 → u1 + x, u2 → u1 + y and u3 → u3 + z in expression (7), it follows that(
1− u
eξ − u

)
exp((u1 + x)ξ + (u2 + y)ξ2 + (u3 + z)ξ3 + · · ·+ umξm) =

∞

∑
n=0

YF[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
(46)

which further can be written as(
1− u
eξ − u

)
exp(u1ξ + u2ξ2 + · · ·+ umξm) exp(xξ + yξ2 + zξ3) =

∞

∑
n=0

YF[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
. (47)

By making use of the series expansion of exp(xξ + yξ2 + zξ3) on the l.h.s. of the
previous expression, we have

∞

∑
n=0

YF[m]
n (u1, u2, u3, . . . , um; u)Yk(x, y, z)

ξn+k

n!k!
=

∞

∑
n=0

YF[m]
n (u1 + x, u2 + y, u3 + z, . . . , um; u)

ξn

n!
. (48)

This results in the deduction of assertion (45) by substituting n→ n− k on the l.h.s. of
the consequent expression and then equating the coefficients of the identical powers of xi
in the resulting equation.

Corollary 2. For z = 0 in expression (45), we have

YF[m]
n (u1 + x, u2 + y, u3, . . . , um; u) =

n

∑
k=0

(
n
k

)
YF[m]

n−k(u1, u2, u3, . . . , um; u)Yk(x, y). (49)

Theorem 9. For the MHFEPs YF[m]
n (u1, u2, u3, . . . , um; u), the succeeding implicit summation

formula holds true:

YF[m]
n+s(q, u2, u3, . . . , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q− u1)

l+m
YF[m]

n+s−l−m(u1, u2, u3, . . . , um; u). (50)

Proof. By replacing ξ → ξ + η and in view of the expression:

∞

∑
M=0

g(M)
(u1 + u2)

M

M!
=

∞

∑
l,m=0

g(l + m)
ul

1 um
2

l! m!
(51)

in relation (7) and afterward simplifying the resultant expression, we have

e−u1(ξ+η)
∞

∑
n,s=0

YF[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

(
1− u

eξ+η − u

)
exp(u2(ξ + η)2 + · · ·+ um(ξ + η)m). (52)

Substituting u1 → q into (52) and comparing the resultant expression to the previous
expression and further expanding the exponential function gives

∞

∑
n,s=0

YF[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

∞

∑
M=0

(q− u1)
M (ξ + η)M

M!
×

∞

∑
n,s=0

YF[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
. (53)
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Thus, in view of expression (51) in expression (53) and then replacing n→ n− l and
s→ s−m in the resultant expression, we find

∞

∑
n,s=0

YF[m]
n+s(u1, u2, u3, . . . , um; u)

ξn ηs

n! s!
=

∞

∑
n,s=0

n,s

∑
l,m=0

(q− u1)
l+m

l! m!
× YF[m]

n+s−l−m(u1, u2, u3, . . . , um; u)
ξn ηs

(n− l)! (s−m)!
. (54)

On comparison of the coefficients of the like exponents of ξ and η on both sides of the
previous expression, assertion (50) is established.

Corollary 3. For n = 0 in expression (50), we find

YF[m]
s (q, u2, u3, . . . , um; u) =

s

∑
m=0

(
s
m

)
(q− u1)

m
YF[m]

s−m(u1, u2, u3, . . . , um; u)

Corollary 4. Substituting q→ q + u1 and taking m = 2 in expression (50), we have

YF[m]
n+s(q + u1, u2, u3, . . . , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q)l+m

YF[m]
n+s−l−m(u1, u2, u3, . . . , um; u).

Corollary 5. Substituting q→ q + u1 and taking m = 1 in expression (50), we have

YF[m]
n+s(q + u1; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(q)l+m

YF[m]
n+s−l−m(u1; u).

Corollary 6. Substituting q = 0 in expression (50), we have

YF[m]
n+s(u2, u3, · · · , um; u) =

n,s

∑
l,m=0

(
n
l

)(
s
m

)
(−u1)

l+m
YF[m]

n+s−l−m(u1, u2, u3, . . . , um; u).

