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Abstract: In the framework of 2D-elasticity, an equilibrium problem for an inhomogeneous body
with a curvilinear inclusion located strictly inside the body is considered. The elastic properties of
the inclusion are assumed to depend on a small positive parameter δ characterizing its width and
are assumed to be proportional to δ−1. Moreover, it is supposed that the inclusion has a curvilinear
rough boundary. Relying on the variational formulation of the equilibrium problem, we perform the
asymptotic analysis, as δ tends to zero. As a result, a variational model of an elastic body containing
a thin curvilinear rod is constructed. Numerical calculations give a relative error between the initial
and limit problems depending on δ.
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1. Introduction

The present paper deals with an equilibrium problem for an inhomogeneous body
with a curvilinear inclusion located strictly inside the elastic body. The elastic properties
of the inclusion are assumed to depend on a small positive parameter δ characterizing its
width. More precisely, the Lamé coefficients are proportional to δ−1. Furthermore, it is
supposed that the inclusion has a perturbed curvilinear boundary. This means that the
boundary of the inclusion is rough. The main purpose of this paper is to pass to the limit as
δ tends to zero. As a result, a model of an elastic body containing a thin elastic curvilinear
inclusion inside is constructed (in the considered case, this is a rod-type inclusion). To
derive the limit problem, we use an approach based on a variational formulation of the
equilibrium problem (see, e.g., [1–3]). It is worth noting that in our consideration, we
take into account the three key features, which, in our opinion, were taken into account
simultaneously earlier only in [1], in the case of a soft inclusion. Namely, these three features
are that the inclusion is located strictly inside the body, the inclusion has a curvilinear
boundary, and the boundary of the inclusion is rough.

Imperfect interface problems and problems of the coupling of different models of
elasticity are of the greatest interest in the description of composite materials. In the present
time, various types of thin inclusion problems were considered. Papers [4,5] investigated
thin elastic inclusions such as the Euler–Bernoulli beam and the Timoshenko beam. Thin
rigid inclusions were considered in [6–10]. Problems of thin elastic junctions between
elastic bodies were studied in [11–13]. In all the mentioned works, as a rule, the main
attention was paid to the study of the well-posedness of variational (weak) formulations of
corresponding boundary value problems for equilibrium models but not the derivation of
such models.
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Currently, there is a huge number of papers devoted to the asymptotic analysis of
linear and non-linear models of elasticity with the aim to derive different types of imperfect
interfaces between elastic bodies. For example, in [14], a higher-order imperfect interface
was studied by using complex variables and asymptotic analysis. In [15–17], interface
models were derived for coupled thermoelasticity (see also [18–21] for modeling soft and
hard interfaces in 2D- and 3D-elasticity).

One can notice that there are not so many papers devoted to studies of curvilinear
interfaces with rough boundaries. In this line, we can only mention that the curvilinear
interface problems were considered in [1,18,22], while in [1,23–26], the roughness of the
inclusions was taken into account.

Moreover, we mention refs. [25,27–29], in which multi-scale asymptotic analysis and
computation of static and dynamics problems in curvilinear coordinates was proposed.

The rest of the article is organized as follows. In Section 2, the equilibrium problem
for an elastic body with a narrow inclusion depending on a small parameter δ > 0 is
formulated. Then, in Section 3, we introduce the special coordinate transformations, which
allow us further in Section 4 to reformulate the initial problem and decompose it in such a
way that the new variational problem is defined in a fixed domain that is independent of δ.
Section 5 is devoted to the justification of the asymptotic procedure, as a result of which the
limit problem is derived. The numerical examples of Section 6 confirm the accuracy of the
passage to the limit, justified in Section 5.

2. Statement of the Initial Problem

Let Ω ⊂ R2 be a convex bounded domain with a Lipschitz boundary ∂Ω; ΓN and ΓD
be the parts of ∂Ω such that ΓN ∪ ΓD = ∂Ω and meas ΓD > 0; and I, I1, and I2 be the three
intervals lying on the abscissa axis Oy1 such that Ī1 ⊂ I2, Ī2 ⊂ I. Moreover, assume I is the
intersection of the domain Ω with Oy1-axis.

