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Abstract: Differential equations are useful mathematical tools for solving complex problems. Dif-
ferential equations include ordinary and partial differential equations. Nonlinear equations can
express the nonlinear relationship between dependent and independent variables. The nonlinear
second-order neutral differential equations studied in this paper are a class of quadratic differentiable
equations that include delay terms. According to the t-value interval in the differential equation
function, a basis is needed for selecting the initial values of the differential equations. The initial value
of the differential equation is calculated with the initial value calculation formula, and the existence
of the solution of the nonlinear second-order neutral differential equation is determined using the
condensation mapping fixed-point theorem. Thus, the oscillation analysis of nonlinear differential
equations is realized. The experimental results indicate that the nonlinear neutral differential equation
can analyze the oscillation behavior of the circuit in the Colpitts oscillator by constructing a solution
equation for the oscillation frequency and optimizing the circuit design. It provides a more accurate
control for practical applications.
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1. Introduction

Mathematics was used not only as a tool but also in other sciences, and mathematics
led the development of other disciplines. The development of differential equations is
one of the important factors. Differential equations are developed on the basis of calculus
theory. Differential equations include ordinary differential equations and partial differential
equations. Due to its solid background in practice, profound theory, and close relationship
with other mathematics, it has developed into a strong branch of mathematics and has
been widely used. In history, ordinary differential equations appeared even earlier than the
invention of calculus. Some issues required the establishment and solution of differential
equations. In fact, however, there are few differential equations that can be expressed by
integrating an elementary function, and a large number of differential equations cannot be
solved with the elementary integration method. The existence and uniqueness theorem
of solutions lays the foundation for the conclusion of calculus. Sturm’s work proposed
the initial idea of qualitative research on solutions. The past and present of differential
equations have provided favorable tools for mechanics, astronomy, physics, chemistry,
biology, various technical sciences (such as nuclear energy, rockets, artificial satellites,
automatic control, radio electronics, etc.), and several social sciences (such as population
issues, economic forecasting, commercial sales issues, transportation scheduling issues,
etc.).Second-order differential equations are widely used in fields such as object mechan-
ics, electronics, population ecology, economics, and modern control theory. Nonlinear
second-order neutral differential equations include first-order derivative equations and
second-order differential equations without derivative terms. Some of these differential
equations have delay characteristics, making them suitable for studying dynamic systems
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with certain delay effects. In recent years, scholars in this field have analyzed the oscillation
characteristics of quadratic nonlinear neutral differential equations, and they have obtained
a lot of good results [1]. Especially in the study of second-order nonlinear perturbations,
damping [2], functionals, and time delays, the research direction of differential equations
has been expanded. Experts have found that calculus theory can be used to solve many
practical problems, laying the foundation for the development of modern science. For
example, calculus is used in astronomy to calculate the orbits of stars, in physics to study
the motion and forces of objects, and in economics to study marginal quantity and ex-
treme value problems. These achievements have made calculus an indispensable tool in
modern science and technology. Initially, mathematicians focused their main energy on
finding general solutions to equations. Later, it was explained that this method was not
universal and even impossible to solve a definite solution represented by an elementary
solution (in integral form) that met certain conditions. Moreover, most ordinary differential
equations cannot find very accurate solutions, only approximate solutions. So, people
shifted their attention to qualitative analysis research, and a theory of the existence and
uniqueness of equation solutions emerged. In recent years, the oscillation of the solution of
ordinary differential equations has also made great progress, greatly enriching the theory
of ordinary differential equations. The boundary value problem of differential equations is
an important part of differential equations. The research in the seventeenth century laid
the physical foundation for dealing with vibration problems. By the eighteenth century,
vibration mechanics had become independent of physics. With the joint efforts of scholars
in different periods, this discipline has become the most important theoretical achieve-
ment of the present. The essence of vibration analysis for nonlinear second-order neutral
differential equations lies in studying the oscillation properties and dynamic behavior of
the equation solution, as well as the relationship between these behaviors and various
parameters and the initial value conditions of the differential equation. Vibration analysis
is an important research direction in the field of nonlinear dynamics, which involves many
complex mathematical theories and tools, such as Lyapunov stability theory, periodic orbit
theory, central manifold theory, etc. For the vibration analysis of nonlinear second-order
neutral differential equations, it is necessary to study from different perspectives and adopt
different methods and techniques.

