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Abstract: The advancement in coloring schemes of graphs is expanding over time to solve emerging
problems. Recently, a new form of coloring, namely P3-coloring, was introduced. A simple graph
is called a P3-colorable graph if its vertices can be colored so that all the vertices in each P3 path of
the graph have different colors; this is called the P3-coloring of the graph. The minimum number
of colors required to form a P3-coloring of a graph is called the P3-chromatic number of the graph.
The aim of this article is to determine the P3-chromatic number of different well-known classes of
bipartite graphs such as complete bipartite graphs, tree graphs, grid graphs, and some special types
of bipartite graphs. Moreover, we have also presented some algorithms to produce a P3-coloring of
these classes with a minimum number of colors required.
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1. Introduction

Graph theory deals with the study of graphs, which are mathematical structures
representing a set of vertices or objects connected by any set of lines; these lines are called
edges. The study of graphs is a very important tool for the applications of different subjects,
such as chemistry, biochemistry, computer science, communication networks, operations
research, and coding theory (see [1]). The history of graph theory dates back to the 18th
century when Leonhard Euler solved the famous seven bridges of Konigsberg problem
(see [2]). Then, in the 19th century, graph theory was developed by mathematicians James
Joseph Sylvester and Arthur Cayley (see [3]). In the 20th century, graph theory found
significant importance in different fields. One of the important problems in graph theory
is graph coloring, which involves assigning colors to the vertices of the graph such that
no two vertices which are adjacent have the same color. Graph coloring has numerous
applications, such as map coloring (see [4]), scheduling (see [5,6]), resource allocation, and
register allocation (see [7]).

Graph coloring is a fundamental concept in graph theory, a branch of mathematics
that deals with the study of networks or graphs. The history of graph coloring can be
traced back to the 19th century when the four color theorem was first proposed by Francis
Guthrie. This theorem states that any map on a plane can be colored with just four colors
in such a way that no two adjacent regions have the same color. The proof of this theorem
took several decades and involved significant mathematical developments, including the
use of computers to verify thousands of cases. In 1880, Tait proved in [8] that the four color
theorem is equivalent to the conjecture saying that every cubic map has a proper edge
coloring with three colors. Haken et al. introduced a new type of coloring, face and map
coloring [9]. The four color theorem sparked great interest in graph coloring and led to
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further research and the development of various coloring techniques. There are different
types of graph coloring, each serving a specific purpose. The most well-known type is
vertex coloring, where the goal is to assign colors to the vertices of a graph in such a way
that no two adjacent vertices share the same color [10,11]. Another type is edge coloring,
which focuses on coloring the edges of a graph so that no two adjacent edges have the same
color [10,11]. In [12], Zhou discussed edge coloring and its applications.

A detailed review on vertex coloring was given in [13,14]. Baber described list coloring
in [15]. A detailed review about list coloring and some properties and algorithms of list
coloring are included in [16,17]. Jenson et al. explained path coloring in [18]. Total coloring
is also a type of graph coloring, and a complete review of it was provided in [19]; the
algorithm of total coloring was constructed by Isobe in [20]. These various types of graph
coloring have contributed to a wide range of applications and continue to be studied and
refined by mathematicians and computer scientists. Moreover, there are also different types
of vertex coloring and edge coloring, such as Equitable vertex coloring [21–23], Circular
vertex coloring [24–26], Acyclic vertex coloring [27,28], Star vertex coloring [28,29], Circular
edge coloring [30], Acyclic edge coloring [31–33], Baerge Fulkerson coloring [34], and Fan
Raspand coloring [35]. In 2023, Naeem et al. introduced (see [36]) a new form of graph
coloring, “P3-coloring”, and they gave some general results about this coloring. In [36], the
authors have also discussed P3-coloring of some well-known families of graphs such as
complete graphs, wheel graphs, star graphs, cycle graphs, prism graphs, ladder graphs,
and path graphs.

Definition 1. Let G be a simple graph and let ` : V(G) → {c1, c2, . . . , ck} be coloring of the
vertices of G. If, for every P3 path in G, the colors of its vertices are different, then ` is called
P3-coloring of G, that is, if uvw is a P3 path on G, then `(u) 6= `(v) 6= `(w) 6= `(u).

Definition 2. For a graph G, the minimum number of colors (or k in above definition) required to
produce (or form) a P3-coloring is called the P3-chromatic number of G. It is denoted as χ3(G). It is
worth noticing that for all graphs G, we have χ3(G) ≥ 3.

The following results are useful to prove some of our main Theorems in this article.