We introduce the functions ϕ ∈ C1,1(I), ψ−, ψ+ ∈ C0,1(I) such that

1. ψ+ − ψ− > 0 on I1;
2. ψ+ − ψ− = 0 on I \ Ī1;
3. ϕ = 0 on I \ Ī2;
4. The graph of the function ϕ is located strictly inside the domain Ω.

Let us fix a small parameter δ > 0 and put

Ω± = {(x1, x2) ∈ Ω | ± x2 > ±ϕ(x1), x1 ∈ I},

Ωδ
m = {(y1, y2) ∈ Ω | ϕ(y1) + δψ−(y1) < y2 < ϕ(y1) + δψ+(y1), y1 ∈ I1},

Sδ
± = {(y1, y2) ∈ Ω | y2 = ϕ(y1) + δψ±(y1), y1 ∈ I1},

Ωδ
e = Ω \Ωδ

m, Ωδ
± = Ωδ

e ∩Ω±.

Note that, for all small-enough δ > 0, the domain Ωδ
m lies strictly inside Ω.

In our consideration, the domain Ω is an elastic inhomogeneous body, containing a

narrow curvilinear strip Ωδ
m with width of order δ and with a rough boundary Sδ

+ ∪ Sδ
−,

where roughness is characterized by functions ψ± (see Figure 1).
By Cδ, C0, we denote the tensors characterizing the material constants of the inclusion

Ωδ
m and the elastic matrix Ωδ

e , respectively, with usual symmetrical and elliptical properties
(see, e.g., [30]). We prescribe homogeneous Dirichlet’s conditions on ΓD and Neumann’s
conditions on the remaining part ΓN of the external boundary ∂Ω. This means that the
body Ω is clamped on ΓD, whereas the force g ∈ L2(ΓN) is applied to ΓN .

We formulate the equilibrium problem for the body Ω with the inclusion Ωδ
m in the

framework of the two-dimensional elasticity. Let u = (u1, u2) be a vector of displacements
of the composite body and σ(u) = (σij(u))i,j=1,2 and ε(u) = (εij(u))i,j=1,2 be the stress and
the strain tensors, respectively, where
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εij(u) =
1
2
(ui,j + uj,i), i, j = 1, 2,

σ(u) =

{
C0ε(u) in Ωδ

e ,

Cδε(u) def
= δ−1C1ε(u) = δ−1(λm I tr ε(u) + 2µmε(u)

)
in Ωδ

m.

Here and further, lower indices after the comma denote the operation of differentiation
with respect to the corresponding coordinate, the summation over repeated indices is
performed, λm and λm are the Lamé coefficients such that λm + 2µm > 0 and µm > 0; hence,
the tensor C1 is positive definite. In general, the elastic matrix characterized by the tensor C0

is anisotropic and homogeneous with the elastic coefficients belonging to L∞
loc(R

2).
The equilibrium problem under study is the following boundary value problem:

−σij,j(uδ) = 0 in Ω, i = 1, 2, (1)

uδ = 0 on ΓD, (2)

σij(uδ)nj = gi on ΓN , i = 1, 2, (3)

where n = (n1, n2) is a normal unit vector to ∂Ω, g = (g1, g2) ∈ L2(ΓN)
2 is a given traction.

In the sequel, the following variational (weak) formulation of Problems (1)–(3) is used:
find a function uδ ∈ HΓD (Ω) satisfying the variational equality∫

Ω

σ(uδ) : ε(v) dy =
∫

ΓN

g v ds (4)

for all kinematically admissible displacement test functions v ∈ H1
ΓD

(Ω), where

HΓD (Ω) = {v ∈ H1(Ω)2 | v = 0 a.e. on ΓD}.

Figure 1. Domain configuration.

3. Transformations of Coordinates

Introduce into consideration the following sets:

Ωm = {(z1, z2) ∈ R2 | ψ−(z1) < z2 < ψ+(z1), z1 ∈ I1},

S± = {(z1, z2) ∈ R2 | z2 = ψ±(z1), z1 ∈ I1},

S = {(x1, x2) ∈ R2 | x2 = ϕ(x1), x1 ∈ I1},
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which are independent of δ, and define coordinate transformations mapping domains Ωδ
±

and Ωδ
m onto domains Ω± and Ωm, respectively. For this purpose, take two convex open

domains D1 and D2 such that I2 = D2 ∩Oy1, I1 ⊂ D1, D1 ⊂ D2, D2 ⊂ Ω, and consider the
following domains:

Dϕ
i = {(z1, z2) | z1 = y1, z2 = ϕ(y1) + y2, (y1, y2) ∈ Di}, i = 1, 2.