In reference [3], the text proposed an oscillation analysis method for third-order neu-
tral distributed delay differential equations, studying the oscillation of solutions for a
class of third-order neutral distributed delay differential equations in two different cases.
The problem was studied using the generalized Riccati transformation technique and
Yang inequality method, and sufficient conditions were established for the oscillation or
convergence of each solution of the equation to 0. Based on the obtained results, some
famous oscillation criteria in the existing literature were generalized and improved, and
examples were given to illustrate the applicability of the obtained results. In reference [4], a
new vibration analysis method was proposed. Based on the vibration theory, this method
transforms the vibration of a nonlinear delay differential equation into the vibration of a
linear differential equation with delay, using linear θ to obtain the corresponding numerical
solution. Therefore, the vibration analysis of the numerical solution of a nonlinear differen-
tial equation with time delay is carried out. In reference [5], a new method for vibration
analysis of even number neutral differential equations was presented. By using Riemann
Liouville calculus, Riccati transformation, and inequality methods, the vibration analysis
of even number neutral differential equations was achieved. Reference [6] proposed an
oscillation analysis method based on nonlinear fractional order differential equations with
damping terms. This algorithm utilizes Riemann Liouville calculus, Riccati transformation,
and inequality methods to obtain sufficient conditions for the oscillation of nonlinear frac-
tional differential equations with damping terms. It extends existing methods for analyzing
oscillations of fractional order differential equations. Thus, the oscillation analysis of solu-
tions to nonlinear fractional order differential equations can be achieved. In reference [7],
a vibration analysis method for nonlinear delay differential equations based on a class of
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independent variables with piecewise continuous arguments was proposed. This method
mainly considered the oscillation of numerical solutions for a nonlinear differential equa-
tion with piecewise continuous arguments. Through its linearization theory, the vibration of
a nonlinear equation was transformed into a method of vibration for a linear equation. The
vibration conditions of the nonlinear delay differential equation were obtained, and then
the linear θ method was obtained to maintain the vibration of the equation. The oscillation
analysis of nonlinear delay differential equations was realized. A vibration analysis method
for nonlinear differential equations based on the Burg spectrum estimation of vibration
signals was proposed in reference [8]. The method used the Burg spectrum estimation to
analyze the vibration signals of differential equations. Through its analysis results, the
oscillation analysis of nonlinear differential equations was realized. In reference [9], it
mainly studied the oscillation of third-order neutral nonlinear differential equations, and
the equations considered the irregular form. Some new vibration criteria were established,
and some examples were given to illustrate the main results. Through the analysis of these
examples, the vibration problem of the equation is calculated. Reference [10] proposed
a vibration analysis method for nonlinear differential equations based on the differential
inequality method. The method is constrained by Robin and Dirichlet boundary conditions
and has sufficient conditions for the oscillation of differential equation solutions, which can
realize the oscillation analysis of nonlinear differential equation solutions. Reference [11]
studied the complex dynamic behavior of a new type of chaotic system and introduced
a memristor. Based on eigenvalue theory, the stability of a memristor system is analyzed
by selecting a key parameter. When the system crosses the critical value, it will exhibit
Neimark–Sacker bifurcation and chaotic behavior. The system based on a memristor is
simulated to verify the existence of a chaotic attractor. The analog electronic circuit of
the memristor chaotic system is designed to ensure that the results of this paper can be
applied to practical problems. Reference [12] introduces a two-dimensional discrete-time
predator model that studies single-parameter bifurcation and dual-parameter bifurcation
by determining fixed points. After strong resonance bifurcation occurs in the model, the
branching scenario is determined based on the key coefficients, and the analysis results
are validated using MatContM based on numerical continuation methods. Reference [13]
analyzed the stability and local bifurcation of the spatiotemporal SI repetitive model from
both analytical and numerical perspectives, and based on this, studied the cross-critical
bifurcation and other bifurcations. This study calculates the critical normal coefficient to
determine its non-degradation condition and uses the numerical continuation method
and MatContM to determine the obtained analysis results. Through numerical simulation,
the closed invariant curve at the Neimark–Sacker point was solved and decomposed to
generate a chaotic singular attractor. Reference [14] utilized the Bayesian VAR model,
constant model, time-varying model, and Markov model to measure inflation expectations
and study the influencing factors of inflation expectations. Reference [15] solved the spa-
tiotemporal variable-order fractional advection-diffusion equation with a nonlinear source
term through the neural network method. According to the property of the derivative of
the variation, the loss function of the neural network was solved. If the function satisfies
the Lipschitz assumption, the reasonable range of learning rate is determined. The loss
function is obtained by repeatedly training the neural network to solve the nonlinear
variable fractional order.

Based on the above methods, for the oscillation of solutions for various types of nonlin-
ear differential equations, different methods based on different forms are given. Nonlinear
second-order neutral differential equations can solve many practical problems. Therefore,
studying the oscillation of its solutions and exploring the oscillation characteristics and
behavior laws of solutions to nonlinear neutral differential equations is of great help for
practical applications. Thus, this paper studies the oscillation analysis algorithm for solu-
tions for nonlinear second-order neutral differential equations. The whole framework of
the method is as follows:

The first is to establish nonlinear second-order neutral differential equations;
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The second is to calculate the initial value problem through the value interval in
nonlinear second-order neutral differential equations;

The third part determines the existence of global solutions for nonlinear second-order
neutral differential equations;

Fourthly, according to the fixed-point theorem of contraction mapping, the existence
of solutions for nonlinear second-order neutral differential equations is observed, and the
oscillation analysis of solutions for nonlinear second-order neutral differential equations is
obtained;

The final part summarizes the analysis algorithms for the oscillation of solutions to
nonlinear second-order neutral differential equations and proposes prospects for more
possible future research.