Theorem 1 ([36], Corollary 3). Let Sn be a star graph on n vertices; then χ3(Sn) = n, for all
n ≥ 3.

Theorem 2 ([36], Theorem 1). Let G be a graph and H be a subgraph of G; then χ3(G) ≥ χ3(H).

The aim of this article is to discuss the P3-coloring and P3-chromatic number of bipartite
graphs. Trees are one of the well-known types of bipartite graphs, and in Theorem 3, we
have proved that χ3 of a tree graph is ∆(T) + 1, where ∆(T) is the maximum degree of the
tree graph. Theorem 4 discusses the P3-chromatic number of complete bipartite graphs.
The mesh graph or the grid graphs are also bipartite graphs and the P3-chromatic number
of grid graphs is discussed in Theorem 5. Section 4 contains the main result of this article.
In Theorem 6, we give the formula for the P3-chromatic number of any bipartite graph
having exactly one cycle. Moreover, we have also presented algorithms of these results,
and using these algorithms, we can produce the P3-coloring with a minimum number of
colors.

2. P3-Chromatic Number of Tree and Complete Bipartite Graphs

In graph theory, a tree is a simple graph in which any two vertices are connected by
exactly one path, that is, a tree is a simple graph having no cycles. A tree graph is also a
bipartite graph. A bipartite graph is a graph such that its vertices are partitioned into two
sets of vertices in such a way that any edge of the graph connects only the vertices of one
set to another. A complete bipartite graph is a special kind of bipartite graph such that
V(G) = V1 ∪V2. In this graph, every vertex of set V1 is connected with every vertex of set
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V2. It is denoted by Km,n, where m and n are the number of vertices of the set V1 and the set
V2, respectively.

In this section, we have determined the P3-chromatic number of tree graphs and
complete bipartite graphs. Let T be a tree graph and ∆(T) be the maximum degree of T.
We have the following useful notions about the coloring of a graph and its elements:

• A P3 path has different colors if all the vertices in P3 are of different colors.
• We say that a vertex u of the graph G is P3 colored if all the P3 paths containing u have

different colors.

Theorem 3. Let T be a tree graph on n vertices; then χ3(T) = ∆(T) + 1.

Proof. Let T be a tree graph on n ≥ 3 vertices and let ∆(T) be the maximum degree of
T. Then, there exists a star subgraph Sm of T with ∆(T) + 1 vertices. By Theorem 1, we
have χ3(Sm) = m = ∆(T) + 1, and by Theorem 2, χ3(T) ≥ χ3(Sm). So, χ3(T) ≥ ∆(T) + 1.
For the converse, we draw the tree graph as shown in Figure 1, where we consider all the
vertices with degree ∆(T) in the first layer.
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'

x1 xsx3x2 .  .  .

a11

a12
a13

a1t

as1

a3t

. . .. . .. . .. . . a21

a2t a32
as2 as3

ast

b12
b13

b11

b15

Layer-5

''
'' '''''
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Layer-2

Layer-3

Layer-4

' ''''

d12

d11 d15

d14

d13

b22

b21 b23

b24
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Figure 1. Tree graph.

As we move down in the layers by following any path, the degree of the vertices is
decreasing and the degree of the vertices in the last layer is 1. In a tree graph, the path
between all the vertices is unique, and if there is a P3 path between any two vertices, then
it is also unique. To show that χ3(T) ≤ ∆(T) + 1, we will show that ∆(T) + 1 colors are
enough to produce P3-coloring of T. Let C be the set of colors and |C| = ∆(T) + 1. We
will produce a P3 color function f from vertices of T to C. Notice that, in any coloring of a
graph, if every vertex of the graph is P3 colored, then such coloring is a P3-coloring. Using
this observation, firstly, we will show that x1 is P3 colored. So we start by assigning the
color f (x1) to x1 and the remaining ∆(T) colors are assigned to the neighboring vertices
of x1. In this way, the x1 vertex is P3 colored. To explain this claim, consider the vertex
x1, as shown in Figure 1. The degree of x1 is ∆(T), and let f (x1) be the color of x1. There
exist three types of P3 paths that contain x1. The first type of P3 path has x1 as the middle
vertex, the second type of P3 path is the path whose one end point is x1 and other is some
xi (if possible), and the third type of path is the path with one end as x1 and the other as
the vertex b1k; such a path has some a1j as the middle vertex. The first type of path whose
middle vertex is x1 is clearly of different colors under the assignment that we used. For
the second type of path having x1 as one end and the other as one of xi (if it exists), we
will have ∆(T)− 1 choices of colors from C because there cannot exist any cycle in a tree
graph, so any such xi must be adjacent to exactly one neighbor of x1. So, without any loss
of generality, we can use the same color for such xi as the color of any neighbor of x1 that
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is not adjacent to xi. We shall always prefer the fewest colors for the xis (that is, if the set
of colors has elements with increasing subscripts, then the first choice of color will be the
color having the least subscripts). Now, for the third type of path (say x1a1jb1k) having
one end point as x1 and the other as b1k, we will assign different colors f (b1k) from C to
these vertices b1k, such as the colors f (x1) and f (a1j); see Figure 2. Because d(a1j) < d(x1),
we will have at least ∆(T)− 2 choices for such a color scheme. So, this third type of path
containing x1 also has different colors. Thus, x1 is a P3 colored vertex.