The inclusions S ⊂ Dϕ
1 and Dϕ

1 ⊂ Dϕ
2 hold. Additionally, assume that domain Dϕ

2 lies
strictly inside Ω.

Further, consider a smooth cut-off function θ ∈ C1(Ω) such that

θ = 1 in Dϕ
1 ; 0 < θ < 1 in Dϕ

2 ; θ = 0 in Ω \ Dϕ
2 .

Finally, define the coordinate transformations x = Λ±(y) and z = Λm(y) by the formulas

x1 = y1, x2 = y2 − δψ±(y1)θ(y1, y2), (y1, y2) ∈ Ωδ
±, (x1, x2) ∈ Ω±, (5)

z1 = y1, z2 =
y2 − ϕ(y1)

δ
, (y1, y2) ∈ Ωδ

m, (z1, z2) ∈ Ωm, (6)

respectively. It is easy to see that Transformations (5) and (6) are one-to-one. Moreover,
these coordinate transformations generate an isomorphism between H1(Ω±), H1(Ωm) and
H1(Ωδ

±), H1(Ωδ
m), respectively (see, e.g., Chapter 2, Lemma 3.4 in [31]). By y = Λ−1

± (x)
and y = Λ−1

m (z), we further denote the inverse transformations to (5) and (6), respectively.

4. Decomposition and Transformation of the Problem

Following the arguments from [1,2,32] with natural modifications, we now rewrite
Problem (4) in the equivalent form. We introduce the set

Kδ =
{
(v+, v−, vm) ∈ H1(Ωδ

+)× H1(Ωδ
−)× H1(Ωδ

m) |
v± = 0 a.e. on ΓD ∩ ∂Ωδ

±, v± = vm a.e. on Sδ
±, v+ = v− a.e. on ∂Ωδ

− ∩ ∂Ωδ
+

}
,

and define a variational problem: find a triplet (u+
δ , u−δ , um

δ ) ∈ Kδ satisfying the equality∫
Ωδ

+

C0ε(u+
δ ) : ε(v+) dy +

∫
Ωδ
−

C0ε(u−δ ) : ε(v−) dy

+
1
δ

∫
Ωδ

m

C1ε(um
δ ) : ε(vm) dy =

∫
ΓN∩∂Ωδ

+

g v+ ds +
∫

ΓN∩∂Ωδ
−

g v− ds (7)

for all (v+, v−, vm) ∈ Kδ.
Clearly, Problem (7) has a unique solution (u+

δ , u−δ , um
δ ) for all δ > 0. Moreover,

the relation

uδ =

{
u±δ a.e. in Ωδ

±,
um

δ a.e. in Ωδ
m

holds, where uδ is the solution to Problem (4).
Let K ⊂ H1(Ω−)×H1(Ω+)×H1(Ωm) be the image of the set Kδ under the coordinate

transformations (5) and (6),

K =
{
(v+, v−, vm) ∈ H1(Ω+)× H1(Ω−)× H1(Ωm) |
v±|S = vm|S± , v± = 0 a.e. on ΓD ∩ ∂Ω±, v+ = v− a.e. on (∂Ω− ∩ ∂Ω+) \ S

}
.