To study the oscillation of solutions to differential equations, this study innovatively
introduced the fixed-point theorem of condensation mapping to prove the existence of
solutions. At the same time, it also inferred the oscillation of three solutions for nonlinear
second-order neutral differential equations. To explore the practical application of solving
oscillation, the paper also analyzes the nonlinear relationship between capacitance and
inductance based on the circuit of the Colpitts oscillator.

In this paper, Section 1 explains the background, conducts the existing literature
methods related to the oscillation of differential equation solutions, and elaborates on the
research framework of this method. Section 2 introduces the existence of solutions for
nonlinear second-order neutral differential equations. Section 3 analyzes the oscillation of
solutions for nonlinear second-order neutral differential equations in different situations.
Section 4 explains the research process, conclusions, and development trends.

2. Existence of Solutions for Nonlinear Second-Order Neutral Differential Equations

To analyze the oscillation of solutions for nonlinear second-order neutral differential
equations, a nonlinear second-order neutral differential equation was first established.
Then, the initial value of the differential equation was calculated. Finally, the existence of
the solution was analyzed using the fixed-point theorem of condensing mapping.

2.1. Solution of Initial Value of Quadratic Neutral Nonlinear Differential Equation

Nonlinear second-order neutral differential equations are a special form of differential
equations that contain neutral terms. Nonlinear second-order neutral differential equa-
tions are an important branch of differential equation theory and one of the fundamental
problems to be solved in various fields. In solving this equation, several factors must be
considered, such as the practical application requirements of the equation, the rationality
of the equation form, etc. As a consequence, a quadratic neutral nonlinear differential
equation is given. This is a piecewise connectable quadratic differential equation that can
satisfy the classical solution of a quadratic neutral nonlinear differential equation. That is,
the solution of this second-order differential equation is not globally continuous and differ-
entiable, it is about jumps or discontinuity at certain points. Such equations are often called
piecewise smoothing equations. The segmentation can be a spatial segmentation. It can
also be a time segmentation. For second-order differential equations that are differentiable
or satisfy shards, the solution may have multiple segmented intervals, and the solution
in each segmented interval may be in different functional forms [16]. Therefore, for the
solutions of such differential equations, they must be solved separately in each segmented
interval, and it is necessary to ensure the existence of the derivative at the segmentation
point, thus satisfying the initial value or boundary conditions of the equation. Otherwise,
the solution of the equation may exhibit discontinuities at the segmentation points and
thus fail to satisfy the initial requirements. Therefore, it is possible to reasonably define
nonlinear second-order neutral differential equations in the sense of classical solutions. The
starting value of the differential equation is selected according to the value interval of v
in the function, and the starting value of the differential equation is calculated using the
formula of initial value.
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The quadratic neutral nonlinear differential equation is:
(

f (v, x(v− τ)) + [r(v)x2(v)]′
)′

= 0, v ≥ v0, v 6= vk, vk + τ, k ∈ N,
x(i)(v+

k ) = g[i]k (x(i)(vk)), vk + τ ∈ C(x(i)), i = 0, 1, 2, k ∈ N,
x(v) = ϕ(v), v ∈ [v0 − τ, v0], ϕ ∈ C2([v0 − τ, v0]).

(1)

C(x(i)) is the set of all continuous points in the domain of function x(i)(v). N is the
set of positive integers. i denotes the order of derivative. R is all real numbers. k ∈ N is
the definite number. τ is a positive number. r(v) is continuous on [v0,+∞), and r(v) > 0.
f (v, x) is continuous on [v0,+∞)× (−∞,+∞), and x f (v, x) > 0(x 6= 0). v0 < v1 <
· · · < vk < · · · , vk+1 − vk > τ, k = 0, 1, 2, · · · , lim

k→∞
vk = +∞. x(0)(v) = x(v), x(i)(v−k ),

x(i)(v+
k ), and x(i)(vk) are defined as x(i)(v−k ) = lim

v→v−k

x(i)(v), x(i)(v+
k ) = lim

v→v+
k

x(i)(v),

and x(i)(vk) = x(i)(v−k ), respectively. g[i]k is the set of all continuous points in the definition
field of function.

The calculation formula for the initial value problem of second-order nonlinear neutral
differential equations was derived based on the special properties of this type of differential
equation, it will not change due to changes in the type of differential equation. However,
the calculation of the initial value problem is affected by the following three aspects:

1. The degree of non-linearity of the equation: The higher the degree of nonlinearity of
the equation, the more difficult it is to obtain the analytical formula of its solution
and the more difficult the solution process will be. In terms of calculation formulas, it
may be necessary to use more advanced numerical calculation methods, such as the
iterative method, Runge-Kutta method, etc.