Now, to show that the vertices in the second layer are also P3-colored with the set C,
we observe that if there is a vertex such as a11, then this vertex is already P3 colored by the
above coloring scheme. For the other types of vertices, such as a12 in Figure 1, we proceed
as follows. There are three possible P3 paths that contain the vertex a12. One path has x1 as
the middle vertex and a12 as the end vertex (such as a11x1a12). The second type of path is
that which starts from a12 and goes down to the descendant vertices (like a12b11d11). The
third type is the P3 path that contains a12 as the middle vertex (such as b11a12b12 or x1a12b11).
The first and third types of these P3 paths already have different colors. For the second
type of P3 path, which has a middle vertex from b1ks such as a12b11d11, we assign different
colors from C to the vertices dik so that none of these colors are equal to the assigned color
of the middle vertex b1k and f (a12). Since deg(b1k) < deg(x1), we have at least ∆(T)− 2
choices of such colors. In this way, the third type of P3 path has different colors. Thus, the
vertex a12 is P3 colored.

f(x1)

f(b11)

f(a12)

f(b13)
f(b12)

Figure 2. Assignment of colors.

So, we can use ∆(T) + 1 or less colors for P3-coloring of all the P3 paths that contain
a12. Similarly, we can show that the vertex a12 is P3 colored. Now, for the vertices in the
third and all lower layers, we can use same scheme of coloring using at most ∆(T) + 1
colors. We will apply the same scheme for the rest of the vertices of the graph T. This
shows that all the vertices of T can be P3 colorable with at most ∆(T) + 1 colors. Therefore,
by the definition of P3-chromatic number, χ3(T) ≤ ∆(T) + 1. This concludes the proof.

Algorithm to produce a P3-coloring of tree graphs

Let T be a tree graph. Draw the tree graph shaped like a rooted tree such that all
the vertices with maximum degree are in the first layer. Let C be a color class with colors
{ci| i = 1, 2, . . . , ∆(T) + 1}. So, |C| = ∆(T) + 1. To understand the algorithm, we have
labelled vertices of the k-th layer by xk

α1α2 ...αk
. It represents a complete tracing of the vertices,

that is, this is a vertex in the k-th layer which is connected to a vertex in the first layer by the
path x1

α1
x2

α1α2
. . . xk

α1α2 ...αk
. For example, the vertex x2

αiα3
shows that it is the third vertex of

the second layer and it is adjacent to the i-th vertex x1
αi

of the first layer. Let f : V(T)→ C
be the coloring function defined by the following steps. Fix f (x1

α1
) = c1.

Step 1: If x1
αi

, x2
α1 αi
∈ N(x1

α1
), then f (x1

αi
) = ci, for i = 2, 3, . . . , s and f (x2

α1 αi
) = cj, for j =

s + 1, s + 2, . . . , ∆(T) + 1. We shall prefer the fewest colors for x1
αi

s while selecting
the color of these vertices.

Step 2: Select a colored vertex, say x2
α1αi

, from the second layer having neighbor vertices
in its lower layers and assign colors to these neighbor vertices in such way that
the colors we are choosing are not assigned to x2

α1αi
and to the neighbors of x2

α1αi
in

the upper layer.
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Step 3: Apply “Step 2” to the vertices of lower layers having x1
1 as the top vertex.

Step 4: Select a vertex, say x1
αs , from first layer, which is already assigned a color, say cj,

then apply “Step 1” to x1
αs by setting c1 = cj. Moreover, apply “Step 3” to x1

αs .

Step 5: Repeat “Step 4” until all the vertices have their colors.

Example 1. For a better understanding of this algorithm, we provide an example. Consider a tree
graph T as shown in Figure 3a.

x1
1

x5
14121

x4
1321

x4
1411

x4
1412

x3
231x3

221x3
212x3

211

x3
141x3

132
x3

131

x2
23

x2
22x2

21x2
14

x2
13x2

12x2
11

x1
2

(a)

(b)

Figure 3. (a) A random tree graph. (b) Arrangement of the tree of part (a) according to the algorithm.