The equality v±|S = vm|S± in the definition of K means that
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v±(x1, ϕ(x1)) = vm(x1, ψ±(x1)) for all x1 ∈ I1. (8)

After applying coordinate transformations y = Λ−1
± (x) and y = Λ−1

m (z) to the varia-
tional equality (7), we conclude that the transformed displacements

ũ±δ (x) = u±δ (Λ
−1
± (x)), ũm

δ (z) = um
δ (Λ

−1
m (z))

satisfy the variational equality

Aδ
+(ũ

+
δ , v+) + Aδ

−(ũ
−
δ , v−)

+
∫

Ωm

C1eδ(ũm
δ ) : eδ(vm) dz =

∫
∂Ω+∩ΓN

g v+ ds +
∫

∂Ω−∩ΓN

g v− ds (9)

for any triplet (v+, v−, vm) ∈ K, where

Aδ
±(u

±, v±) =
∫

Ω±

J±δ C0E(Ψ±δ ; u±) : E(Ψ±δ ; v±) dx,

Eij(Ψ±δ ; v) = (1/2)
(

vi,k(Ψ
±
δ )kj + vj,k(Ψ

±
δ )ki

)
, i, j = 1, 2;

eδ(vm) =

 vm
1,1 −

ϕ′

δ vm
1,2

1
2

(
1
δ vm

1,2 + vm
2,1 −

ϕ′

δ vm
2,2

)
1
2

(
1
δ vm

1,2 + vm
2,1 −

ϕ′

δ vm
2,2

)
1
δ vm

2,2

,

with the Jacobi matrices Ψ±δ and the Jacobian J±δ of the transformations y = Λ−1
± (x).

In the sequel, we use the first-order asymptotic expansions (see, e.g., [33,34])

Aδ
±(u, v) = A±(u, v) + δr±(δ, u, v), A±(u, v) =

∫
Ω±

C0ε(u) : ε(v) dx, (10)

where

|r±(δ, u, v)| ≤ c(‖u‖2
H1(Ω±)

+ ‖v‖2
H1(Ω±)

), (11)

with a constant c independent of δ, u, and v.

5. Justification of the Asymptotic Analysis

It is well-known that uniform estimates play an essential role in asymptotic analysis
(see, e.g., [20,35–37]. Here, we formulate and prove some Korn-type estimates. Primarily,
we recall the following Lemmas 1 and 2.

Lemma 1 ([2]). For any function v ∈ H1(Ωm) the following inequality holds:

‖v‖2
L2(Ωm) ≤ c

(
‖v,2‖2

L2(Ωm) + ‖v‖
2
L2(Sα)

)
, α ∈ {−,+},

with a constant c independent of v.

Lemma 2 ([1]). For all small-enough δ > 0 and any triplet (v+, v−, vm) ∈ K the following
inequality holds:
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c
(
‖v+‖2

H1(Ω+)
+ ‖v−‖2

H1(Ω−)

+δ‖vm
1,1 −

ϕ′

δ
vm

1,2‖2
L2(Ωm) +

1
δ
‖vm

1,2‖2
L2(Ωm) + δ‖vm

2,1 −
ϕ′

δ
vm

2,2‖2
L2(Ωm) +

1
δ
‖vm

2,2‖2
L2(Ωm)

)
≤
∫

Ω+

C0ε(v+) : ε(v+) dx +
∫

Ω−

C0ε(v−) : ε(v−) dx

+ δ
∫

Ωm

C1eδ(vm) : eδ(vm) dz

with a constant c independent of δ and (v+, v−, vm).

Lemmas 1 and 2 allow us to prove Theorems 1–3 that follow.
Theorems 1 and 2 are preparatory in nature.

Theorem 1. The solution (ũ+
δ , ũ−δ , ũm

δ ) of Problem (9) satisfies the following uniform in δ estimates:

‖ũ+
δ ‖H1(Ω+)2 ≤ c, ‖ũ−δ ‖H1(Ω−)2 ≤ c, (12)

δ−1‖ũm
δ2,2‖L2(Ωm) ≤ c, (13)

‖ũm
δ1,1 −

ϕ′

δ
ũm

δ1,2‖L2(Ωm) ≤ c, ‖ũm
δ2,1 +

ũm
δ1,2

δ
‖L2(Ωm) ≤ c, (14)

δ−
1
2 ‖ũm

δ1,2‖L2(Ωm) ≤ c. (15)

Proof. Let us take (ũ+
δ , ũ−δ , ũm

δ ) in (7) as the test functions and apply the coordinate trans-
formations (5) and (6). Taking into account (10), (11), and Korn’s inequality in the domains
Ω±, we obtain (12)–(14). Estimate (15) follows directly from Lemma 2 and (12)–(14).