2. Differences in initial conditions: Different initial conditions may affect the selection
of calculation formulas, such as the different initial values at different times, the
specific values of the initial values, and so on. Different initial conditions may lead
to differences in the convergence of the solution and the difficulty of the calculation
method, therefore, it is necessary to reconstruct the calculation formula for different
initial value conditions;

3. The form of the solution function: The solution function of second-order neutral
differential equations can have three forms—one is a scheme that describes the state
and the derivative of the previous moment, the second is a scheme that describes only
the derivative of the previous moment, and the third is a solution that stores only
the state of the previous moment. The calculation formulas for these three forms of
solution functions can vary accordingly.

Lemma 1. Supposing x(v) : [v0 − τ,+∞)→ R , v0 ≥ 0 is called the global solution of the
current equation, if the current equation satisfies the condition:

(1) x(v) = ϕ(v), v ∈ [v0 − τ, v0].
(2) v ∈ [v0,+∞), v 6= vk, vk + τ(k ∈ N), 2x(v) meets: [r(v)x2(v)]′+ f (v, x(v− τ)) =

0.
(3) x(i)(v) and r(v)x2(v) are continuous in [v0,+∞)\{vk} and v = vk. x(i)(vk) satisfies

x(i)(v+
k
) = g[i]k (x(i)(vk)), k ∈ N.

By observation, it can be found that the above method avoids the absolute continuous concept
of other methods. The range of the value of the whole solution is determined with the v [17].

Proof of Lemma 1. In summary, the calculation formula for the initial value problem of
second-order nonlinear neutral differential equations may require different calculation
formulas for the degree of nonlinearity of the equation, different initial value conditions,
and different forms of solution functions in practical calculations. From this, the initial
value calculation method for the second-order nonlinear neutral differential equation given
in Formula (1) was derived. �
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Assuming that r(v) is continuous on [v0,+∞) and x f (v, x) > 0(x 6= 0), the initial
value of x(v) is calculated as follows:{

f (v, x(v− τ)) + r(v)x2(v) = 0, v ≥ a,
x(v) = ψ(v), v ∈ [a− τ, a], ψ ∈ C2([a− τ, a], R),

(2)

If there is at least one solution to the initial value of any a ≥ v0, the initial value
problem of ψ ∈ C2([a − τ, a], R) has at least one solution at [a − τ,+∞). When ϕ ∈
C2([v0 − τ, v0], R) is the initial condition, Formula (1) will have at least one solution of
x(v) in [v0 − τ,+∞).

When x0(v) is the initial value, the formula for calculating its initial value will
change [18]. The formula for calculating the initial value after the change is as follows:{

f (v, x0(v− τ)) + r(v)x2
0(v) = 0, v ≥ v0,

x0(v) = ϕ(v), v ∈ [v0 − τ, v0],
(3)

When a solution on [v0 − τ,+∞) satisfies the condition ϕ(i)(v0) = xi
0, x1(v) is the

initial value problem. The initial value calculation is as follows:{
(x2

0(v)− 1
r(v)

r(v1)x2
0(v1) +

1
r(v)

r(v1)g[i]1 (x2
0(v1)),

xi
1
(v+

1 ) = g[i]1 (x(i)0 (v1),
(4)

The result of Formula (4) is a solution in (v1, v1 + τ]. Furthermore, y1(v) is the initial
value problem, and the initial values are calculated as follows:{

f (v, y1(v− τ)) + r(v)y(i)1 (v) = 0, v ≥ v1 + τ,
y1(v) = x1(v), v ∈ (v1, v1 + τ], y1(v1) = x1(v

+
1 ),

(5)

The result of formula (5) is a solution on (v1,+∞]. To define a function, the function
is as follows:

z1(v) =


x0(v), v ∈ [v0 − τ, v0],
x1(v), v ∈ (v1, v1 + τ],
y1(v), v ∈ (v1 + τ, v2],

(6)

In the formula, z1(v) satisfies Formula (1) on the interval [v0 − τ, v2]. If v ∈ [v0 −
τ, v1], z1(v) = x0(v). According to Formula (3), z1(v) can also satisfy Formula (1) on
interval [v0 − τ, v1]. If v ∈ (v1, v1 + τ], z1(v) = x1(v). z(i)1 (v+

1 ) = g[i]1 (z(i)1 (v1)) can be
derived from the Formulas (3) and (4). When v ∈ (v1, v1 + τ], the formula is as follows:

r(v)z(i)1 (v)− r(v)z(i)1 (v+
1
)

= r(v)xi
1
(v)− r(v1)g[i]1 (xi

0 + (v1))

= r(v)xi
0(v)− r(v1)xi

0 + (v+
1
)

= −
∫ 1

v1
f (s, x0(s− τ))ds

= −
∫ 1

v1
f (s, z1(s− τ))ds.

