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1. Introduction and Preliminaries

Over the past 100 years, fixed point theory has been an active area of research, due
to its significance in applications. Simultaneously, in the theory of functional analysis, the
idea of proximity pairs for two sets was briefly discussed. Many researchers contributed
their vision on when and where we can have the best proximity points for sets. Another
group of researchers who were active on fixed point results wanted to analyze the case
when we do not have an exact solution to the equation of the form T (x) = x. Researchers
such as Ky Fan, Segal, Singh, and Prolla [1–3] have provided a wealth of valuable results
in best approximation theory. These findings shed light on situations where fixed points
are absent, and under certain smooth conditions, we can obtain approximate solutions to
the equations. Notably, Ky Fan [1] proved the existence of the best approximation for a
continuous function on a compact convex subset of a normed space. In a subsequent study
in 1989, Segal et al. [2] proved the existence of the best approximation for an approximately
compact subset of a normed space. Furthermore, Prolla et al. [3] extended this concept to
multifunctions. Around the end of the 1990s and the start of 2000, a group of researchers
used the idea of the best proximity point for mappings, which unifies the fixed point
and best approximation results [4–6]. Later, many generalizations were made by many
researchers; refer to [7–11].

On the other hand, the Banach contraction principle is a significant mathematical
discovery in fixed point theory. It has been expanded and applied to various types of
metric spaces, such as semi-metrics, quasi-metrics, pseudo-metrics, fuzzy metric spaces,
and partial metric spaces, among others (see [9,10,12–18]).

In that line, in 2017, Gordji et al. [19,20] introduced a new type of metric space called
an orthogonal metric space and proved the fixed point results. They also demonstrated the
application of these results in establishing the existence and uniqueness of solutions for
first-order ordinary differential equations, where the Banach contraction mapping principle
is not applicable.

Motivated by the aforementioned results [19,20], in this paper, we extend the results
from the fixed point to the best proximity point for non-self-mappings in the context of an
orthogonal set. Using these existence results, we prove a common best proximity point

Mathematics 2023, 11, 3453. https://doi.org/10.3390/math11163453 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163453
https://doi.org/10.3390/math11163453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4500-7375
https://orcid.org/0000-0001-9320-9433
https://doi.org/10.3390/math11163453
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163453?type=check_update&version=1


Mathematics 2023, 11, 3453 2 of 9

result. Finally, we provide suitable examples to demonstrate the validity of our results,
which cannot be achieved through other best proximity point techniques. Furthermore, in
the literature of fixed point theory, we have enormous results on the complete metric space
and partially ordered metric space, but not many on the orthogonal metric space.

In [21], the existence of the best proximity points was provided for a map that is a
continuous and proximal contraction, or it has to be a contraction map on an approximately
compact set. In this paper, we provide the existence of the best proximity point for a weaker
condition called ⊥- continuity on an O-closed set.

Research on the concept of an orthogonal space is worth analyzing as it represents a
more general space that cannot be compared with a partially ordered space. The upcoming
examples will explain the necessity of having an Orthogonal space.

Example 1 ([20]). Consider M = R2. Define ⊥ as u ⊥ v if < u, v >= 0 on M. Then, (M,⊥) is
an O-set, since u = (0, 0) ⊥ v, for all v ∈ M. However, (M,⊥) is not a partial order set. Choose
u = (1, 0), v = (0, 1) , r = (−1, 0); it is clear that u ⊥ v , v ⊥ r, but u 6⊥ r.

Example 2. Consider (M = R,≤). Then, M is a partially ordered set. but not an O-set with the
≤ relation, because we cannot find any u ∈ M such that u ≤ p or p ≤ u for all p ∈ R.

Throughout this paper, the following notions are used:
Let A and B be any two nonempty subsets of a metric space X.

d(A, B) := inf{d(a, b) : a ∈ A and b ∈ B},

A0 = {a ∈ A : d(a, b) = d(A, B) for some b ∈ B},

B0 = {b ∈ B : d(a, b) = d(A, B) for some a ∈ A}.