Theorem 2. There exists a sequence, still denoted by δ, and limit functions u± ∈ H1(Ω±) and
pi ∈ L2(Ωm), i = 1, 2, 3, such that the following limiting relations

ũ±δ → u± weakly in H1(Ω±)2,

ũm
δ → um weakly in L2(Ωm)

2,

ũm
δ1,1 −

ϕ′

δ
ũm

δ1,2 → p1 weakly in L2(Ωm),

ũm
δ1,2

δ
+ ũm

δ2,1 → p2 weakly in L2(Ωm),

ũm
δ2,2

δ
→ p3 weakly in L2(Ωm),

ũm
δ,2 → um

,2 = 0 strongly in L2(Ωm)
2. (16)

ũm
δ1,1 + ϕ′ũm

δ2,1 → p1 + ϕ′p2 weakly in L2(Ωm) (17)

hold true as δ→ 0+.

Proof. The first six limiting relations follow from Theorem 1 and the weak compactness
property of bounded sets in the spaces L2(Ωm) and H1(Ω±).

Now, let us prove (17). For any function η ∈ C∞
0 (Ωm), we have∫

Ωm

(p1 + ϕ′p2)η dz = lim
δ→0

∫
Ωm

(
ũm

δ1,1 −
ϕ′

δ
ũm

δ1,2 + ϕ′(
ũm

δ1,2

δ
+ ũm

δ2,1)

)
η dz
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= lim
δ→0

∫
Ωm

(
ũm

δ1,1 + ϕ′ũm
δ2,1
)
η dz = − lim

δ→0

∫
Ωm

(
ũm

δ1η,1 + ũm
δ2(ϕ′η),1

)
dz

= −
∫

Ωm

((um
1 + ϕ′um

2 )η,1 + ϕ′′ηu2) dz,

which gives (17). Moreover, additionally the following equality holds true:

p1 + ϕ′p2 = um
1,1 + ϕ′um

2,1 ∈ L2(Ωm). (18)

Remark 1. Note that, in general, functions um
1,1 and um

2,1 do not belong to the space L2(Ωm).

Remark 2. Due to (16), the function um does not depend on z2. From this fact, it follows that the
traces of functions u+ and u− on S coincide with each other.

Theorem 3 is the main result of this paper.

Theorem 3. Let (ũ+
δ , ũ−δ , ũm

δ ) ∈ K be a solution of Problem (9) and (u+, u−) be a solution of the
following variational problem: find u = (u+, u−) satisfying the variational equality∫

Ω

C0ε(u) : ε(v) dx +
∫
S

4µm(λm + µm)(ψ+ − ψ−)

(λm + 2µm)(1 + ϕ′2)
1
2

(τt∇u τ)(τt∇v τ) ds =
∫

ΓN

g v ds (19)

for all v ∈ Kl , where u± = u|Ω± are the restrictions of u on Ω±,

Kl =
{

v ∈ HΓD (Ω) | (ψ+ − ψ−)
1
2 (τt∇vτ) ∈ L2(S)

}
,

∇v =

(
v1,1 v1,2
v2,1 v2,2

)
,

τ is a tangent vector to the curve S defined by

τ =
(1, ϕ′)

(1 + ϕ′2)
1
2

,

and the superscript t denotes the transposition operator defined for matrices.

Then, the limiting relations

(ũ+
δ , ũ−δ )→ (u+, u−) strongly in H1(Ω+)× H1(Ω−), (20)

ũm
δ → um strongly in L2(Ωm) (21)

hold true as δ → 0+, where u± are defined above and um(z1, z2) = u(z1, ψ(z1)) is a trace of u
on S extended into the domain Ωm.

Proof. Multiply (9) by δ and let δ tend to zero. As the result, using Theorem 2, we obtain

−ϕ′((λm + 2µm)p1 + λm p3) + µ(p2 − ϕ′p3) = 0 a.e. in Ωm,

−ϕ′µm(p2 − ϕ′p3) + (λm + 3µm)p3 + λm p1 = 0 a.e. in Ωm.