(7)

The result of the Formula (7) can be obtained:

(r(v)zi
1(v)) = − f (v, z1(v− τ)), v ∈ (v1, v1 + τ). (8)
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If v ∈ (v1 + τ, v2], and when v ∈ (v1 + τ, v2], the calculation formula is:

r(v)z(i)1 (v)− r(v)z(i)1 (v1 + τ)
= r(v)yi

1
(v)− r(v1)yi

1
(v1 + τ)

= −
∫ 1

v1+τ f (s, y1(s− τ))ds

= −
∫ 1

v1+τ f (s, z1(s− τ))ds.

(9)

Because z1(v) is continuous on v1 + τ. According to Formulas (7) and (9), zi
1(v) is

also continuous on v1 + τ. By using the Formulas (1)–(10), z1(v) satisfies Formula (1) on
[v0 − τ, v2]. The calculation of Formula (9) can be obtained when v ∈ (v1 + τ, v2), and
(r(v)zi

1(v)) is:

(r(v)zi
1(v)) = − f (v, z1(v− τ)), v ∈ (v1 + τ, v2). (10)

Therefore, based on the value range passed by Formula (10), the value range of the
solution was determined.

2.2. Solution of Nonlinear Second Order Neutral Differential Equations

The fixed-point theorem of condensing mapping is a theorem often used in topology,
and it refers to the assumption that a compact, convex, and non-empty metric space on
which a condensing map is defined has at least one fixed point in the metric space. Among
them, a condensing map refers to a mapping that satisfies the following two conditions:

1. Maintains the inclusion relationship between point sets;
2. Maps each connected point set to another connected point set.

The meaning of this theorem is that any mapping that satisfies the above conditions
must have at least one fixed point, and this mapping maps a point to itself. In addition,
the application of this theorem is very extensive, and it has been applied in many fields
of mathematics, physics, and economics. For example, in the field of mathematics, this
theorem is often used to prove the judgment of initial value problems. Therefore, for the
solution of nonlinear second-order neutral differential equations, using the fixed-point
theorem of condensing mapping, the results are used to verify the existence of the initial
value problem for nonlinear second-order neutral differential equations. According to
its decision results, the existence of the global solution of the equation was judged. The
oscillation principle of differential equations was applied to solve the initial value of a
quadratic neutral nonlinear differential equation, and the results of the calculation were
observed. The oscillation analysis of the solution of the differential equation was realized.

The existence of solutions for neutral differential equations is:{
u′′ (v′) = f ′(v′, u(v′), u′′ (v′), (Tu)(v′)), v′ ∈ J,
u(0) = x′0, u′(0) = x′1,

(11)

J is a unit interval, and it is mainly solved with Darbor’s fixed-point theorem and
Stefan Banach in the early 20th century. This theorem is about real valued functions,
describing a continuous function that must have a fixed point under certain conditions.

Lemma 2. The Darbor fixed-point theorem indicates that any continuous real function has at least
one fixed point under certain conditions. H = [A, B] is a closed interval on the real number axis.
F(K) is a continuous real function on H, and F(A) < t < F[B]. Then, there must be a point
C ∈ [A, B], such that F(C) = t. In other words, regardless of the situation, as long as the value
interval of the original function is within the defined domain, there must be at least one pointMake,
F(K) obtain this value at this point. The results were used to solve the existence of the initial
problem [19–21].



Mathematics 2023, 11, 3478 8 of 14

Proof of Lemma 2. u(v′), V(v′), F0(v
′, V(v′)), and U0 are defined, respectively.

u(v′) = u′(v′), (12)

U(v′) =

[
u(v′)
u(v′)

]
, (13)

F0(v
′, U(v′)) =

[
u(v′)
f (v′, u(v′), u(v′), T(u)(v′))

]
, (14)

U0 =

[
x′0
x′1

]
, (15)

Since the theory of first-order differential equations is relatively mature [22,23] and the
calculation method is simpler, it can more conveniently solve the initial value problem of
nonlinear second-order neutral differential equations. In this way, the second order neutral
differential equation can be transformed into the first order differential equation.{

U′(v′) = F0(v
′, U(v′)),

U(0) = U0
(16)

I = J,{
u′(v′) = f ′(v′, u, Tu), v′ ∈ I,
u(0) = x′0

(17)

In the Formula (17), I is a unit interval.
Therefore, when I = J, there exists a solution to a nonlinear second-order neutral

differential equation. �

A Banach space is a completely normed vector space, i.e., it is a linear space, and
there is a norm that can measure the length between its vectors, and at the same time, it
is complete under that norm. A space is complete, meaning that all its Cauchy sequences
have a limit (i.e., converge to some vector within the space). Banach space is an important
concept in mathematics, it contains a lot of function spaces, such as continuous function
space, Hilbert space, etc., and the most famous and important of them is the Hilbert space,
which is an inner product space that satisfies the Pacival inequality and a completeness
condition. The definition of Banach space is for infinite dimensional spaces, because in
a finite dimensional space every norm is equivalent, all linear spaces are complete. On
the infinite dimensional space, there are points where Cauchy sequences converge to non-
spatial points, which leads us to define the notion of completeness. Banach space is an
important branch of modern mathematics, and it is used in functional analysis, partial
differential equations, mathematical physics, and other fields. E is a Banach space. Its
generalization is ‖·‖, and the positive element cone is P. C′(I, E), C′′ (I, E), and C′′′ (I, E)
are defined as the continuous function spaces in I valued at E, respectively. I is the range
of J, and C′(I, E) is used to form the Banach space according to generalization number
‖u‖c = max‖u(v′)‖, where f ′(v′, x′) : I × E× E→ E , x′0 ∈ E. T is the linear operator of
following definition:

