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Abstract: The evaluation of the bearing capacity of strip footings generally assumes that the soil
is either dry or fully saturated, which contradicts the actual condition in nature where the soil is
often in a partially saturated state. Furthermore, infiltration has a significant impact on the shear
strength of the soil. Following the upper bound theory of the limit analysis, this article provides a
theoretical framework for assessing the bearing capacity under transient flow with linear variation in
infiltration intensity for the first time. Firstly, the closed form of suction stress under linear transient
infiltration is derived using Laplace transform and introduced into the Mohr–Coulomb criterion. A
discrete failure mechanism with fewer variables and higher accuracy is provided to ensure kinematic
admissibility. The upper bound solution for bearing capacity is obtained by solving the power
balance equation. The present results are compared with results from the published literature and
the finite element, confirming the validity and superiority of the theoretical framework provided.
A parametric analysis is also conducted on three hypothetical soil types (fine sand, silt, and clay),
and the results show that unsaturated transient infiltration has a positive influence on increasing
the foundation bearing capacity. The magnitude of the influence is comprehensively controlled by
factors such as soil type, saturated hydraulic conductivity, infiltration intensity, infiltration time,
and water table depth. The increase in bearing capacity due to unsaturated transient infiltration
can be incorporated into Terzaghi’s equation as a separate component presented in tabular form for
engineering design purposes.
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1. Introduction

For decades, the classical problem of assessing the bearing capacity of strip footings has
been extensively studied in conjunction with various practical engineering factors such as
soil types, characteristics of loads, seismic forces, and seepage, as well as reinforcement with
steel bars. A variety of methods have been used in this research, including experimental
testing, numerical simulation, limit equilibrium analysis, limit analysis, and probabilistic
analysis [1–5]. Among these methods, limit analysis has gained widespread application
due to its computational simplicity and ability to provide reliable theoretical solutions
while considering various influencing factors.

Calculating the bearing capacity of a foundation using analytical methods requires
first determining its failure mechanism. Initially, failure mechanisms were classified as
Prandtl [6] and Hill [7] mechanisms based on whether the foundation’s roughness was
considered. Both mechanisms have a plastic zone bounded by a logarithmic spiral, but
the Prandtl mechanism, which takes into account foundation friction, yields a higher
bearing capacity. Building upon these concepts, Michalowski [8] proposed a method to
model the failure mechanism with a large number of triangular rigid blocks, forming a
multi-block failure mechanism. His approach involved minimizing the failure load with
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respect to all possible kinematically admissible directions at the base of each selected
block, thus introducing multiple variables. Subsequently, Soubra [9] and Zhu [10] used
Michalowski’s method. Soubra [9] obtained the upper-bound solution for seismic bearing
capacity using the multi-block mechanism, while Zhu [10] combined the mechanism with
the limit equilibrium method. To simplify the optimization process for the multi-block
mechanism, Kumar [11] assumed that all the triangular blocks’ outer edges still followed a
logarithmic spiral. This idea was used by Kang et al. [12] in their analysis of the bearing
capacity of rock foundations. However, in Kang et al.’s mechanism, the triangular blocks
no longer shared the same logarithmic spiral, but each triangle’s base corresponds to a
separate logarithmic spiral.

Research on foundation bearing capacity often assumes strict conditions of extreme
saturation, that is, either fully saturated or completely dry. However, soils in the natural en-
vironment are often in a partially saturated state due to factors such as rainfall, evaporation,
groundwater fluctuations, and topography. Previous studies have shown that the presence
of gas or gas–water interfaces and capillary forces in unsaturated soils greatly enhance their
shear strength [13,14]. In order to evaluate the mechanical properties of soils under realistic
conditions, Bishop [15], Fredlund et al. [16], and Vanapalli et al. [17] proposed different
effective stress equations based on matric suction. However, Professor Lu and his col-
leagues [18,19] pointed out the limitations of using matric suction in geotechnical problems
and introduced the concept of suction stress as a fundamental component for assessing the
shear strength of unsaturated soils. Suction stress can provide a reasonable explanation for
the properties of unsaturated soils, climate variations (infiltration/evaporation), and fluid
flow behavior. Moreover, it can unify the solutions for unsaturated and saturated soils. By
using the effective stress expression based on suction stress, some classical geotechnical
problems such as slope stability, tunnel face stability, and earth pressure have obtained more
accurate solutions [20–22]. Considering the influence of suction stress, the bearing capacity
of the foundation can be assessed more optimistically. It is worth noting that most of the
relevant literature is still based on Terzaghi’s equation. Vahedifard and Robinson [23] and
Tang et al. [24] made different extensions to Terzaghi’s bearing capacity equation, consider-
ing the non-linear relationship between bearing capacity and suction stress. Du et al. [25]
and Xu and Zhou [26] obtained upper-bound solutions for the bearing capacity under
seepage, which still applied the original Terzaghi’s equation. Roy and Chakraborty [27],
using the Hill mechanism, added the contribution of suction stress to bearing capacity as a
separate item to Terzaghi’s equation.

Research on the bearing capacity of shallow foundations under unsaturated conditions,
including the literature mentioned above, typically considers one-dimensional steady-state
flow. In the case of steady-state flow, it is assumed that the soil moisture movement reaches
an equilibrium state, where the input and output rates of water are equal. However, in
practical engineering, water flow rates and hydraulic head vary over time, and the strength
of the soil exhibits significant spatiotemporal variations. Events such as rainfall, snowmelt,
and changes in groundwater levels are typical examples of transient infiltration. During
the gradual development of transient infiltration, the unsaturated components of shear
strength change with time and depth. Recently, climate change has led to more extreme
rainfall events [28]. Some scholars incorporated the one-dimensional transient flow analyti-
cal solution developed by Sriastava and Yeh [29] into their research on geotechnical-related
problems [30,31]. The slip line method and lower bound finite element method were used
by Tan and Vanapalli [32,33] and Fathipour et al. [2] to extend the calculation for foundation
bearing capacity to unsaturated soil under transient flow conditions, respectively. However,
these studies under transient flow assume that the infiltration intensity is constant, which
is clearly not realistic. Taking rainfall as an example, its intensity tends to fluctuate signifi-
cantly over time. Among them, rainfall with linear intensity changes is the most common,
including advanced-peak type, delayed-peak type, and uniform type. No researchers have
yet studied the bearing capacity response under such conditions.
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This paper aims to obtain more realistic solutions for the bearing capacity of strip
footings under unsaturated transient infiltration. Assuming that the infiltration intensity
varies linearly with time, analytical solutions for the suction stress and apparent cohesion
under three types of transient infiltration are derived. The modified M-C criterion with
apparent cohesion is introduced into the theoretical framework of upper bound limit
analysis [34–36]. A discrete multi-block mechanism with fewer variables and higher
accuracy is proposed for the numerical integration of apparent cohesion. After verifying
the correctness of the present results using the geotechnical analysis software Geo-studio,
three hypothetical soils (fine sand, silt, and clay) are selected for parametric analysis and
collapse range analysis. The increase in bearing capacity due to the transient infiltration is
incorporated as a separate item in Terzaghi’s equation, which is presented in tabular form
for ease of use.