Definition 1. Let A and B be any two nonempty subsets of a metric space X. Then, a point p ∈ A
is called a best proximity point of a mapping T : A→ B, if the following holds true:

d(p, Tp) = d(A, B).

Definition 2 ([20]). Let M 6= ∅, and let ⊥⊆ M×M be any binary relation. We call (M,⊥) an
O-set (orthogonal set) if ⊥ satisfies the following condition:

∃u0 ∈ M : (∀v, v ⊥ u0) or (∀v, u0 ⊥ v).

We usually use (M,⊥) to represent an O-set. Furthermore, note that this orthogonal
relation is not a transitive relation.

Example 3 ([20]). Take M = [0, ∞), and if uv ∈ {u, v}, then u ⊥ v. It is clear to see that if
u0 = 0 or u0 = 1, (M,⊥) is an orthogonal set.

Definition 3 ([20]). Consider any O-set (M,⊥). Let (un) be any sequence, then we say that (un)
is an O-sequence if

un ⊥ un+1 or un+1 ⊥ un for all n ∈ N.

Example 4. Let M = R, and define u ⊥ v by uv ≤ u or v. Take un = 1/n, then un is an
O-sequence, since ∀n, un ⊥ un+1.

Definition 4 ([20]). Let (X,⊥) be any O-set. Let A be any subset of X. Then, A is orthogonal
closed set (O-closed set) if, when any O-sequence xn → x, then x ∈ A.

Example 5. Let X = [0, ∞). Choose the usual order on X, then (X,≤) is an O-set. Consider
A = [0, 1], then A is an orthogonal closed set.
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Every closed set is an orthogonal closed set, but an orthogonal closed set need not be
a closed set.

Example 6. Let X = [0, 1] and p ∈ (0, 1), and define

x ⊥ y ⇐⇒
{

x ≤ y ≤ p
x = 0 otherwise.

Here, choose A = [0, q) with q ∈ (p, 1). Then, A is an O-closed set. Furthermore, it is not a closed
set.

Definition 5. Let (A, B) be a pair of nonempty subsets of a metric space (X, d). The pair (A, B)
satisfies the P-property if, whenever a1, a2 ∈ A and b1, b2 ∈ B with,

d(a1, b1) = d(A, B)

d(a2, b2) = d(A, B)

}
=⇒ d(a1, a2) = d(b1, b2).

Definition 6 ([20]). Let (X,⊥, d) be an orthogonal metric space ((X,⊥) is an O-set, and (X, d)
is a metric space). Then, T : X → X is said to be orthogonally continuous (or ⊥-continuous) in
a ∈ X if, for each O-sequence {an}n∈N in X with an → a, we have T(an)→ T(a). Furthermore,
T is said to be ⊥-continuous on X if T is ⊥-continuous in each a ∈ X.

Every continuous mapping is ⊥-continuous, but the converse is not true.

Definition 7 ([20]). Let (X,⊥, d) be an orthogonal metric space and 0 < k < 1. A mapping
T : X → X is called an orthogonal-contraction (briefly, ⊥-contraction) with Lipschitz constant k if,
for all x, y ∈ X with x ⊥ y,

d(Tx, Ty) ≤ kd(x, y).

Every contraction is a ⊥-contraction, but the converse is not true.

2. Main Results

Now, we will prove the lemma that will be used to establish the existence of the best
proximity point results.

Lemma 1. Let A be an orthogonal closed subset of an O-complete metric space X, then A is an
O-complete metric space.

Proof. Let (xn) be any O-Cauchy sequence in A. Then, (xn) ⊆ X. Since X is an O-complete
metric space, there exists x ∈ X such that xn → x. Furthermore, (xn) is an O-sequence,
which converges to x ∈ X. Hence, x ∈ A.

Definition 8. Let A and B be any two nonempty subsets of a metric space (X, d). A map T : A→
B is said to be proximally ⊥-preserving if

d(a1, Tb1) = d(A, B)

d(a2, Tb2) = d(A, B)

}
=⇒ a1 ⊥ a2 if b1 ⊥ b2,

for all a1, a2, b1, b2 ∈ A.