In physics and applied mathematics, it is common to encounter problems where
finding a solution requires evaluating infinite sums that involve special functions. The
applications of generalized special functions can be found in various fields, including
electromagnetics and combinatorics. Several authors [23–34] established and examined
different types of identities related to Apostol-type polynomials. These investigations serve
as a motivation to establish symmetry identities for the MHFEPs. Let us now review the
following definitions:

Definition 1. The generalized sum of integer powers Sk(n) is defined by the generating function
shown below for:

∞

∑
j=0

Sj(n)
ξ j

j!
=

e(n+1)ξ − 1
eξ − 1

. (55)

Definition 2. The multiple power sums S(l)
k (m) are defined by the generating function shown below:

∞

∑
n=0

{
n

∑
q=0

(
n
q

)
(−l)n−qS

(l)
k (m)

}
ξn

n!
=

(
1− emξ

1− eξ

)l

. (56)

In order to derive the symmetry identities for the MHFEPs YF[m]
n (u1, u2, u3, . . . , um; u),

we prove the following results:
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Theorem 10. The following symmetry connection between the MHFEPs and generalized integer
power sums is valid for any integers with µ, η > 0 and n ≥ 0, u ∈ C:

n

∑
k=0

(
n
k

)
µn−k

YF[m]
n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)

k

∑
l=0

(
k
l

)
ηkSl(µ− 1;

1
u
)

× YF[m]
k−1(µU1, µ2U2, µ3U3, . . . , µmUm; u)

=
n

∑
k=0

(
n
k

)
ηn−k

YF[m]
n−k(µu1, µ2u2, µ3u3, . . . , µmum; u)

k

∑
l=0

(
k
l

)
µkSl(η − 1;

1
u
)

× YF[m]
k−1(ηU1, η2U2, η3U3, . . . , ηmUm; u). (57)

Proof. Consider

G(ξ) :=
(1− u) eµu1ηξ+u2(µηξ)2+u3(µηξ)3

(eµηξ − u) eµηξU1+U2(µηξ)2+U3(µηξ)3

(eµξ − u) (eηξ − u)
, (58)

which in consideration of the Cauchy product rule becomes

G(ξ) =
∞

∑
n=0

( n

∑
k=0

(
n
k

)
µn−k

YF[m]
n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)

k

∑
l=0

(
k
l

)
ηkSl(µ− 1;

1
u
)

× YF[m]
k−1(µU1, µ2U2, µ3U3, . . . , µmUm; u)

ξn

n!
. (59)

Continuing in a similar fashion, we find

G(ξ) =
∞

∑
n=0

( n

∑
k=0

(
n
k

)
ηn−k

YF[m]
n−k(µu1, µ2u2, µ3u3, . . . , µmum; u)

k

∑
l=0

(
k
l

)
µkSl(η − 1;

1
u
)

× YF[m]
k−1(ηU1, η2U2, η3U3, . . . , ηmUm; u)

ξn

n!
. (60)

On comparison of the coefficients of like exponents of ξ in expressions (59) and (60),
assertion (57) is deduced.

Theorem 11. The following symmetry connection for the MHFEPs is valid for any integers with
µ, η > 0 and n ≥ 0, u ∈ C:

n

∑
k=0

(
n
k

) µ−1

∑
i=0

η−1

∑
j=0

uµ+η−2( 1
u
)i+j

µn−kηk
YF[m]

k (µU1 +
µ

η
j, µ2U2, µ3U3, . . . , µmUm; u)× YF[m]

n−k(ηu1 +
η

µ
i, η2u2, η3u3, . . . , ηmum; u)

=
n

∑
k=0

(
n
k

) η−1

∑
i=0

µ−1

∑
j=0

uµ+η−2( 1
u
)i+j

ηn−kµk
YF[m]

k (ηU1 +
η

µ
j, µ2U2, µ3U3, . . . , µmUm; u)

× YF[m]
n−k(µu1 +

µ

η
i, η2u2, η3u3, . . . , ηmum; u). (61)

Proof. Consider

H(ξ) := (1 − u)2 eµηξu1+u2(µηξ)2+u3(µηξ)3+···+um(µηξ)m × (eµηξ − uµ) (eµηξ − uη)eµηξU1+U2(µηξ)2+U3(µηξ)3+···+Um(µηξ)m

(eµξ − u) (eηξ − u)
, (62)

which in consideration of series representations of (eµηξ−uµ)

(eηξ−u)
and (eµηξ−uη)

(eµξ−u)
in final expression

gives
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H(ξ) =
( 1− u

eµξ − u

)
eηu1(µξ)+η2u2(µξ)2+η3u3(µξ)3+···+ηmum(µξ)m

uµ−1
µ−1

∑
i=0

( 1
u

)i
eηξi

×
( 1− u

eηξ − u

)
eµU1(ηξ)+µ2U2(ηξ)2+µ3U3(ηξ)3+···+µmUm(ηξ)m

uη−1
η−1

∑
j=0

( 1
u

)j
eµξ j. (63)