2. Apparent Cohesion Subject to Transient Infiltration
2.1. Suction Stress and Apparent Cohesion

The stress distribution of unsaturated soil is a critical theoretical basis for the design
and analysis of strip footings. The effective stress expression based on suction stress
proposed by Lu and Likos [18] has been widely applied in the study of stress distribution
in unsaturated soils. The unified form is:

σ′ = σ− ua − σs (1)

where σ′ = the effective stress, σ = the total stress, ua = the pore air pressure; and σs = the
suction stress.

The introduction of suction stress avoids the uncertainty in the effective stress co-
efficient χ in Bishop’s theory. Moreover, the magnitude of the suction stress completely
depends on the matrix suction, and the expression is as follows:

σs =

{
−(ua − uw) if (ua − uw) < 0
−Se(ua − uw) if (ua − uw) ≥ 0

(2)

where (ua − uw) = matric suction and Se = effective degree of saturation, which can be
obtained with:

Se =
θ − θr

θs − θr
(3)

where θ, θs, and θr are the volumetric water content, saturated volumetric content, and resid-
ual volumetric water content, respectively. To describe the shear strength characteristics of
unsaturated soil, an extended M-C criterion is used, which is defined as:

τf = c′ + σ′ tan ϕ′

= c′ + (σ− ua) tan ϕ′ − σs tan ϕ′
(4)

where τf = the strength of the soil and c′ and ϕ′ represent the effective cohesion and
friction angle, respectively. In general, the additional cohesion caused by suction stress
−σs tan ϕ′ in Equation (4) is called apparent cohesion capp, which means capp = −σs tan ϕ′.
The introduction of apparent cohesion capp unified the approach for treating dry soil
and variably saturated soil, which divides the cohesion into two parts in the analysis:
apparent cohesion and effective cohesion. Of course, this approach needs to be based on
the assumption that the effective shear strength, including c′ and ϕ′, is independent of
changes in apparent cohesion capp and remains constant during infiltration.
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2.2. Analytical Solution for Unsaturated Transient Flow

In homogeneous and isotropic soil layers, the general assumption of seepage in the soil
is subject to Darcy’s law [37–40]. In that case, the one-dimensional expression of Richard’s
equation reflecting transient flow is:

∂θ(hm)

∂t
=

∂

∂z

[
k(hm)(

∂hm

∂z
+ 1)

]
(5)

where t = the time, z = vertical distance from groundwater level, with z = l representing
the earth’s surface, hm = suction head, derived from hm = − (ua−uw)

γw
, and γw = the unit

weight of water, generally taking a value of 10 kN/m3. In order to conveniently obtain the
solution for the nonlinear partial differential Equation (5), the volume of water content θ
and hydraulic conductivity k are calculated according to Gardner’s model [41]:

k = kseαhm (6)

θ = θr + (θs − θr)eαhm (7)

where ks = hydraulic conductivity of saturated soils and α is a parameter for unsaturated
soils that represents the decrease in hydraulic conductivity and water content as the suction
head increases. By substituting Equations (6) and (7) to Equation (5), a linearized partial
differential equation system can be obtained, namely:

α(θs − θr)

ks

∂k(hm)

∂t
=

∂2k(hm)

∂z2 + α
∂k(hm)

∂z
(8)

To solve this equation, two boundary conditions and an initial condition are required.
This article uses a steady seepage field formed by a previous infiltration intensity of qA
the initial state. The two boundary conditions refer to (1) the suction stress hm at the water
table equals h0, with h0 = 0. In this case, the initial suction head hm is linearly distributed
in the soil. (2) When t > 0, transient infiltration with an intensity of qB acts on the surface
of the foundation (z = l).

qB = q0 + mt (9)

where q0 = initial infiltration intensity and m = infiltration intensity variation coefficient,
where m = 0 represents uniform infiltration, m > 0 represents delayed-peak infiltration,
and m < 0 represents advanced-peak infiltration, as shown in Figure 1. Herein, several
parameters are introduced:

K =
k(ψ)

ks
, QA =

qA

ks
, Q0 =

q0

ks
, Z = αz, L = αl, T =

αkst
θs − θr

, M =
m(θs − θr)

αks2

Mathematics 2023, 11, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 1. Finite element model for a foundation under rainfall infiltration. 

In this way, the control Equation (8) can be simplified as: 
2

2
K K K
T Z Z

∂ ∂ ∂= +
∂ ∂ ∂

 (10)

The boundary conditions and initial conditions can be recorded as: 

( )

( )

A A

B

, 0 ( 1)e

0, 1

Z

Z L

K Z Q Q

K K Q
Z

K T

−

=

 = − −

 ∂ + = ∂ 


=  

(11)

An analytical solution for the normalized hydraulic conductivity K  is obtained us-
ing Laplace forward and inverse transformations, with a detailed derivation process re-
ferred to Sriastava and Yeh [29] and Qin et al. [42]. 

[ ]2
A A 0 A( 1)e e ( ) ( ) ( )

L Z
ZK Q Q MG t Q Q F t

−
−= − − + + −  (12)

where 

( ) ( )
2

2 2 2

1( )2 4

21

( ) 2 cosh( )e sinh( ) 2 e 4 cosh( ) 2 e
2 2 2

16cos ( )sin sin e
          

1 2
2

n

L L L
L

T

n n n

n
n

Z Z LG t Z T e L

L Z L
L L

λ
λ λ λ

λ

− − −−

− −
∞

=

 
= + − − 

 

+
+ +


 (13)

( ) ( )
2 1( )( ) ( ) 4

2 2

21

4sin sin e
( ) e e

1 2
2

n TL Z L Z
n n

n
n

Z L
F t L L

λ
λ λ

λ

− −
− + ∞− −

=

−
= − +

+ +
  (14)

and nλ   refers to the nth positive root of the following pseudo-periodic characteristic 
equation: 

( )tan 2 0n nLλ λ+ =  (15)

For the uniform type of transient infiltration, substituting M = 0 into Equation (12) 
yields an expression for K in this case, i.e.: 

Figure 1. Finite element model for a foundation under rainfall infiltration.

In this way, the control Equation (8) can be simplified as:

∂K
∂T

=
∂2K
∂Z2 +

∂K
∂Z

(10)
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The boundary conditions and initial conditions can be recorded as:
K(Z, 0) = QA − (QA − 1)e−Z[

∂K
∂Z + K

]
Z=L

= QB

K(0, T) = 1

(11)

An analytical solution for the normalized hydraulic conductivity K is obtained using
Laplace forward and inverse transformations, with a detailed derivation process referred
to Sriastava and Yeh [29] and Qin et al. [42].