Theorem 1. Let A and B be two nonempty O-closed subsets of an O-complete metric space
(X,⊥, d) such that A0 6= ∅. If (A, B) has the P-property and also T : A → B satisfies the
following:

1. T is ⊥-continuous and a ⊥-contraction mapping;
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2. T(A0) ⊆ B0;
3. T is proximally ⊥-preserving;
4. A0 is an O-set.

Then, d(u, Tu) = d(A, B), for some u ∈ A.

Proof. Since A0 is an O-set, there exists p ∈ A0 such that u ⊥ p, or p ⊥ u for all u ∈ A0.
Without loss of generality, assume that u ⊥ p. From Condition 2, we have Tp ∈ B0,
and hence, there exists u1 ∈ A0 such that d(u1, Tp) = d(A, B). Furthermore, note that
Tu1 ∈ B0, and hence, d(u2, Tu1) = d(A, B). By the proximally ⊥-preserving property
of T, we obtain u1 ⊥ u2. Applying a similar argument, we construct an O-sequence
u1 ⊥ u2 ⊥ u3 ⊥ · · · ⊥ ur ⊥ · · · with d(ur+1, Tur) = d(A, B) for all r ∈ N. Using the
P-property of (A, B), we have d(ur, ur+1) = d(Tur−1, Tur). Consider,

d(ur, ur+1) = d(Tur−1, Tur)

≤ kd(ur−1, ur)

...

≤ krd(u0, u1). (1)

Since k < 1, limr→∞ kr = 0. Hence, limr→∞ d(ur, ur+1) = 0. If r, s ∈ N and s < r, then

d(us, ur) ≤ d(us, us+1) + d(us+1, us+2) · · ·+ d(ur−1, ur)

≤ ksd(u0, u1) + ks+1d(u0, u1) + · · ·+ kr−1d(u0, u1) (by (1))

≤ ks[1 + k + · · ·+ kr−s−1]d(u0, u1)

≤ kn

1− k
d(u0, u1).

As s, r → ∞, d(us, ur) → 0, which means that (ur) is an O-Cauchy sequence. Here, A
is an O-closed subset of an O-complete metric space. By Lemma 1, A is an O-complete
metric space (X,⊥, d). Therefore, there exists u∗ ∈ A such that limr→∞ ur = u∗. Since T
is ⊥-continuous, limr→∞ Tur−1 = Tu∗, which implies d(ur, Tur) → d(u∗, Tu∗) as r → ∞.
Hence, d(u∗, Tu∗) = d(A, B).

Theorem 2. Let (X,⊥, d) be any O-complete metric space. Let A and B be two nonempty subsets
of X. Let T : A→ B satisfy the following conditions:

1. T is ⊥-continuous and a ⊥-contraction;
2. T(A0) ⊆ B0 and (A, B) satisfy the P-property;
3. T is proximally ⊥-preserving;
4. There exists u0, u1 ∈ A0 such that d(u1, Tu0) = d(A, B) and u0 ⊥ u1.

Then, there exists an element u ∈ A such that d(u, Tu) = d(A, B).

Proof. By the hypothesis, there exists u0 and u1 in A0 such that

d(u1, Tu0) = d(A, B) and u0 ⊥ u1.

Since u1 ∈ A0, this implies Tu1 ∈ B0, and hence, there exists u2 ∈ A0 such that d(u2, Tu1) =
d(A, B), by the proximally ⊥-preserving condition of T, we obtain u1 ⊥ u2. Proceeding
like this, we obtain u1 ⊥ u2 ⊥ · · · ⊥ ur ⊥ ur+1 ⊥ · · · . Then, (ur) is an O-sequence with
d(ur+1, Tur) = d(A, B) for all r ∈ N. Since (A, B) has the P-property, we have

d(ur, ur+1) = d(Tur−1, Tur) ≤ kd(ur−1, ur) ≤ krd(u0, u1).

Since k < 1, kr → 0, limr→∞ d(ur, ur+1) = 0.
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Claim: (ur) is an O-Cauchy sequence. If s, r ∈ N and r < s, then

d(ur, us) ≤ [d(ur, ur+1) + · · ·+ d(us−1, us)]

≤ krd(u0, u1) + · · ·+ ks−1d(u0, u1)

≤ kr

1− k
d(u0, u1).