Arrange the graph in such a way that all the vertices with maximum degree are in
the first layer (see Figure 3b), where we can see that ∆(T) = 4. Consider the color class
C = {c1, c2, c3, c4, c5}. Fix f (x1

1) = c1.

Step 1: The N(x1
1) = {x2

11, x2
12, x2

13, x2
14}. So, we set f (x2

11) = c2, f (x2
12) = c3, f (x2

13) = c4,
f (x2

14) = c5.

Step 2: The assignment of colors to the neighbors of x2
13 which are not yet assigned any

color yet is f (x3
131) = c2, f (x3

132) = c3.
The assignment of colors to the neighbors of x2

14 which are not yet assigned any
color is f (x1

2) = c2, f (x3
141) = c3.

Step 3: There is only one vertex x4
1321 in the neighbor of x3

132 which is not assigned any
color, so we put f (x4

1321) = c1.
The assignment of colors to the neighbors of x3

141 which are not yet assigned any
color is f (x4

1411) = c1, f (x4
1412) = c2.

There is only one vertex x5
14121 in the neighbor of x4

1412 which is not assigned any
color, so we put f (x5

14121) = c1.

Step 4: The assignment of colors to the neighbors of x1
2 which are not yet assigned any

color is f (x2
21) = c1, f (x2

22) = c3, f (x2
23) = c4.

The assignment of colors to the neighbors of x2
21 which are not yet assigned any

color is f (x3
211) = c3, f (x3

212) = c4.
There is only one vertex x3

221 in the neighbor of x2
22 which is not assigned any color,

so we put f (x3
221) = c4.

There is only one vertex x3
231 in the neighbor of x2

23 which is not assigned any color,
so we put f (x3

231) = c5.

Step 5: All the vertices are already colored; see Figure 4. This completes the example.
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c1

c1

c2c1
c1

c5c4
c4c3

c3c3c2

c4c3
c1c5c4c3c2

c2

Figure 4. P3-labelling of T.

The following Theorem 4 formulates the P3-chromatic number of the complete bipartite
graph.

Theorem 4. Let Km,n be a complete bipartite graph; then χ3(Km,n) = m + n.

Proof. Let Km,n be a complete bipartite graph with two sets of vertices U and V, where U
has m number of vertices and V has n number of vertices.

As the graph is complete bipartite, every vertex of set U is adjacent to each vertex
of set V (see Figure 5). Now if we assign a color 0 to the vertex a1, then for the vertex a1
to be a P3 colored vertex, we must assign n different colors to bis. Now, select any vertex
as different from a1; then for this vertex to be a P3 colored vertex, we cannot assign any
color from the set {0, 1, . . . n}. Because the path a1btas is the P3 path containing as for any
arbitrary vertex bt, we cannot assign the colors of bt and a1 to as. So, we must use a different
color for every vertex of Km,n for P3-labelling. Therefore, the number of colors must be
equal to the number of vertices of Km,n and the number of vertices of Km,n is m + n. Thus,
χ3(Km,n) = m + n.

.

.

.

.

.

.

a1

a2

a3

am

b1

b3

b2

bn

Figure 5. Complete bipartite graph Km,n.

3. P3-Chromatic Number of Grid Graph

In this section, we have computed the P3 chromatic number of the grid graph. A grid
graph is also one of the many well-known bipartite graphs. It is the Cartesian product
Pm�Pn of path graphs with m and n vertices. The m× n grid graph is also denoted by
L(m, n). Grid graphs are also known as lattice graphs or rectangular graphs. In Theorem 5,
the generalized form of the P3-chromatic number of grid graph (Pm�Pn) is determined,
where m, n ≥ 3.

Theorem 5. Let Pm�Pn be the grid graph; then χ3(Pm�Pn) = 5 for all m, n ≥ 3.

Proof. Let Pm�Pn be a grid graph with m, n ≥ 3. From the definition of grid graph and
from Figure 6, we can see that the star graph S5 is a subgraph of Pm�Pn. Then, by Theorem 1
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and Theorem 2, Pm�Pn ≥ 5. This means that we need at least 5 colors for the P3-coloring of
Pm�Pn.

.

.

.

.

.

.

.

.

.

.

.

.

.  .  .
an-1 0 an-1 1 an-1 2

.  .  .

.  .  .

.  .  .