K = QA − (QA − 1)e−Z + e
L−Z

2 [MG(t) + (Q0 −QA)F(t)] (12)

where

G(t) = 2Z cosh( Z
2 )e
− L

2 + sinh( Z
2 )
[
2Te−

L
2 − 4e−L cosh( L

2 )− 2Le−
L
2

]
+

∞
∑

n=1

16 cos2(λn L) sin(λnZ) sin(λn L)e(−λ2
n− 1

4 )T

1+ L
2 +2λ2

n L

(13)

F(t) = e−
(L−Z)

2 − e−
(L+Z)

2 +
∞

∑
n=1

−4 sin(λnZ) sin(λnL)e(−λ2
n− 1

4 )T

1 + L
2 + 2λ2

nL
(14)

and λn refers to the nth positive root of the following pseudo-periodic characteristic equation:

tan(λnL) + 2λn = 0 (15)

For the uniform type of transient infiltration, substituting M = 0 into Equation (12)
yields an expression for K in this case, i.e.,:

K = Q0 − (Q0 − 1)e−Z − 4(Q0 −QA)e
L−Z

2 e−
T
4

∞

∑
n=1

sin(λnZ) sin(λnL)e−λ2
nT

1 + L/2 + 2λ2
nL

(16)

The saturation degree Se, water head hm, suction stress σs, and apparent cohesion capp
can all be expressed as functions of K:

Se = K (17)

ua − uw = −γw ln K
α

(18)

σs =
γwK ln K

α
(19)

capp = −γwK ln K
α

tan ϕ′ (20)

3. Bearing Capacity of Strip Footings on Unsaturated Soils
3.1. Problem Description and Solution Method

As shown in Figure 2, a rigid strip footing with a width of B is resting over homoge-
neous, isotropic, saturated soils, and the burial depth of the water table is l. In order to
simplify the bearing capacity analysis, some basic assumptions are required: (1) the load
on the foundation is vertical and concentric; (2) the soil in the damaged area follows the
modified Mohr–Coulomb (M-C) failure criterion; (3) the interface between the foundation
material and the soil is smooth to achieve conservative estimation; and (4) the water table
exceeds the damaged area and is parallel to the ground.
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The upper-bound method of limit analysis has been widely used in classic soil me-
chanics problems such as slope stability analysis, tunnel stability analysis, and foundation
bearing capacity calculation [43–49]. No matter how complex the problem may be, the
upper-bound method can be used to obtain an actual value for the failure load, which is
very practical for engineers. This method is based on the principle of virtual work, which
can be expressed as follows:∫

A
TividA +

∫
V

FividV =
∫

V
σijεijdV (21)

where vi = the velocity of failure block, σij and εij = the internal stress and the corre-
sponding plastic strain rate, respectively, Ti and Fi = the surface force and body force
acting on foundations, respectively, A and V = the area and volume of the integration
region, respectively.

3.2. Discrete Failure Mechanism

The failure mechanism under a static state is generally symmetrical, and the most
common types are the Prandtl mechanism and the multi-block mechanism. The Prandtl
mechanism only divides the failure area into three regions with fewer variables and faster
calculation speed. Nevertheless, the multi-block mechanism divides the failure area into
many blocks, and a smaller bearing capacity value can be obtained by optimizing multiple
variables. This article proposes a new discrete failure mechanism based on these two mech-
anisms, simultaneously meeting the advantages of fast computation speed and small upper
solutions. As shown in Figure 3, the transition zone BB1Bn+1 in the Prandtl mechanism is
discretized into n triangles, each with a top angle δθ and a bottom angle π/2 + ϕL. The
active zone ABB1 is an isosceles triangle with a base angle of α, and the passive zone B1
Bn+1C is assumed to have a base angle of β, so there are only three unknown variables
(α, β, ϕL) in this new failure mechanism. The sine theorem can be applied to calculate the
side length of each triangle:

li+1 = li
cos ϕL

cos(δθ + ϕL)
1 ≤ i ≤ n (22)

di = li
sin δθ

cos(δθ + ϕL)
1 ≤ i ≤ n (23)

where li and di are the length of line BBi and line BiBi+1, respectively, with l1 = B sec θ/2.
Furthermore, the length of line BC and line Bn+1C can also be calculated as ln+2 = |BC|
= ln+1

cos ϕL
cos(β+ϕL)

and dn+1 = |Bn+1C| = ln+1
sin β

cos(β+ϕL)
, respectively.
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3.3. Computation of the Working Rate

Due to the fact that the cohesion of unsaturated soils is composed of effective cohesion
c′ and apparent cohesion capp, the total internal energy dissipation Dint can also be divided
into two parts, namely:

Dint = De + Da (26)

where De and Da are the dissipation caused by effective cohesion c′ and apparent cohe-
sion capp, respectively. The effective cohesion c′ remains a constant as time and space
change, thus:

Dc =
n+1

∑
i=1

D′OBi +
n

∑
i=1

D′BiBi+1 + D′Bn+1C = c cos ϕ′
n+1

∑
i=1

(li[v]i + divi) (27)

However, the apparent cohesion capp caused by one-dimensional transient infiltration
varies nonlinearly along the depth, so numerical integration is needed to calculate Da.

Da =
n+1
∑

i=1
DOBi +

n
∑

i=1
DBiBi+1 + DBn+1C

=
n+1
∑

i=1

li sin θi∫
0

capp[v]i cos ϕ′ dy
sin θi
− 1

2

n
∑

i=1

[
σs

Bi
+ σs

Bi+1

]
divi sin ϕ′

+
dn+1 cos(β+ϕL)∫

0
cappvn+1 cos ϕ′ dy

cos(β+ϕL)

(28)

where σs
Bi

and σs
Bi+1

represent the suction stress of points Bi and Bi+1, respectively. The
coordinate system of the failure mechanism takes point O as the origin, with the vertical
downward direction being the y-axis positive direction and the horizontal rightward
direction being the x-axis positive direction. It is worth noting that the y value for a certain
point in the underground soil is its burial depth, which is different from the z value in
Equation (5). The relationship between them is y = l − z. For a large value of n, the length
of BiBi+1 is short enough that its apparent cohesion capp can be seen as linearly changing.