Therefore, d(ur, ur) → 0 as s, r → ∞. Therefore, (ur) is an O-Cauchy sequence. Hence,
limr→∞ ur = u∗. Since T is⊥-continuous, limr→∞ Tur−1 = Tu∗, which implies d(ur, Tur)→
d(u∗, Tu∗). Therefore, u∗ is a best proximity point.

Example 7. Consider X := R2 with ⊥ defined as u ⊥ v if < u, v >= 0. Now, define T :
{0} ×R→ {1} ×R by

T(0, x) =

{
(1, x/2) : x ∈ Q∩R
(1, 0) : x ∈ QC ∩R.

Here, observe that T is ⊥-continuous and a ⊥-contraction. It is easy to observe that A0 = A and
B0 = B; therefore, T(A0) ⊆ B0. Furthermore, (A, B) has the P-property. It is evident that the
above map T satisfies all the conditions of Theorem 2. Clearly, (0, 0) is the best proximity point for
T.

Theorem 3. Let (X,⊥, d) be an O-complete metric space. Let A and B be two nonempty O-
closed subsets of X such that A0 6= ∅. Furthermore, assume that (A, B) has the P-property. Let
T : A→ B satisfy the following conditions:

1. T is a ⊥-contraction mapping and proximally ⊥-preserving;
2. T(A0) ⊆ B0;
3. If (ur) is any O-sequence with ur → u, then ur ⊥ u for all r ∈ N;
4. A0 is an O-set.

Then, there exists u ∈ A such that d(u, Tu) = d(A, B).

Proof. By using the same technique as in Theorem 2, we can construct an O-Cauchy
sequence (ur) with d(ur+1, Tur) = d(A, B), and there exists u ∈ A, such that ur → u. Thus,
for any ε/2 > 0, there exists N1 ∈ N such that d(ur, u) ≤ ε/2, for all r ≥ N1. Similarly, for
any ε/2k > 0, there exists N2 ∈ N such that d(us, u) ≤ ε/2k, where k is the contraction
constant of T and for all s ≥ N2. Choosing, N = max{N1, N2}, we obtain

d(u, Tu) ≤ d(u, uN) + d(uN , TuN) + d(TuN , Tu)

≤ ε/2 + d(A, B) + kd(uN , u) (Since uN ⊥ u & T is ⊥ − contraction)

≤ ε/2 + d(A, B) + ε/2

≤ d(A, B) + ε.

Since,ε is arbitrary, we can conclude that d(u, Tu) = d(A, B).

Let us denote the new notion called weakly proximally ⊥- preserving as follows.

Definition 9. Two maps T, S : A→ B are said to be weakly proximally ⊥- preserving if:

1. For all a ∈ A, there exist v1, v2 ∈ A with d(v1, Ta) = d(A, B), d(v2, Sv1) = d(A, B) and
v1 ⊥ v2.

2. For all a ∈ A, there exist w1, w2 ∈ A with d(w1, Sa) = d(A, B), d(w2, Tw1) = d(A, B)
and w1 ⊥ w2.

Theorem 4. Let A and B be two nonempty O-closed subsets of an O-complete metric space
(X,⊥, d) with A0 6= ∅, and also, assume that (A, B) has the P-property. Let T, S : A→ B be two
non-self-mappings satisfying the following conditions:
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1. (T, S) is weakly proximally ⊥-preserving;
2. T or S is ⊥-continuous;
3. For all u, v with u ⊥ v, d(Tu, Sv) ≤ kd(u, v) for some k ∈ [0, 1),
4. If any O-sequence (un) converges, then un ⊥ u for all n, where u = limn→∞ un.

Then, there exists u ∈ A such that d(u, Tu) = d(u, Su) = d(A, B).