(Tu)(v′) =
∫ v′

0
k′(v′, s′)u(s′)ds′, (18)

s′ is the bounded set of E, k′(v′, s′) ∈ C′[D, R+], R+ = [0,+∞),
D = {(v′, s′) ∈ [J × J], 0 ≤ s′ ≤ v′ ≤ a′}, k0 = max{k′(v′, s′); v′, s′ ∈ D}. If B ⊆ E is
bounded set, then a bounded set B0 ⊂ B that exists in B makes α(B) ≤ 2α(B0). If
B ⊂ C′[I, E] is bounded and equicontinuous, B(v′) = {u(v′)|u ∈ B} is recorded, then
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α(B)(v′) is continuous on I and α(B) = max
v′∈I

α(B(v′)); If B = {un} ⊂ C′[I, E] is bounded

set, then α(B(v′))Lebesgue is integrable and α(
{∫ v′

0 un(v′)dv′
}
) ≤ 2

∫ v′

0 α(B(v′))dv′.
For the convenience of subsequent research, the following assumptions are established:

(1) D1: f : J × E× E→ E continues;
(2) D2: there exists a non-negative real number bounded function Li′(v

′) ≥ 0, i = 1, 2,
which satisfies 4h0(L1(v

′) + k0L2(v
′)) < 1, so that there is α( f ′(v′, B1, B2)) ≤

L1(v
′)α(B1) + L2(v

′)α(B2) for any bounded set Bi′ ⊆ E and v′ ∈ J;
(3) D3: there is a non-negative real number bounded function Li′(v

′) ≥ 0, i = 1, 2. For
any bounded set of Bi′ ⊆ E and v′ ∈ J, there are α( f ′(v′, B1, B2)) ≤ L1(v

′)α(B1)
+ L2(v

′)α(B2).

If the nonlinear second-order neutral differential equation satisfies the Conditions (1)–(3),
there is a solution to the initial problem [24–27]. From Condition (1), it can be found that
∃ε′ > 0 makes f bounded on [0, ε′]× B(x′0, ε)× B(x′0, ε), so there is a constant M0, which
makes:

‖ f ′(v′, u(v′), (Tu)(v′))‖ ≤ M0, v′ ∈ [0, ε], (19)

Take h0 = min
{

ε, ε
M
}

and I = [0, h0]. A Ω0 expression is defined. Through
Ω0 = {u ∈ C′[I, E]|‖u(v′)− x′0‖ ≤ ε}, it can be found that Ω0 defines an operator.

(Au)(v′) = x′0 +
∫ v′

0
f (s′, u(s′), (Tu)(s′))ds′. (20)

The solution of Formula (17) is equivalent to that of Formula (20) [28–30], and there are
fixed points. Because of Ω0 = {u ∈ C′[I, E]|‖u(v′)− x′0‖ ≤ ε0}, v′ ∈ [0, h0], the operators
defined are as follows:

(Au)(v′)− x′0 = x′0 +
∫ v′

0 f ′(s′, u(s′), (Tu)(s′))ds′ − x′0
=
∫ v′

0 f ′(s′, u(s′), (Tu)(s′))ds′.
(21)

Formula (21) can be obtained from the general number.

‖(Au)(v′)− x′0‖ = ‖
∫ v′

0 f ′(s′, u(s′), (Tu)(s′))ds′‖
≤
∫ v′

0 ‖ f ′(s′, u(s′), (Tu)(s′))‖ds′.
≤ M0v′ ≤ M0h0 ≤ ε.

(22)

According to the definition of Ω0, (Au)(v′) ∈ Ω0, or A is an operator of Ω0 → Ω0 .
Let the convergent subcolumn n of un → u and ∃

{
v′k′
}

is a constant, and n = [0, 2].
When v′k → v′1 ∈ [0, h0] , there is u(v′k)→ u(v′1) , assuming f ′(v′, unk′ ) 6=→ f ′(v′, u1) ,
then ∃ε0 > 0,

{
v′k′
}
∈ [0, h0]. When nk′ → ∞ , there is:

‖ f ′(v′k′ , unk′ (v
′
k′), (Tunk′ )(v

′
k′)− f ′(v′k′ , u(v′k′), (Tu)(v′k′))‖ ≥ ε0, (23)

From the continuity of f ′, assuming that f ′ is continuous at point (t′1, u(v′1)), k′ → ∞ ,
ε is small.