The total power caused by the external force Wext can be obtained by accumulating
the power of each part of the external force, i.e.,:

Wext = Wqu + Wqs + Wγ (29)

where Wqu , Wq0 , and Wγ = external forces caused by the vertical load of the superstruc-
ture qu, the surcharge load qs, and the soil’s self-weight within the collapse mechanism,
respectively. Their detailed calculation formulas are as follows:

Wqu =
1
2

quBv0 (30)

Wq0 = qsln+2vn+1 cos(θ + nδθ) (31)

Wγ =
1
2

γ
n+1

∑
i=1

lidivi cos ϕL cos[θ + (i− 1)δθ] +
1
8

γB2 tan θv0 (32)

3.4. Bearing Capacity and Optimization

By equaling external work power to internal energy power, a functional balance
equation can be expressed as:

Wext = Dint (33)
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Substituting Equations (26)–(32) into Equation (33) the ultimate bearing capacity qu of
shallow strip footings under transient infiltration can be derived as:

qu =
2(De + Da −Wqs −Wγ)

Bv0
(34)

Indeed, this solution of qu is an upper-bound solution. To measure the impact of un-
saturated infiltration on the bearing capacity of shallow strip footings, this paper modified
the classic Terzaghi’s expression:

qu =
1
2

γBNγ + qsNq + c′Nc + qu
suction (35)

where Nγ, Nq, and Nc = the bearing capacity parameters related to γ, qs, and c′, respectively,
and qu

suction = additional bearing capacity due to transient infiltration. It should be noted
that the first three terms are not influenced by transient infiltration in unsaturated soils, and
the fourth term is also independent of the first three terms’ parameters and only related to
the matric suction profile. When calculating one of these four items separately, the relevant
parameters related to the other items are assumed to be 0. According to Equation (34), the
expressions for Nγ, Nq, Nc, and qu

suction can be derived as:

Nγ = −
4Wγ

γB2v0
(36)

Nq = −
2Wqs

qsBv0
(37)

Nc =
2De

c′Bv0
(38)

qu
suction =

2Da

Bv0
(39)

From the derivation process for the upper bound solution above, it can be seen that
the bearing capacity is only related to three variables, namely:

qu = f (θ, δθ, β) (40)

The smaller the upper bound solution, the more engineering practicality there is. In
this paper, the multi-objective sequential quadratic programming (SQP) algorithm is used
for optimization, with the detailed process shown in Figure 5 and the constraints listed in
Table 1. The current study considers three hypothetical soils: fine sand, silt, and clay, whose
typical parameters are recorded in Table 2 [30]. In all data analyses below, it is assumed
that the initial infiltration intensity qA = 0, the infiltration intensity variation coefficient
m = 0, the width of the foundation B = 1 m, the surcharge load q0 = 10 kPa, and the unit
soil gravity γ = 20 kN/m3, if not stated otherwise.

Table 1. Limitations to be embedded in the algorithm.

Constraints/Conditions

Geometric compatibility θ + nδθ + β = π and ϕL + β < π/2
Kinematic admissibility vi+1 > vi and vi > 0

Range of values 0 < θ, δθ, β < π/2

Table 2. Input parameters for the four types of soils used in present study.

Soil Type α (m−1) ks (m·s−1) θs θr c’ (kPa) ϕ’

Fine sand 0.7 5.0× 10−6 0.41 0.05 0 30◦

Silt 0.5 9.0× 10−7 0.45 0.10 5 25◦

Clay 0.13 5.0× 10−8 0.58 0.05 10 20◦
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A convergence study is needed to determine the optimal number n of discrete triangles
in the passive zone. Apparently, a larger value of n means a more accurate solution,
which means a greater computational workload at the same time. So, this convergence
study needs to balance these two contradictory requirements. Figure 6 takes sand as an
example and obtains its bearing capacity qu corresponding to different n values according
to Equation (34). From Figure 6, it can be seen that as n increases from 5 to 40, qu continues
to increase, whereas the rate of increase gradually slows down. When n increases from
25 to 30, the bearing capacity only increases by 0.19%. Therefore, throughout the entire
analysis process, n can be reasonably taken as 30.

This paper provides two methods to calculate the ultimate bearing capacity qu of strip
footings under the action of transient infiltration. Method 1 is an individual method in
which the ultimate bearing capacity qu is calculated by superimposing the contributions of
the effective cohesion, the surcharge load, the soil’s self-weight, and the apparent cohesion
to the bearing capacity. Its detailed procedure is to calculate Nγ, Nq, Nc, and qu

suction

according to Equations (36)–(39) and then substitute them into Equation (35). Method 2
is a joint method, which applies the Equation (34) to computer qu directly. Assuming
the soil is saturated or dry, Table 3 compares the bearing capacity calculated using these
two methods with the results from previous studies in the literature [9,50,51]. As can be
seen, the results obtained using method 2 are greater than those obtained used method 1
for all comparisons. Furthermore, the present results obtained using both methods are
smaller than the previous results, thanks to the innovative discrete mechanism in this paper.
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Considering the unsaturated soil subjected to transient infiltration, Table 4 compares the
foundation bearing capacity qu obtained using these two methods for different types of soils.
It can be more intuitively seen that method 1 tends to give more conservative results, but
the difference between these two methods does not exceed 6%. Compared to the complex
optimization algorithm used in method 2, method 1 can be used to calculate qu easily
by directly querying Nγ, Nq, Nc, and qu

suction for different operating modes. Therefore,
method 1 is recommended for the practical design of foundations.
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Table 3. Comparison of bearing capacity with previous studies.

Method This Study Soubra [9] Jin et al. [50] Wang et al. [51]

Method 1: qsuper (kN/m2) 675.18 680.58 686.76 704.89
Method 2: qu (kN/m2) 718.30 726.13 728.03 736.19

Note: γ = 18 kN/m3, ϕ′ = 30◦, and c′ = 10 kPa, qs = 10 kPa.

Table 4. Comparison of bearing capacity using the two methods proposed in this study.

Fine sand (t = 1 d) Silt (t = 4 d) Clay (t = 60 d)

ϕ Method 1 Method 2 Difference Method 1 Method 2 Difference Method 1 Method 2 Difference

qsuper(kN/m2) qu(kN/m2) (%) qsuper(kN/m2) qu(kN/m2) (%) qsuper(kN/m2) qu(kN/m2) (%)

15 76.81 79.11 2.91 138.21 142.16 2.78 219.95 225.10 2.29
20 136.37 143.12 4.71 222.35 233.16 4.64 345.48 359.07 3.79
25 248.64 265.40 5.92 373.14 396.61 5.92 563.62 592.79 4.92
30 477.84 508.49 5.86 665.66 707.91 5.97 970.85 1025.20 5.30
35 968.38 1027.25 5.73 1266.86 1347.00 5.95 1777.81 1886.00 5.74
40 2118.27 2241.96 5.52 2625.71 2791.37 5.93 3301.02 3367.01 1.96

Note: l = 5 m.

4. Verification

Considering that no scholars have yet studied the impact of transient infiltration on
the upper-bound solution of the foundation bearing capacity, the validation in this study
mainly consists of two steps. Firstly, the feasibility and accuracy of the proposed framework in
obtaining the foundation bearing capacity in saturated or dry soil are tested using published
research. Then, the correctness of the analytical solution for unsaturated transient infiltration
is verified. The apparent cohesion generated by transient infiltration is added to the functional
equation as a separate internal energy dissipation term, so as long as these two verification
steps are successful, the present method for computing bearing capacity is effective.