Proof. Since A0 6= ∅, choose any u0 ∈ A0. Applying T on u0, then Tu0 ∈ B0. As (T, S)
is weakly proximally ⊥-preserving, we have d(u1, Tu0) = d(A, B), d(Tu2, Su1) = d(A, B),
and u1 ⊥ u2. Continuing the same way using the weakly proximally ⊥-preserving con-
dition of (T, S), we can construct an O-sequence (ur) with d(u2r+1, Tu2r) = d(A, B),
d(u2r+2, Su2r+1)= d(A, B) and ur+1 ⊥ u2r+2. Now, it is time for our usual technique
of proving this (ur) to be a Cauchy sequence. For that, observe

d(u2r+1, u2r+2) = d(Tu2r, Su2r+1) (By P-Property)

≤ kd(u2r, u2r+1)

= kd(Tu2r−1, Su2r)

≤ k2d(u2r−1, u2r)

...

≤ k2r+1d(u0, u1).

Since k < 1, k2r+1 → 0, this implies limr→∞ d(u2r+1, u2r+2) = 0. Now, for r, s ∈ N with
s > r, we have

d(ur, us) ≤ d(ur, ur+1) + d(ur+1, ur+2) + · · ·+ d(us−1, us)

≤ krd(u0, u1) + kr+1d(u0, u1) + · · · ks−1d(u0, u1)

≤ kr[1 + k + k2 + · · ·+ ks−r−1]d(u0, u1).

By the above inequality, it is evident that (ur) is an O-Cauchy sequence. Since our space
is O-complete, (ur) converges, say u, which implies ur ⊥ u for all r ∈ N. Without loss of
generality, assume that T is ⊥-continuous, then it is easy to conclude that d(u2r+1, Tu2r)→
d(u, Tu). Furthermore, note that d(u, Tu) = d(A, B). Thus, u is the best proximity point
for T.

Next, our claim is to show that u is the best proximity point for S. By the convergence of
(ur), for ε/2 > 0, there exists N1 ∈ N, such that d(ur, u) ≤ ε/2 for all r ≥ N1; furthermore,
for ε/2k > 0, there exists N2 ∈ N, such that d(ur, u) ≤ ε/2 for all r ≥ N2. By choosing
N = max{N1, N2}, consider

d(u, Su) ≤ d(u, u2N+1) + d(u2N+1, Tu2N) + d(Tu2N , Su)

≤ ε/2 + d(u2N+1, Tu2N) + kd(u2N , u)

≤ ε/2 + d(u2N+1, Tu2N) + ε/2

≤ ε + d(u2N+1, Tu2N).

We obtain d(u, Su) ≤ d(A, B) + ε. It is easy to conclude that d(u, Su) = d(A, B), since ε is
arbitrary. Hence, d(u, Tu) = d(u, Su) = d(A, B).

Till now, in the literature on thew best proximity point, the existence of a common
best proximity point in metric spaces or partially ordered metric spaces requires a stronger
condition called the continuity of a map or the approximate compactness of a set. In the
following example, one can easily observe that T is not a continuous map. Nevertheless, a
common best proximity point exists.
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Example 8. Consider X = R2 with ⊥ defined as (u1, u2) ⊥ (v1, v2), if u1 ≤ v1 and u2 ≤ v2.
Furthermore, choose d(u, v) = |u1 − v1|+ |u2 − v2|. Then, (X,⊥, d) is an O-complete metric
space. Let us consider A := {(0, a) : a ∈ R} and B := {(1, b) : b ∈ R}. Then, d(A, B) = 1.

Now, define T : A→ B by T(0, a) =

{
(1,−a/2) : a ∈ Q∩R
(1,−a/4) : a ∈ QC ∩R

and S : A→ B as S(0, b) =

(1,−b/4). We are now ready to verify the conditions of Theorem 4.

Condition 1. (T, S) is weakly proximally ⊥-preserving:
Let u ∈ A, then u = (0, u1), where u1 ∈ R.
Case (i): If u1 ∈ Q ∩ R, then Tu = (1,−u1/2). It is easy to see that, if we take v =

(0,−u1/2) and w = (0,−u1/8), then d(u, Tv) = d(A, B) = d(v, Sw) and also v ⊥ w.
Case (ii): If u1 ∈ QC ∩ R, then Tu = (1,−u1/4). It is easy to see that, if we take v =

(0,−u1/4) and w = (0,−u1/16). Then, d(u, Tv) = d(A, B) = d(v, Sw) and also v ⊥ w.
Similarly, for all u ∈ A, we can find w, w′ ∈ A with d(w, Su) = d(A, B), d(w′, Tw) = d(A, B),
which also implies w ⊥ w′.