‖ f ′(v′k′ , unk′ (v
′
k′), (Tunk′ )(v

′
k′)− f ′(v′1, u(v′1), (Tu)(v′1))‖ ≤ ε, (24)

Because k′ → ∞ , there are

‖ f ′(v′k′ , unk′ (v
′
k′)− f ′(v′1, u(v′1)‖

= ‖ f ′(v′k′ , unk′ (v
′
k′)− f ′(v′k′ , u(v′k′) + f ′(v′k′ , u(v′k′)− f ′(v′1, u(v′1))‖

≥ ‖ f ′(v′k′ , unk′ (v
′
k′)− f ′(v′k′ , u(v′k′)‖

= ‖ f ′(v′k′ , u(v′k′)− f ′(v′1, u(v′1)‖.

(25)
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At this point, Formulas (24) and (25) are contradictory, so the assumption is not true,
and the original proposition is established. If f ′(v′, un(v′)→ f ′(v′), u(v′)) , A : Ω0 → Ω0
is a continuous operator. On the other hand, when ∀u ∈ Ω0, v′1, v′2 ∈ [0, h0], 0 ≤ v′1 ≤
v′ ≤ h0:

‖(Au)(v′2)− Au)(v′1)‖
= ‖x′0 +

∫ v′2
0 f ′(s′, u(s′), (Tu)(s′))ds′‖

≤ M(v2 −v1).
(26)

It is known from Formula (26), A(Ω0) is constant. Because ‖Au(v′)‖ ≤ ‖x′0‖
+ Mv′ ≤ ‖x′0‖ + Mh0, A(Ω0) is bounded, so that A(Ω0) is bounded and equicontin-
uous on [0, h0]. Take B ⊂ Ω0, ∃B1 = {u′n} ⊂ B and α(B) ≤ 2α(B0) can be available:

α(A(B)) ≤ 2α(A(B1)). (27)

Because of B1 ⊂ B ⊂ Ω0, A(B1) is a bounded and equicontinuous [31–33]. From
α(B) = max

v′∈I
α(B(v′)), we can see that α(A(B1)) = max

v′∈I
α(A(B1)(v

′)), according to the

definitions of A and α(
{∫ v′

0 un(v′)dv′
}
) ≤ 2

∫ v′

0 α(B(v′))dv′, it is available:

α(A(B1)(v)) = α({x′0 +
∫ v′

0 f ′(s′, un(s′), (Tun)(s′))ds′|n ∈ N})
≤ (2h0L1(v

′) + 2h2
0
k′0L2(v

′))α(B1)
≤ 4h0(L1(v

′) + k′0h0L2(v
′))α(B1)

< 1.

(28)

As the result of Formula (28), < 1, A : Ω0 → Ω0 is a condensed mapping. By using
the fixed-point theorem, it is proved that A is a fixed point on [0, h0]. Therefore, for a given
nonlinear second-order neutral differential equation, if it satisfies Conditions (1) to (3) and
there is a condensing mapping A : Ω0 → Ω0 , then the differential equation has a solution,
and at least one fixed point exists on [0, h0].

3. Oscillation Analysis of Solutions for Nonlinear Second-Order Neutral Differential
Equations in Different Situations
3.1. Oscillation Inference of Solutions for Nonlinear Second-Order Neutral Differential Equations

There are three possibilities for solving the equation:

Inference 1. Supposing there is a differentiable function, differentiable function refers to a class of
smooth functions in an interval, which can be derived everywhere in the interval [34–36]. It makes
P(v′) ≥ 0, v′ ≥ v′0, f ′(x′)/ψ(x′) ≥ α > 0, ψ(x′) ≥ c > 0, x 6= 0.

lim
v′→∞

∫ v′

0 p′(s′)[q(s′)− a′(s′)
4∂ ( p′′ (s′)

p′(s′) + p′(s′)
ca′(s′) )

2
]ds′ = +∞,∫ c

0
ψ(u)
f ′(u)du < +∞,

∫ 0
−c

ψ(u)
f ′(u)du < +∞,

(29)

limsup
t′→∞

∫ τ′

T

1
a′(s′)p′(s′)

∫ τ′

T
[p′(τ′)q(τ′)− a′(τ′)

4α′
(

p′ ′(τ′)
p′(τ′)

+
p′(τ′)
ca′(τ′)

)

2

]dτ′ds′ = +∞. (30)

If the conditions of Formulas (29) and (30) are established, the solution of the quadratic neutral
nonlinear differential equation of this function is given.