4.1. Verification of the Bearing Capacity under the No-Suction Condition

Assuming the strip footing is located on a dry or saturated soil layer, its Nγ, Nc, and Nq
values obtained using method 1 are compared with previous results [8–10,51–53], as listed
in Tables 5–7. It is worth noting that the theory used by Vesic [52] and Zhu [10] is the limit
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equilibrium theory, while all other solutions are upper-bound solutions. For the values of Nγ

recorded in Table 5, the present results gradually become the least upper-bound solutions
as the ϕ value increases, while Chen’s results are the largest from beginning to end. The
difference in the Nγ value is mainly caused by the variety of collapse mechanisms. Chen [53]
applied the symmetric Prandtl mechanism, whereas Michalowski [8], Soubra [9], and Zhu [10]
applied the multi-block mechanism, whose periphery does not assume any shape. Apparently,
the bearing capacity solutions for the multi-block mechanism are all smaller than those for
the Prandtl mechanism. Moreover, both Soubra [9] and Zhu [10] observed that the average
reduction in upper-bound solutions calculated using the symmetric mechanism was 23.12%
compared with those obtained using the unilateral mechanism. Similarly, the limit equilibrium
solutions achieved using the symmetric mechanism were found to be, on average, 2.85%
smaller than those attained using the unilateral mechanism. Therefore, the symmetrical
mechanism is more suitable for the calculation of bearing capacity under a static state.

Table 5. Comparison of Nγ with previous studies.

ϕ(◦)
This Study Wang et al. [51] Soubra [9] Michalowski [8] Chen [53] Zhu [10]

Symmetrical One-Sided Symmetrical One-Sided Symmetrical Symmetrical Symmetrical One-Sided

15 2.49 3.53 1.95 2.10 1.94 2.94 1.94 2.10
20 4.89 6.56 4.49 4.67 4.47 6.20 4.47 4.66
25 9.89 12.26 9.81 10.06 9.77 12.96 9.76 10.03
30 21.42 24.21 21.51 21.88 21.39 27.67 21.38 21.81
35 48.36 50.94 49.00 49.62 48.68 61.47 48.65 49.38
40 117.17 122.95 119.84 120.96 118.83 145.19 118.76 120.15
45 315.98 331.22 326.59 328.88 322.84 374.02 322.62 325.77

Table 6. Comparison of Nc with previous studies.

ϕ(◦)
This Study Wang et al. [51] Soubra [9] Vesic [52]

Symmetrical One-Sided Symmetrical One-Sided Symmetrical

15 10.94 11.38 10.99 11.00 10.98
20 14.75 15.00 14.86 14.87 14.83
25 20.56 20.80 20.77 20.78 20.72
30 29.83 30.20 30.24 30.25 30.14
35 45.52 46.50 46.33 46.35 46.12
40 74.07 75.90 75.77 75.80 75.12
45 131.12 141.38 134.99 135.09 133.88

From Tables 6 and 7, it is easy to see that for all ϕ values, the present values of both Nc
and Nq are the smallest. The results of Wang et al. [51] are the largest, followed by Soubra [9].
This is because Wang et al. [51] used the multi-wedge discrete mechanism, whose wedge
includes quadrilaterals. In contrast, the discrete blocks in this paper and those used by
Soubra [9] contain only triangles, which are more advantageous. Overall, assuming that
discrete blocks have the same top and bottom angles, the multi-block mechanism proposed
in this study avoids the computational complexity caused by too many variables. At the
same time, it also provides a good basis for numerical integration of apparent cohesion.

Table 7. Comparison of Nq with previous studies.

ϕ(◦)
This Study Wang et al. [51] Soubra [9] Vesic [52]

Symmetrical One-Sided Symmetrical One-Sided Symmetrical

15 3.94 3.94 3.95 3.95 3.94
20 6.40 6.47 6.41 6.41 6.40
25 10.67 10.72 10.69 10.69 10.66
30 18.41 18.50 18.46 18.46 18.40
35 33.30 33.31 33.44 33.43 33.30
40 64.26 64.90 64.58 64.55 64.20
45 134.53 141.38 135.99 135.91 134.87

4.2. Verification of the Matric Suction Profile with Infiltration Time

The finite element analysis software Geo-Studio is applied to verify the correctness of
the analytical solution for transient infiltration in unsaturated soils. As shown in Figure 7,



Mathematics 2023, 11, 3480 13 of 25

a rectangular soil layer with a length of 5 m and a height of 3 m is first established. It
is assumed that the buried depth of the water table is 3 m, and the soil is fine sand. A
total of 172.8 mm of rain falls on the foundation for 24 h. Prior to this rainfall, the area
where the foundation is located had not experienced rainfall for a long time, so qA = 0.
The seepage analysis module SEEP/W is used to apply a boundary condition of late
infiltration intensity qB at the surface. To ensure that rainfall is the same, three scenarios
for linear changing rainfall intensity are set: (1) scenario 1 (advanced-peak infiltration):
qB decreases from 3× 10−6 m/s to 1× 10−6 m/s, which means q0 = 3× 10−6 m/s and
m = −2.315 × 10−11 m/s2; (2) scenario 2 (uniform infiltration): qB = 2 × 10−6 m/s
remains unchanged, which means q0 = 2 × 10−6 m/s and m = 0; and (3) scenario 3
(delayed-peak infiltration): qB increases from 1× 10−6 m/s to 3× 10−6 m/s, which means
q0 = 1× 10−6 m/s and m = 2.315× 10−11 m/s2.
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For the matric suction profile of these three scenarios, Figure 8 compares the numerical
solutions using the software Geo-Studio with the analytical solutions calculated according
to Equations (12) and (18). It can be easily observed that no matter the type of rainfall, the
magnitude and variation in matric suction obtained using the two methods are almost
the same, indicating that the analytical expression for transient seepage derived in this
paper is correct. In addition, the soil matric suction along the depth changes from linear
to nonlinear during rainfall. As time goes on, the magnitude of matric suction in the
middle and upper part of the foundation is decreasing, and the decreasing amplitude and
the affected area’s depth are increasing. Comparing these three different rainfall types,
when t = 0, the distribution of matric suction is identical. When t = 6 h, the magnitude of
matrix suction at all depths is ranked as advanced-peak infiltration < uniform infiltration
< delayed-pack infiltration. The reason for the largest reduction in matric suction in
advanced-peak infiltration lies in its maximum rainfall amount at t = 6 h. However, over
time, the differences in matric suction between the three types gradually decrease, as their
rainfall amounts converge toward the same. Finally, a stress analysis module SIGMA/W is
superimposed based on the seepage field of t = 24 h. The load of the foundation is applied
as a function of the displacement boundary condition. Note that the left side of the model
is the symmetry axis of the middle line, so the actual foundation width is 1 m. Figure 9
presents a velocity vector diagram for each point in the soil layer during the foundation
failure. It is seen that the failure envelope in Figure 9 is highly similar to that of the present
discrete failure mechanism in Figure 3.
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Figure 8. Distribution of matric suction along depth under (a) advanced-peak infiltration, (b) uniform
infiltration, and (c) delayed-peak infiltration.
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5. Results and Discussion
5.1. Saturation Degree and Apparent Cohesion Profiles