Condition 2. T or S is ⊥-continuous:
Here, S is a continuous function, and hence, S is ⊥-continuous. Furthermore, observe that T

is not ⊥-continuous, since O-sequence xn = (0,−1−
√

2/n) converges to x = (0,−1). However,

T(xn) =

(
1,
−(−1−

√
2/n)

4

)
converges to (1, 1/4), which is not equal to Tx = (1, 1/2).

Condition 3. If u ⊥ v, then d(Tu, Sv) ≤ kd(u, v) for some k ∈ [0, 1). Let u = (0, u1), v =
(0, v1) ∈ A.

Case (i): If u1 ∈ Q, then

d(Tu, Sv) = d((1,−u1/2), (1,−v1/4))

= | − u1/2 + v1/4|
≤ | − u1/2 + v1/2| ( Since u1 ≤ v1)

≤ 1
2

d(u, v).

Case (ii): If u1 ∈ QC, then

d(Tu, Sv) = d((1,−u1/4), (1,−v1/4))

= | − u1/4 + v1/4|

≤ 1
4

d(u, v)

≤ 1
2

d(u, v).

By choosing k = 1/2, it is evident that, for all x ⊥ y, d(Tu, Sv) ≤ d(u, v).

Condition 4. If (xn) is an O-sequence with xn → x, then xn ⊥ x for all n:
Since (xn) is an O-sequence, we have xn = (0, an) ≤ xn+1 = (0, an+1), which implies

an ≤ an+1. Hence, (xn) is a monotonically increasing sequence, which converges to the supremum,
say x := (0, a). It is clear that xn ⊥ x for all n ∈ N. Furthermore, it is easy to observe that (A, B)
has the P-property. Here, u∗ = (0, 0) satisfies d(u∗, Tu∗) = d(u∗, Su∗) = d(A, B).

Theorem 5. Let A and B be two nonempty closed subsets of an O-complete metric space (X,⊥, d)
with A0 6= ∅, and also, assume that (A, B) has the P-property. Let T, S : A → B be two
non-self-mappings satisfying the following conditions:

1. (T, S) is weakly proximally ⊥-preserving;
2. T or S is ⊥-continuous;
3. For all u, v with u ⊥ v, d(Tu, Sv) ≤ kd(u, v) for some k ∈ [0, 1);
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4. If u is a best proximity point of either T or S, then u ⊥ u.

Then, there exists u ∈ A such that d(u, Tu) = d(u, Su) = d(A, B).

Proof. Following the same technique that we used in Theorem 4, we can easily construct
the O-Cauchy sequence (un) such that d(u2n+1, Tu2n) = d(A, B), and d(u2n+1, Su2n+2) =
d(A, B). As usual, O-completeness provides the convergence of (un), that is there exists
u ∈ A such that un → u. Without loss of generality, assume that S is ⊥-continuous, then
it is easy to conclude that d(u2n+1, Su2n+2)→ d(u, Su). Furthermore, note that d(u, Su) =
d(A, B). Hence, u is the best proximity point for S; thus u ⊥ u. Consider

d(u, Tu) ≤ d(u, Su) + d(Su, Tu)

≤ d(u, Su) + kd(u, u)

≤ d(u, Su).

Similarly, consider

d(u, Su) ≤ d(u, Tu) + d(Tu, Su)

≤ d(u, Tu) + kd(u, u)

≤ d(u, Tu).

Hence, d(u, Tu) = d(u, Su), which means that d(u, Tu) = d(u, Su) = d(A, B).

3. Conclusions

The fixed point and best proximity point results ensure the existence of solutions to
many problems in non-linear analysis. In our paper, we have given the existence of the
best proximity point and common best proximity point in a more general metric space
called the O-metric space, which fails to satisfy the transitivity condition. Furthermore, we
provided an example where our map fails to be continuous and fails to be a contraction;
still, we can find the best proximity point and common best proximity points.
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