Inference 2. Supposing there is a differentiable function, so x′(v′) ∈ [v′0,+∞). When
v′ ≥ v′1 ≥ v′0, x′(t′) > 0,x′′ (v′) > 0,x′′′ (v′) > 0, for each constant r′ ∈ (0, 1), there is
v′r′ ≥ v′1, v′ ≥ v′r′ and makes:

x′(v′) > r′v′x′′ (v′), x′(σ(v′)) ≥ r′
σ(v′)

v′
x′(v′). (31)
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k′(v′, x′, y′) ≤
∣∣y′∣∣β, x′ > −∞, y′ < +∞, β ≥ 0. (32)

1. When β > 0:

(1 +
∫ v′

0
p′(s′)ds′)

− 1
β

∈ L(v′0,+∞). (33)

2. When β = 0: ∫ +∞

v′0
exp(−

∫ s′

v′0
p′(τ′)dτ′)ds′ = +∞. (34)

When 1 and 2 are established and f ′(x′y′) ≥ k′ f ′(x′) f ′(y′), where x′, y′ > 0 and k′is the
positive constant, if f ′g is strongly sublinear then∫

+0
du′

f ′(u′)g(u′) < +∞,
∫
−0

du′
f ′(u′)g(u′) < +∞.∫ +∞ q(s′) f ′(σ(s′))ds′ = +∞.

(35)

The solution of the second-order neutral nonlinear differential equation is given.

Inference 3. Supposing there is a differentiable function, ψ(x′) f ′(x′) ≥ k′ > 0. If the function
satisfies the following conditions, the above three cases are the existence of solutions for nonlinear
second-order neutral differential equations.

∫ +∞

v0

[q(s′)− P2(s′)
4ka(s′)

]ds′ = +∞. (36)

If Formula (36) is satisfied, then the current nonlinear second-order neutral differential equation
solution is oscillatory.

On this basis, the second-order neutral nonlinear differential equations are analyzed using
steps (1)–(3).

3.2. Oscillation Analysis and Examples of Solutions for Nonlinear Second-Order Neutral
Differential Equations

For a given nonlinear second-order neutral differential equation, if it satisfies one of
the three possibilities in Section 3.1, it indicates that the equation has an oscillatory solution,
thus achieving oscillatory analysis of the solution for the nonlinear second-order neutral
differential equation. In the practical application of Sections 2.1, 2.2, and 3.1, this method
can be used to analyze the oscillation characteristics of second-order neutral nonlinear
differential equations.

Oscillation analysis of solutions to nonlinear second-order neutral differential equa-
tions can solve many problems, such as the Colpitts oscillator in circuits that can be
described using this differential equation, where the nonlinearity arises from the interaction
between capacitors and inductors. The expression is given with Formula (37):

L1
d2x
dt2 +

1
C1

(
V(δ)− Q

C2

)
+

1
C3

t∫
−∞

V(δ)dδ = 0. (37)

In the formula, L1, C1, C2, and C3 are circuit component parameters. Q is the number
of charges. V(δ) is a voltage function. Set C1 = C2 = C, find the solution of the equation as
shown in Formula (38):

δ =
1

2Q
√

L1C
. (38)

The obtained solution is the oscillation frequency. By analyzing the oscillation behavior
of the solution of the nonlinear second-order neutral differential equation in Section 3.1
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in three different cases, the oscillation behavior of the circuit can be obtained, thereby
optimizing the circuit design.

4. Conclusions

Differential equation is a very important subject. It has a certain practical value. In
its application field, nonlinear differential equations are often encountered, which places
higher demands on the study of differential equations. Nonlinear differential equation is
a difficult and hot point in differential equation theory. As it is a fundamental problem
in many fields, it is also very difficult to solve nonlinear differential equations. To solve
this problem, the basic theory of ordinary and partial differential equations needs to
be strengthened and improved. At the same time, by distinguishing different types of
nonlinear differential equations and studying their characteristics and laws, further study
of differential equations can be conducted in a wider range of fields. This study focused on
the oscillation of differential equations and obtained the following conclusions:

(1) In this paper, a quadratic nonlinear differential equation and its initial value solution
were obtained;

(2) The paper innovatively used the fixed-point theorem to provide solutions for a class
of differential equations. Using the vibration principle of differential equations, the
solution equations of three different nonlinear equations were discussed and derived,
and vibration analysis was conducted;

(3) The paper analyzed the circuit problems in the Colpitts oscillator based on the ob-
tained three oscillatory solution equations and obtained the corresponding solution
equations to express the nonlinear relationship between capacitance and inductance.

To better solve the problems caused by nonlinear differential equations, there are other
combinations of numerical calculation and computer methods to develop corresponding
algorithms and software. This can enable the calculation and solution of differential
equations in a wider range of fields, promoting the continuous development of differential
equation theory and practice. Second-order neutral nonlinear differential equations are
widely used in many fields. These problems can be used to solve ordinary differential
equations, as well as quadratic neutral nonlinear differential equations. The existing
theory cannot meet the needs. In response to this issue, this article provides a better
analysis method, which has certain practical significance, especially for exploring wider
applications and solving more challenging problems. To this end, research has combined
mathematical theory and computational methods to seek more effective analytical and
numerical techniques to more accurately solve nonlinear second-order neutral differential
equations. Meanwhile, further research is needed on the intrinsic properties, iterative
properties, and stability properties of its solution. These further studies will help solve
practical problems in a wider range of fields such as physics, chemistry, biology, and
engineering and promote the development and application of the discipline.
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