To explore the response of unsaturated soil under transient seepage, Figures 10–12
describe the saturation degree Se and apparent cohesion capp distributions of fine sand,
silt, and clay at different times t and with different water table depths l. It is assumed that
q0/ks = 1 and m = 0. Obviously, the development of transient flow is affected by soil type,
water table depth, infiltration time, and distance from the study site to the ground. From
Figures 10a, 11a and 12a, as the infiltration time t increases, the saturation degree Se of all
soils increases, eventually converging to 1.0 at all depths. These three soils reach complete
saturation at different times. Specifically, infiltration of fine sand is a rapid process, often
reaching full saturation in less than 10 days, while infiltration of silt is much slower, usually
taking tens of days, and clay is the slowest, taking hundreds of days. The water table depth
l also affects the process of soil saturation under the action of transient flow. It can be seen
that when the water table depth is increased from 3 m to 6 m, the time required to reach
the full saturation state is almost doubled. And the deeper the water table, the greater the
saturation degree Se of the soil at the same depth at the same time. Furthermore, as time
progresses, the soil near the surface experiences a higher increase in saturation degree Se
compared to the middle soil. As a result, the upper and lower parts of the soil layer exhibit
a higher saturation degree Se, while the middle part remains relatively low in saturation
degree Se.
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The complexity of apparent cohesion variation is undeniable, yet there are still funda-
mental rules that govern it. From Figures 10b, 11b and 12b, the apparent cohesion capp of
the three soils will eventually converge to 0 as time goes by. Notably, the convergence time
to zero cohesion aligns closely with the time required for complete soil saturation. This
is actually because there is no apparent cohesion in fully saturated soil, which reaffirms
the validity of the findings presented in this study. For clay, regardless of whether the
water table depth is 3 m or 6 m, its apparent cohesion capp generally decreases over time.
Moreover, the trend in capp along the depth is similar to that of Se. When the water table
drops from 3 m to 6 m, the clay’s capp at the same depth and time double. However, for
fine sand and silt, when the water table is shallow (l = 3 m), their apparent cohesions
capp initially increase and then decrease with increasing depth. However, when the water
table drops to 6 m, the profile of capp becomes disordered. These differences in cohesion
variations among different soils are primarily attributed to variations in the values of α and
ks, which result in different saturation degrees Se.

The apparent cohesion capp can be obtained by substituting the saturation into
Equation (20). Differentiating Equation (20) with respect to K yields:

dcapp

dK
= −γw

α
tan ϕ′(ln K + 1) (41)
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When the saturation exceeds 1/e, the apparent cohesion capp decreases as the satura-
tion degree Se. increases. Conversely, when capp is less than 1/e, the opposite trend occurs,
as shown in Figure 13. Therefore, the maximum value of capp occurs when Se equals 1/e,
which is consistent with the trend depicted in Figures 10–12.
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5.2. Parametric Analysis

The previous discussion demonstrated that the additional bearing capacity qu
suction

caused by transient seepage is an independent item, unrelated to the effective cohesion
c′, surcharge load qs, and unit weight of soil γ. The dimensionless bearing capacity
factors Nγ, Nq, and Nc, which are recorded in Tables 5–7, are only related to the effective
internal friction angle ϕ′. Therefore, the parametric analysis in this section is specifically
focused on the additional bearing capacity qu

suction. By analyzing Equation (39), it can be
determined that the parameters influencing qu

suction are the permeability coefficient (ks),
infiltration intensity (qB), water storage capacity (θs − θr), effective internal friction angle
(ϕ′), desaturation coefficient (α), rainfall duration (t), and water table depth (l). For the
purpose of simplification, the analysis assumes uniform rainfall for transient infiltration,
i.e., qB = q0.

Figures 14–16 depict the results of the additional bearing capacity qu
suction for the three

soil types, involving different infiltration times t, water table depths l, and infiltration ratios
q0/ks. From the graphs, it can be observed that at t = 0, the value of qu

suction due to matric
suction in unsaturated soils does not vary with changes in q0/ks. Among these three soil
types, clay exhibits the highest value of qu

suction, followed by silt, and then fine sand. For
example, when t = 0 days and l = 6 m, the bearing capacity of the foundation increases by
23.60 kPa for fine sand, 36.07 kPa for silt, and 143.80 kPa for clay. Furthermore, as the water
table depth increases from 4 m to 8 m, the initial response of qu

suction differs for different
soil types. Fine sand and silt present an increasing trend, with the values decreasing
from 59.04 kPa to 7.96 kPa and from 61.01 kPa to 18.26 kPa, respectively. However, clay
consistently increases from 115.73 kPa to 152.52 kPa. With the development of transient
seepage, the influence of water table variations in qu

suction becomes disordered for fine sand
and silt. However, the value of qu

suction for clay continues to increase as the water table
drops, aligning with the trend in the apparent cohesion variation observed in Figures 10–12.
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Figure 14. Additional bearing capacity suction
uq  versus infiltration time t for l = 5 m in (a) fine sand, 
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Figure 14. Additional bearing capacity qu

suction versus infiltration time t for l = 5 m in (a) fine sand,
(b) silt, and (c) clay.
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It is important to pay attention to the influence of the infiltration ratio q0/ks on the
additional bearing capacity qu

suction of the three soils. Theoretically, the rainfall flux rate is
always less than or equal to the saturated hydraulic conductivity of the soil, i.e., q0/ks ≤ 1.
Previous studies [2,30,31] have typically assumed that q0/ks = 1 to simplify the analysis. In
practical engineering, due to uncertainties in rainfall and surface water, the infiltration ratio
q0/ks can take any value between 0 and 1. Therefore, this study considers six scenarios by
extending the investigation to different infiltration ratios of q0/ks = 0.05, 0.25, 0.10, 0.50,
0.75, and 1. From Figures 14–16, it can be observed that for a given water table depth and
infiltration ratio q0/ks, the qu

suction for fine sand and silt show a similar trend over time,
while the qu

suction for clay monotonically decreases over time. Specifically, for fine sand and
silt, when q0/ks ≥ 0.50, their qu

suction value initially increases and then decreases as time
goes by. Moreover, smaller values of q0/ks result in larger maximum values of qu

suction and
longer corresponding infiltration times t. The maximum value of qu

suction at q0/ks = 0.50 is
the highest among all scenarios, with magnitudes of 91.15 kPa and 70.44 kPa, respectively.
The maximum values of qu

suction for fine sand typically occur between 0.5 days and 1 day,
while for silt, they occur between 2 days and 4 days. Additionally, in the descending part
of the additional bearing capacity over time, a smaller q0/ks generates a slower rate of
decrease. When q0/ks = 0.05, 0.25, 0.10, the qu

suction of fine sand and silt monotonically
increase with time, but the rate of increase gradually slows down. Furthermore, a larger
q0/ks leads to a greater magnitude of increase in qu

suction. The response of clay’s qu
suction to

the development of transient seepage is completely different. As time goes by, the qu
suction

corresponding to all values of q0/ks decreases, and the range of reduction increases with
an increase in q0/ks.