Thus, together with (18), we obtain the system of the linear algebraic equations for
p1, p2, p3 with the non-vanishing discriminant D = µm(λm + 2µm)(1 + (ϕ′)2)2, which is a
Lipschitz continuous function on Ī1.
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Solving the system, we find the functions pi ∈ L2(Ωm), i = 1, 2, 3:

p1 =
λm + 2µm − λm ϕ′2

(λm + 2µm)(1 + ϕ′2)2
(um1,1 + ϕ′um2,1), (22)

p2 =
ϕ′(3λm + 4µm + (λm + 2µm)ϕ′2)

(λm + 2µm)(1 + ϕ′2)2
(um1,1 + ϕ′um2,1), (23)

p3 =
ϕ′(λm + 2µm)− λm

(λm + 2µm)(1 + ϕ′2)2
(um1,1 + ϕ′um2,1). (24)

Now, take an arbitrary pair (v+, v−) ∈ (C1(Ω+) × C1(Ω−)) ∩ Kl and put
vm(z1, z2) = v+(z1, ϕ(z1)) for (z1, z2) ∈ Ωm. Then, the triple (v+, v−, vm) belongs to the
set K and, therefore, can be substituted into (9) as test functions. After passing to the limit
as δ goes to zero, owing to (22)–(24), we obtain

A+(u+, v+) + A−(u−, v−)

+
∫

Ωm

4µm(λm + µm)

(λm + 2µm)(1 + ϕ′2)2
(um1,1 + ϕ′um2,1)(vm1,1 + ϕ′vm2,1) dz

=
∫

∂Ω+∩ΓN

g v+ ds +
∫

∂Ω−∩ΓN

g v− ds. (25)

Due to the definition of the domain Ωm and the fact that the functions in the third
term of (25) do not depend on z2, Equation (25) can be rewritten as follows:

A+(u+, v+) + A−(u−, v−)

+
∫
I1

4µm(λm + µm)(ψ+ − ψ−)

(λm + 2µm)(1 + ϕ′2)2
(um1,1 + ϕ′um2,1)(vm1,1 + ϕ′vm2,1) dz1

=
∫

∂Ω+∩ΓN

g v+ ds +
∫

∂Ω−∩ΓN

g v− ds. (26)

In turn, taking into account (8), Equality (26) can be rewritten as follows:

A+(u+, v+) + A−(u−, v−) +
∫
I1

4µm(λm + µm)(ψ+ − ψ−)

(λm + 2µm)(1 + ϕ′2)2

× (u+
1,1 + ϕ′u+

1,2 + ϕ′(u+
2,1 + ϕ′u+

2,2))(v
+
1,1 + ϕ′v+1,2 + ϕ′(v+2,1 + ϕ′v+2,2)) dz1

=
∫

∂Ω+∩ΓN

g v+ ds +
∫

∂Ω−∩ΓN

g v− ds.

Finally, due to Remark 2 and the density of C1(Ω) ∩ Kl in Kl , we obtain (19).
The strong limiting relations (20) and (21) follow from the standard arguments

(see, e.g., [32]).

Now, assuming the additional regularity of the solution to Problem (19), we give the
equivalent (in the sense of distributions) differential formulation of (19).

First of all, note that

∂w
∂s

= ∇w τ,
dτ

ds
= kν,

dν

ds
= −kτ, (27)

where w is an arbitrary rather smooth scalar function, and k is the curvature of the curve S
defined by
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k =
ϕ′′

(1 + (ϕ′)2)
3
2

.

The last two formulas in (27) are the Frenet–Serret formulas.
Let wτ and wν be tangential and normal components of a vector-function w in the

(τ, ν)-coordinate system, respectively. Due to (27), we have

∂w
∂s

=
∂wτ

∂s
τ + kwτν +

∂wν

∂s
ν− kwντ,

which yields that

τt∇w τ =
∂wτ

∂s
− kwν.

Then, after the application of Green’s formula to the first integral and integration by
parts in the second integral in (19), we arrive at the following boundary value problem:

−σij,j(u) = 0 in Ω \ S, i = 1, 2, (28)

u = 0 on ΓD, (29)

σij(u)nj = gi on ΓN , i = 1, 2, (30)

− ∂

∂s

(
Λψ

(
∂uτ

∂s
− kuν

))
= [στ(u)] on S, (31)

−kΛψ

(
∂uτ

∂s
− kuν

)
= [σν(u)] on S, (32)

Λψ

(
∂uτ

∂s
− kuν

)
= 0 at ∂S, (33)

where

Λψ =
4µm(λm + µm)

λm + 2µm

ψ+ − ψ−

(1 + ϕ′2)
1
2

.