Thus, in view of (7) and the usage of the Cauchy product rule in the previous expres-
sion (63), we find

H(ξ) :=
∞

∑
n=0

[
n

∑
k=0

(
n
k

) µ−1

∑
i=0

η−1

∑
j=0

uµ+η−2( 1
u
)i+j

µn−kηk
YF[m]

k (µU1 +
µ

η
j, µ2U2, µ3U3, . . . , µmUm; u)

× YF[m]
n−k(ηu1 +

η

µ
i, η2u2, η3u3, . . . , ηmum; u)

]
. (64)

Continuing in a similar fashion, we find another identity

H(ξ) :=
∞

∑
n=0

[
n

∑
k=0

(
n
k

) η−1

∑
i=0

µ−1

∑
j=0

uµ+η−2( 1
u
)i+j

ηn−kµk
YF[m]

k (ηU1 +
η

µ
j, µ2U2, µ3U3, · · · , µmUm; u)

× YF[m]
n−k(µu1 +

µ

η
i, η2u2, η3u3, . . . , ηmum; u)

]
. (65)

On comparison of the coefficients of like exponents of ξ in expressions (64) and (65),
assertion (61) is deduced.

Theorem 12. The following symmetry connection for the MHFEPs is valid for any integers with
µ, η > 0 and n ≥ 0, u ∈ C:

η−1

∑
k=0

uη−1( 1
u
)k

n

∑
i=0

(
n
i

)
YF[m]

n−i(µu1, µ2u2, µ3u3, . . . , µmum; u)ηn−i(µk)i

=
µ−1

∑
k=0

uµ−1( 1
u
)k

n

∑
i=0

(
n
i

)
YF[m]

n−i(ηu1, η2u2, η3u3, . . . , ηmum; u)µn−i(ηk)i. (66)

Proof. Consider

N(ξ) :=
(1− u) eµηξu1+u2(µηξ)2+u3(µηξ)3+···+um(µηξ)m

(eµηξ − uη) (eµξ − u) (eηξ − u)
.

By continuing in a similar fashion to that performed in Theorem 11, assertion (4) is
deduced.

Theorem 13. The following symmetry connection between the MHFEPs and multiple power sums
is valid for any integers with µ, η > 0 and n ≥ 0, u ∈ C:
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n

∑
k=0

(
n
k

)
YF[m]

n−k(ηu1, η2u2, η3u3, . . . , ηmum; u)uη
k

∑
l=0

(
k
l

) l

∑
r=0

(
l
r

)
(−1)l−rSk(η;

1
u
)

× YF[m+1]
k−l (µU1, µ2U2, µ3U3, . . . , µmUm; u)µn−k+lηk−l

=
n

∑
k=0

(
n
k

)
YF[m]

n−k(µu1, µ2u2, µ3u3, . . . , µmum; u)uµ
k

∑
l=0

(
k
l

) l

∑
r=0

(
l
r

)
(−1)l−rSk(µ;

1
u
)

× YF[m+1]
k−l (ηU1, η2U2, η3U3, . . . , ηmUm; u)ηn−k+lµk−l . (67)

Proof. Consider

F(ξ) := (1− u)2 eµu1(ηξ)+µ2u2(ηξ)2+µ3u3(ηξ)3+···+µmum(ηξ)m

× (eµηξ − uη) eµU1(ηξ)+µ2U2(ηξ)2+µ3U3(ηξ)3+···+µmUm(ηξ)m

(eηξ − u) (eµξ − u)
, (68)

which on simplifying the exponents and usage of expressions (7) and (56) in the final
expression gives

F(ξ) :=
∞

∑
n=0

YF[m]
n (ηu1, η2u2, η3u3, lcdots, ηmum; u)µn ξn

n!
uη

∞

∑
m=0

m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)µm ξm

m!

× YF[m+1]
k−l (µU1, µ2U2, µ3U3, . . . , µmUm; u)ηl ξ l

l!
. (69)

Therefore, in view of the Cauchy product rule, we have

F(ξ) :=
∞

∑
n=0

[
n

∑
l=0

(
n
l

)
YF[m]

n−l(ηu1, η2u2, η3u3, . . . , ηmum; u)µn−luη
l

∑
m=0

(
l
m

) m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)

× YF[m+1]
l−m (µU1, µ2U2, µ3U3, . . . , µmUm; u)µmηl−m

]
ξn

n!
. (70)

Continuing in a similar fashion, we have

F(ξ) :=
∞

∑
n=0

[
n

∑
l=0

(
n
l

)
YF[m]

n−l(µu1, µ2u2, µ3u3, . . . , µmum; u)ηn−luµ
l

∑
m=0

(
l
m

) m

∑
r=0

(
m
r

)
(−1)m−rSk(µ;

1
u
)

× YF[m+1]
l−m (ηU1, η2U2, η3U3, . . . , ηmUm; u)µmµl−m

]
ξn

n!
. (71)

On comparison of the coefficients of like exponents of ξ in expressions (70) and (71),
assertion (67) is deduced.