The reason for the different trends corresponding to different infiltration ratios
q0/ks is that smaller rainfall flux rates continuously increase the saturation degree of
fine sand and silt, but it takes a longer time to reach the inflection point of 1/e, resulting
in an increasing trend. However, when the rainfall intensity is larger, the saturation
degree quickly reaches 1/e and continues to increase, leading to an initial increase and
subsequent decrease in apparent cohesion capp. On the other hand, clay has a saturation
degree greater than 1/e initially, so its apparent cohesion capp will decrease regardless of
the infiltration flux.

Assuming q0/ks = 0.5 and ks = 5× 10−6, Figures 17–19 depict the variation in
additional bearing capacity qu

suction with respect to the effective internal friction angle
ϕ′ for different values of the water table depth l, water storage capacity θs − θr, and
desaturation coefficient α. As the water table decreases, qu

suction slightly increases. For
smaller values of α, an increase in θs − θr also leads to an increase in qu

suction, although
the effect is minor. Clearly, the effective internal friction angle ϕ′ and desaturation
coefficient α have more significant impacts on the additional bearing capacity. With
an increase in ϕ′, the qu

suction continuously increases, and the speed of the increase
accelerates. The influence of ϕ′ on qu

suction becomes more evident for smaller values of
α. For example, when θs − θr = 0.5, α = 0.2, and l = 8 m, the value of qu

suction increases
from 27.05 kPa to 1161.52 kPa with increasing ϕ′ from 10◦ to 40◦. From the equation
capp = −σs tan ϕ′, it can be determined that an increase in ϕ′ can directly increase the
capp, thereby enhancing qu

suction. Additionally, as one of the most important parameters
of soil, the value of ϕ′ plays a critical role not only in bearing capacity neglecting suction
stress but also in seismic bearing capacity [54]. Equations (6) and (7) indicate that the
soil water characteristic curve and hydraulic conductivity are both influenced by α. This
explains the high sensitivity of additional bearing capacity qu

suction to the desaturation
coefficient α.
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Figure 17. Additional bearing capacity qu
suction versus ϕ′ for different values of α for l = 4 m:
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Figure 18. Additional bearing capacity suction
uq  versus ϕ′  for different values of α  for l = 6 m: (a) 

0.3s rθ θ− = , (b) 0.4s rθ θ− = , and (c) 0.5s rθ θ− = . 

Figure 18. Additional bearing capacity qu
suction versus ϕ′ for different values of α for l = 6 m:

(a) θs − θr = 0.3, (b) θs − θr = 0.4, and (c) θs − θr = 0.5.
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Since the contribution of transient infiltration is a separate part of the ultimate bear-
ing capacity uq , Tables 8–10 record the addition bearing capacity suction

uq  for various com-
binations of ϕ′ , t, l, and ks with the infiltration ratio 0 / sq k  being equal to 1.00, 0.75, and 

0.50. Applying method 1, these suction
uq  values can be substituted with N γ , qN , and cN  

in Tables 5–7 into Equation (35) to calculate the ultimate bearing capacity uq . 

Figure 19. Additional bearing capacity qu
suction versus ϕ′ for different values of α for l = 8 m:
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5.3. Collapse Mechanism and Design Tables

The outer contours of the proposed discrete failure mechanisms generated for three
kinds of soils with different infiltration times at three different water table depths (l = 4 m,
6 m, and 8 m) are presented in Figure 20. Without considering suction stress, there is no
doubt that the bearing capacity of these three kinds of soil is ordered as clay > silt > fine
sand. The same is true for the collapse range ordering shown in Figure 20. In fact,
considering the effect of transient seepage, the three kinds of soils remain unchanged
when l = 4 m and 6 m in order of bearing capacity, as shown in Figure 20. When the
water level drops to 8 m, the bearing capacity of fine sand surpasses that of silt, but it
is still smaller than that of clay. Furthermore, it can be observed that the water table
depth significantly affects the bearing capacity while exerting minimal influence on the
collapse range.
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Figure 20. The critical slip surface of the three soils for (a) l = 4 m, (b) l = 6 m, and (c) l = 8 m.

Since the contribution of transient infiltration is a separate part of the ultimate bearing
capacity qu, Tables 8–10 record the addition bearing capacity qu

suction for various combi-
nations of ϕ′, t, l, and ks with the infiltration ratio q0/ks being equal to 1.00, 0.75, and
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0.50. Applying method 1, these qu
suction values can be substituted with Nγ, Nq, and Nc in

Tables 5–7 into Equation (35) to calculate the ultimate bearing capacity qu.

Table 8. Additional bearing capacity qu
suction due to transient infiltration (q0/ks = 1).

ϕ’(◦) l(m)
ks=5×10−6 ks=5×10−7 ks=5×10−8

t = 0 d t = 0.5 d t = 1 d t = 2 d t = 4 d t = 4 d t = 8 d t = 12 d t = 16 d t = 60 d t = 120 d t = 180 d t = 240 d

10
4 12.67 11.81 8.89 4.59 1.07 12.40 10.01 7.84 6.04 11.21 7.84 5.27 3.46
6 8.95 13.27 11.65 8.19 3.72 13.42 12.38 10.91 9.48 13.03 10.91 8.82 7.04
8 5.48 13.40 12.52 9.65 5.44 13.28 13.02 11.95 10.77 13.36 11.95 10.20 8.62

20
4 47.02 43.88 33.26 17.26 4.04 45.94 37.40 29.40 22.67 41.72 29.40 19.81 13.03
6 33.66 48.87 43.53 30.87 14.09 49.12 46.06 40.88 35.67 48.17 40.88 33.21 26.58
8 20.72 48.74 46.58 36.35 20.64 47.77 48.18 44.63 40.44 48.96 44.63 38.37 32.55

30
4 153.96 143.56 110.22 57.62 13.54 149.68 123.50 97.68 75.55 137.01 97.68 66.07 43.53
6 113.51 157.69 144.24 104.29 48.07 157.23 151.40 136.26 119.88 156.55 136.26 111.93 90.08
8 70.70 153.20 152.92 122.61 70.65 147.87 156.26 147.79 135.45 155.89 147.79 129.00 110.34

40
4 489.22 454.83 353.44 186.17 43.89 471.93 394.40 314.17 243.96 435.49 314.17 213.55 140.48
6 443.68 571.38 540.94 404.51 189.74 566.48 560.66 516.22 460.70 571.33 516.22 432.36 351.58
8 282.82 529.11 561.79 475.13 281.79 506.15 561.53 552.06 517.46 545.35 552.06 496.70 431.74

Note: α = 0.4 m−1, θs − θr = 0.4, and m = 0.

Table 9. Additional bearing capacity qu
suction due to transient infiltration (q0/ks = 0.75).