Let us give a mechanical interpretation of the differential equations and boundary
conditions (28)–(33). Here, Equation (28) is the standard equilibrium equation of the body
Ω containing the thin inclusion S. Condition (29) means that the body is clamped on
ΓD, while (30) means that traction g = (g1, g2) is applied to ΓN . Equations (31) and (32)
describe deformations of inclusion S taking into account the influence of the elastic matrix
surrounding it. It is worth noting that, in the case when k 6= 0, not only is the jump of
the tangential stress στ(u) is not equal to zero, but the jump of the normal stress σν(u)
on S is not equal to zero as well. Moreover, these jumps are of the Ventcel type (see, e.g.,
works [15,22,38–41], in which analogous conditions were used for different models of elas-
ticity). At last, Equation (33) is the boundary condition at the tips of S that are free of loads.

6. Numerical Examples

In this section, by using a standard finite-element method, we compare numeri-
cally the solution of the initial problem (4) with the approximated problem (19). In
all the examples below, the domain Ω is a square Ω = (−1, 1) × (−1, 1), the body is
fixed on the right-hand side ΓD = {1} × (−1, 1) of the square, and the remaining part
ΓN = ∂Ω \ ΓD of the boundary ∂Ω is divided into three parts such that ΓN = Γ1

N ∪ Γ2
N ∪ Γ3

N
with Γ1

N = {−1} × (−1, 1), Γ2
N = (−1, 1)× {1}, and Γ3

N = (−1, 1)× {−1}, which are the
left-hand, the upper, and the lower sides of the domain Ω, respectively.

The elastic matrix Ωδ
e is assumed to be an isotropic homogeneous material with the

Lamé coefficients µ and λ:

µ =
E

2(1 + ν)
, λ =

2νµ

1− 2ν
,
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where E and ν are the Young modulus and the Poisson ratio, respectively. We take the
material parameters ν = 0.32 and E = 112 GPa for the elastic matrix Ωδ

e . Moreover, we
assume that the the Lamé coefficients µm and λm are defined by the same formulas with
the Young modulus Em and the Poisson ratio νm:

ν = 0.28, Em = 10pE,

where parameter p takes values from the range −2, −1, 0, 1, and 2, characterizing the
softness (or hardness) of the inclusion Ωδ

m.
The horizontal tensile loading by the following traction forces is imposed: g = (g1, 0)

with g1 = −10−3µm on Γ3
N , and g2 = 0 on Γ2

N ∪ Γ1
N .

The numerical experiments are implemented using the free software FreeFEM++
(Version 4.11, https://freefem.org/) [42]. The space H1(Ω) is approximated by the finite-
element space consisting of linear functions, namely, of Lagrange’s P1-elements.

Below, we consider several cases of the geometry of the inclusion and get numerical
convergence of approximated solutions to the solution of the initial problem with the
inclusion of a non-zero width. Let S be a sinusoidal curve, i.e., S be described by the
graph of the function y2 = ϕ = d sin(2πy1), where d takes values from 0 (rectilinear line)
to 0.5 (curve with non-zero curvature). Moreover, we take functions ψ± characterizing the
roughness of the narrow inclusion Ωδ

m as follows:

ψ+(y1) = 2y2
1 − 0.5, ψ−(y1) = −16y4

1 + 1.

By ErrL2 and ErrH1, the relative errors of the displacements in the L2- and H1-spaces,
respectively, are denoted.

In Table 1 (see also Figure 2), we investigate the dependence of the relative error on
the parameter δ characterizing inclusion’s width (for d = 0.5, p = 0). They show good
approximation of the initial problem (with non-zero width) by the thin inclusion problem
in both L2- and H1-norms.

Figure 2. Relative error vs. δ for the case d = 0.5, p = 0.