Theorem 14. The following symmetry connection between the MHFEPs and generalized integer
power sums is valid for any integers with µ, η > 0 and n ≥ 0, u ∈ C:

n

∑
m=0

(
n
m

)
YF[m]

n−m(ηu1, η2u2, η3u3, . . . , ηmum; u)µn−muµ
m

∑
r=0

(
m
r

)
(−1)m−rSk(µ;

1
u
)ηm

=
n

∑
m=0

(
n
k

)
YF[m]

n−m(µu1, µ2u2, µ3u3, . . . , µmum; u)ηn−muη
m

∑
r=0

(
m
r

)
(−1)m−rSk(η;

1
u
)µm. (72)
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Proof. Consider

M(ξ) :=
(1− u) eηu1(µξ)+η2u2(µξ)2+η3u3(µξ)3+···+ηmum(µξ)m

(eµηξ − uµ)

(eηξ − u) (eµξ − u)
.

(73)

By continuing in a similar fashion to that performed in the previous Theorem, assertion
(72) is deduced.

5. Some Illustrative Examples

Here, we give some specific examples of MHFEPs by taking their special cases:
For m = 3, the MHFEPs reduce to three-variable HFEPs YF[3]

n (u1, u2, u3; u) specified
by the generating expression:(

1− u
eξ − u

)
exp(u1ξ + u2ξ2 + u3ξ3) =

∞

∑
n=0

YF[3]
n (u1, u2, u3; u)

ξn

n!
, (74)

operational rule:

exp
(

u2
∂2

∂u1
2 + u3

∂3

∂u1
3

){
Fn(u1; u)

}
= YF[3]

n (u1, u2, u3; u), (75)

series representations:

YF[3]
n (u1, u2, u3; u) =

n

∑
s=0

(
n
s

)
Fs(u)Y [3]

n−s(u1, u2, u3) (76)

and

YF[3]
n (u1, u2, u3; u) =

n

∑
s=0

(
n
s

)
Fs(u1; u)Y [3]

n−s(u2, u3). (77)

For m = 2, the MHFEPs reduce to two-variable HFEPs YFn(u1, u2, u3; u) specified by
the generating expression:(

1− u
eξ − u

)
exp(u1ξ + u2ξ2) =

∞

∑
n=0

YFn(u1, u2; u)
ξn

n!
, (78)

operational rule:

exp
(

u2
∂2

∂u1
2

){
Fn(u1; u)

}
= YFn(u1, u2; u), (79)

series representations:

YFn(u1, u2; u) =
n

∑
s=0

(
n
s

)
Fs(u)Yn−s(u1, u2) (80)

and

YFn(u1, u2; u) =
n

∑
s=0

(
n
s

)
Fs(u1; u)Yn−s(u2). (81)

For m = 1, they reduce to Frobenius–Euler polynomials.

6. Conclusions

We develop the generation function and recurrence rules for the multivariate Hermite-
type Frobenius–Euler polynomials in this context. We may investigate the polynomials’
characteristics and potential applications to physics and related fields using this approach.
The generating function is derived and gives a compact representation of the polynomials,
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which makes it simpler to analyze their algebraic and analytical properties. The recurrence
relations also enable rapid computation and analysis of polynomial values through the use
of recursive computing.

The multivariate Hermite-type Frobenius–Euler polynomials offer a strong foundation
for further research. They provide opportunities to explore several algebraic and analytical
characteristics, including differential equations, orthogonality, and others. Quantum me-
chanics, statistical physics, mathematical physics, engineering, and other areas of physics
all make use of these polynomials. By developing the generating function and recurrence
relations of extended hybrid-type polynomials, this technique is reinforced. These discov-
eries not only add to our understanding of multivariate Hermite-type Frobenius–Euler
polynomials but also open up new avenues for investigation into their characteristics and
potential applications in physics and related fields.

Operational techniques are effective in constructing new families of special functions
and deriving features related to both common and generalized special functions. By em-
ploying these techniques, explicit solutions for families of partial differential equations,
including those of the Heat and D’Alembert type, can be obtained. The approach de-
scribed in this article, in conjunction with the monomiality principle, enables the analysis
of solutions for a wide range of physical problems involving various types of partial
differential equations.
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