ϕ’(◦) l(m)
ks=5×10−6 ks=5×10−7 ks=5×10−8

t = 0 d t = 0.5 d t = 1 d t = 2 d t = 4 d t = 4 d t = 8 d t = 12 d t = 16 d t = 60 d t = 120 d t = 180 d t = 240 d

10
4 12.67 12.89 11.36 8.93 6.85 13.17 11.97 10.78 9.76 12.59 10.78 9.32 8.27
6 8.95 13.48 13.13 11.59 9.26 13.36 13.37 12.84 12.21 13.50 12.84 11.90 11.01
8 5.48 13.09 13.46 12.49 10.51 12.72 13.48 13.33 12.94 13.31 13.33 12.72 12.04

20
4 47.02 47.43 41.83 32.68 24.78 48.41 44.09 39.67 35.83 46.35 39.67 34.17 30.18
6 33.66 49.23 48.42 42.88 34.11 48.62 49.18 47.42 45.16 49.44 47.42 44.01 40.73
8 20.72 47.14 49.37 46.23 38.88 45.42 49.22 49.06 47.80 48.21 49.06 47.03 44.59

30
4 153.96 153.12 134.96 104.24 77.32 156.16 142.39 127.80 114.90 149.71 127.80 109.29 95.76
6 113.51 157.52 157.11 140.06 110.64 154.98 158.91 154.31 147.40 158.79 154.31 143.73 132.98
8 70.70 146.81 158.54 151.03 127.22 140.14 156.68 158.52 155.60 151.47 158.52 153.43 145.97

40
4 489.22 473.14 409.64 305.36 217.45 482.97 436.21 384.38 340.81 461.71 384.38 322.08 277.35
6 443.68 568.39 574.45 517.48 403.89 558.79 577.96 566.52 543.77 574.27 566.52 530.80 491.00
8 282.82 507.11 567.02 558.46 473.38 482.65 552.76 573.08 570.69 526.40 573.08 565.34 542.16

Note: α = 0.4 m−1, θs − θr = 0.4, and m = 0.

Table 10. Additional bearing capacity qu
suction due to transient infiltration (q0/ks = 0.5).

ϕ’(◦) l(m)
ks=5×10−6 ks=5×10−7 ks=5×10−8

t = 0 d t = 0.5 d t = 1 d t = 2 d t = 4 d t = 4 d t = 8 d t = 12 d t = 16 d t = 60 d t = 120 d t = 180 d t = 240 d

10
4 12.67 13.47 12.97 12.00 11.10 13.53 13.19 12.75 12.34 13.39 12.75 12.16 11.72
6 8.95 13.00 13.51 13.39 12.74 12.74 13.40 13.54 13.50 13.19 13.54 13.45 13.25
8 5.48 11.97 13.11 13.54 13.28 11.48 12.81 13.30 13.48 12.33 13.30 13.52 13.52

20
4 47.02 49.36 47.44 43.66 40.15 49.59 48.29 46.60 45.01 49.05 46.60 44.30 42.56
6 33.66 47.39 49.47 49.14 46.67 46.36 49.03 49.63 49.53 48.13 49.63 49.35 48.64
8 20.72 42.93 47.69 49.61 48.74 40.98 46.43 48.49 49.33 44.40 48.49 49.52 49.62

30
4 153.96 158.57 151.63 138.10 125.56 159.45 154.65 148.60 142.92 157.41 148.60 140.39 134.19
6 113.51 151.69 159.17 158.54 150.08 148.25 157.48 159.90 159.76 154.23 159.90 159.23 156.88
8 70.70 133.80 151.46 159.64 157.40 127.15 146.57 154.69 158.23 139.05 154.69 159.12 159.94

40
4 489.22 485.76 453.65 402.66 359.19 490.38 467.36 441.49 420.22 480.78 441.49 410.98 389.00
6 443.68 550.68 577.74 575.96 540.72 539.38 571.20 580.80 580.64 559.41 580.80 578.67 569.24
8 282.82 467.50 536.78 577.48 573.26 444.77 515.95 551.54 569.23 486.53 551.54 574.21 580.52

Note: α = 0.4 m−1, θs − θr = 0.4, and m = 0.

6. Conclusions

Transient infiltration, such as heavy rainfall, can lead to dramatic changes in the
degree of saturation and matrix suction within the soil, thus affecting the foundation
bearing capacity. In this study, a theoretical framework for considering the contribution
of transient infiltration to foundation bearing capacity is provided for the first time. An
analytical solution for the transient flow of linear infiltration is derived to express the
soil saturation. Then, suction stress and apparent cohesion are introduced to modify the
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M-C criterion. Within the framework of the kinematic approach in limit analysis, a new
discrete failure mechanism suitable for considering unsaturated effects is proposed, which
possesses the characteristics of fewer variables and higher accuracy. After that, the power
balance equation is established, and the SQP algorithm is applied to obtain the rigorous
upper-bound solution for the bearing capacity. The effectiveness and rationality of the
proposed theoretical framework are fully demonstrated using comparisons with the results
of previous studies and finite element results. Due to the high uncertainty in unsaturated
soil properties, three hypothetical soil materials are selected for analysis. According to the
comparison and parametric study, several significant conclusions are drawn as follows:

(1) Two methods for calculating the bearing capacity under transient infiltration are pro-
vided. Method 1 is an individual method, which adds an additional bearing capacity
item qu

suction to the three bearing capacity items proposed by Tarzaghi and optimizes
each item individually before superimposing it. Method 2 is a joint method, which
directly optimizes the objective function in Equation (34) to obtain bearing capacity
qu directly. A comparison of the results shows that the upper-bound solution for
method 1 is smaller than that for method 2; therefore, method 1 is more conserva-
tive. The qu

suction values under different combinations of parameters are recorded in
Tables 8–10.

(2) The additional bearing capacity qu
suction due to the transient infiltration has significant

temporal variability. In the initial state (t = 0), the unsaturated effect is greatest for clay,
followed by silt and fine sand. For example, at l = 6 m, taking into account the effect of
transient infiltration, the bearing capacity of the fine sand, silt, and clay increases by
23.60 kPa, 36.07 kPa, and 143.80 kPa, respectively. However, after a certain period of
transient infiltration, the qu

suction will converge to zero for all three soils. This process
takes only a few days for fine sand, tens of days for silt, and hundreds of days for clay.
Notably, the speed of infiltration depends on the saturated hydraulic conductivity ks.
Increasing the value of ks will accelerate the increase in the saturation degree and the
gradual loss of apparent cohesion.

(3) The infiltration ratio q0/ks also has a crucial effect on the additional bearing capacity
qu

suction. For fine sand and silt subjected to uniform rainfall, the qu
suction increases

and then decreases over time, thus presenting a clear local maximum. The maximum
value occurs between 0.5 d and 1 d for fine sand and between 2 d and 4 d for silt. For
the same infiltration time, a larger value of q0/ks means a smaller value of qu

suction in
clay. The core effect of q0/ks on qu

suction lies its influence on the soil saturation degree
Se. The apparent cohesion increases as Se increases from 0 to 1/e and decreases as Se
increases from 1/e to 1. Therefore, the additional bearing capacity of soil achieves its
peak value at Se = 1/e.
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