Table 2 shows the dependence of relative error on the parameter p, which characterizes
the roughness of the inclusion. It can be seen that the approximation for the soft inclusions
is better than the approximation for the hard inclusions. This feature can be explained
by the fact that in the case of the hard inclusion, there are large stresses in the vertices of
the inclusions and in the places of great curvature. It should be noted that, in [43], the
asymptotic behavior of the solution near the tip of the rigid line inclusion was studied

https://freefem.org/
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in the case of two-dimensional homogeneous isotropic linearized elasticity. In [44], the
numerical method of solving bulk and thin rigid inclusion problems was proposed.

Table 3 illustrates the dependence of the relative errors on the parameter d that char-
acterizes the curvature of the inclusion (the case of d = 0 corresponds to the rectilinear
inclusion, and the case d = 0.5 corresponds to the sinusoid with an amplitude equal to one).

Let us investigate a mesh sensitivity analysis. Let h.min and h.max denote the minimal
and maximal sizes of mesh triangles of the domain Ω. Table 4 presents numerical calcu-
lations in dependence of mesh sizes. Again, it shows a good approximation of the initial
problem (with non-zero width) by the thin inclusion problem in both L2- and H1-norms.

Table 1. Relative error vs. δ for the case d = 0.5, p = 0.

δ = 0.1 δ = 0.05 δ = 0.025 δ = 0.01

ErrL2 0.04 0.021 0.011 0.004

ErrH1 0.148 0.107 0.077 0.048

Table 2. Relative error vs. p for the case d = 0.5, δ = 0.01.

p = −2 p = −1 p = 0 p = 1 p = 2

ErrL2 0.001 0.004 0.005 0.008 0.019

ErrH1 0.013 0.043 0.048 0.056 0.086

Table 3. Relative error vs. d for the case δ = 0.01, p = 0.

0 0.1 0.2 0.3 0.4 0.5

ErrL2 0.002 0.004 0.005 0.005 0.004 0.005

ErrH1 0.054 0.051 0.052 0.05 0.048 0.048

Table 4. Relative error vs. mesh sizes h.min and h.max for the case δ = 0.01, p = 0.

h.min h.max ErrL2 ErrH1

0.08 0.28 0.013 0.074

0.03 0.14 0.005 0.057

0.013 0.076 0.005 0.051

0.009 0.048 0.005 0.049

0.005 0.042 0.004 0.048

At last, the resulting deformations in the Lagrange coordinates (with the tenfold
amplification factor) and the distribution of the von Mises stresses are depicted in Figure 3
for the curvilinear inclusion (case d = 0.5) for the applied loading as stated at the beginning
of Section 6 and in Figure 4 for the rectilinear inclusion (case d = 0) for the non-symmetric
tensile loading g = (g1, 0), where g1 = −10−3µm on Γ3

N ∩ {y2 < 0} and g1 = 0 on
(Γ3

N ∩ {y2 > 0}) ∪ Γ2
N ∪ Γ1

N . It can be seen that, in the case of the curvilinear inclusion,
there is a singularity in the vicinity of the curved part of the inclusion, while in the case of
the rectilinear inclusion singularity, it appears only in the vicinity of its tips. This means
that the curvature k plays an essential role in modeling curvilinear inclusions.
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Figure 3. Deformed body with the sinusoidal inclusion and distribution of the von Mises stresses.

Figure 4. Deformed body with the rectilinear inclusion and distribution of the von Mises stresses.

7. Conclusions

By using a variational approach, the model of the elastic body containing strictly
inside the curvilinear rod-like thin inclusion has been derived. The model approximates
the equilibrium problem of the non-homogeneous elastic body with the narrow inclusion,
the width and elastic properties of which depend on the small parameter δ (the width
is proportional to δ, while elastic properties are proportional to δ−1). The approximated
model has a variational formulation. This allows the application of the standard finite-
element method in order to compare solutions of the initial problem and approximated
one. Numerical experiments show a good approximation in both L2-norm and H1-norm as
the parameter δ goes to zero.
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In the future, it is planned to perform an asymptotic procedure for other types of
dependence of the elastic properties of the inclusion on the small parameter characterizing
its width and justify models of thin inclusion of different types (beam-like, rigid, etc.).
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