.  .  .

a0 m-1

a3 m-1

a1 m-1

a2 m-1

a22

a02a01

a10

a20

a31 a32a30

a21

a12a11

a00

an-1 m-1

Figure 6. The grid graph Pm�Pn.

To prove the converse, we will define a P3-labeling f : V(Pm�Pn) → {0, 1, 2, 3, 4},
where the set {0, 1, 2, 3, 4} is the set of colors. Let j ∈ {0, . . . , m− 1}; then we define f as
follows.

f (aij) = 2i + j ( mod 5), 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1.

To show that f is indeed a P3-coloring, we must show that each vertex of Pm�Pn is
P3 colored. As the graph is symmetric, it is sufficient to show that the vertices on P3 paths
in Figure 7 have this property. Because every vertex in Pm�Pn lies on one of these type of
figures, if the vertices of Figure 7 are P3 colored, then with the same scheme, we can say
that it would be true for all vertices of the grid graph.

ai+1j+1

aij+2aij+1aij

ai-1j+1

(c)(b)

a00
a01

a10

aij-1 aij

ai+1j

aij+1

(a)

Figure 7. Sub-graphs of Pm�Pn. (a) Represent the corner subgraphs. (b) Represent subgraphs from
sides. (c) Represent subgraphs from inside of Pm�Pn.

Figure 7a represents the four subgraphs on corners of the grid graph, Figure 7b
represents such subgraphs on the borderline of the grid graph, and Figure 7c represents
all such internal subgraphs of the grid graph. In Figure 7a, there are five possible P3 paths
containing the vertex a00, where 0 ≤ i ≤ 2 and 0 ≤ j ≤ 2. The paths are

a00a01a02, a00a01a11, a00a10a20, a00a10a11, a01a00a10.

We shall discuss only one path from the above five paths to show that they are colored.
Similarly, the other paths can be shown to be colored. Let us consider the path a01a00a10;
then f (a01) = 1, f (a00) = 0, f (a10) = 2.

Now, for i = 0 and j = 1, the sub-graph in Figure 7b shows that there are eight possible
P3 paths that contain the vertex a01, and the list of such paths is

a00a01a02, a00a01a11, a02a01a11, a01a02a03, a01a11a12, a01a11a10, a01a00a10, a01a02a12.
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We shall discuss only one path from the above eight paths to show that they are
colored. Similarly, the other paths can be shown to be colored. Let us consider the path
a00a01a02; then f (a00) = 0, f (a01) = 1, f (a02) = 2.

For i = 0 and 1 < j < m− 2, the sub-graph in Figure 7b shows that there are nine
possible P3 paths that contain the vertex aij, and these P3 path are

ai j−1aijai j+1, ai j−1aijai+1 j, ai j+1aijai+1 j, aijai j+1ai j+2, aijai+1 jai+1 j+1, aijai+1 jai+1 j−1,

aijai j−1ai j−2, aijai j−1ai+1 j−1, aijai j+1ai+1 j+1.

Similarly, as above, we shall discuss only one path from the above nine paths to show
that they are colored. The other paths can be shown to be colored by following a similar
technique. Note that this case also proves that the result is true under the condition on the
subscripts i and j as follows.

For i = 0, n− 1 we have 1 < j < m− 2, and for j = 0, m− 1 we have 1 < i < n− 2.
We shall discuss only one possibility here; the proofs for others will follow similarly.

Let us consider the path ai j−1aijai j+1, then f (ai j−1) = 2i + j − 1, f (aij) = 2i + j, and
f (ai j+1) = 2i + j + 1.

Thus, all the vertices on the four sides of the grid are P3 colored. Figure 8 represents
the P3-coloring and algorithm under the function f .
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f(a4 m-1)

f(a3 m-1)

f(a2 m-1)
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f(an-1 7)

f(an-1 6)

f(an-1 5)

f(an-1 4)

f(an-1 3)

f(an-1 2)

f(an-1 1)

f(an-1 0)

2 4

Figure 8. P3-labelling of Pm�Pn.

Now, we can see from Figure 7c that the vertex aij, where 1 ≤ i ≤ n− 2, 1 ≤ j ≤ m− 2,
is contained in the following eighteen P3 paths:

(i) ai−1 jaijai+1 j, (ii) ai j−1aijai j+1, (iii) ai−1 jaijai j−1, (iv) ai−1 jaijai j+1,

(v) ai j−1aijai+1 j, (vi) ai j+1aijai+1 j, (vii) aijai+1 jai+2 j, (viii) aijai−1 jai−2 j,

(ix) aijai j+1ai j+2, (x) aijai j−1ai j−2, (xi) aijai+1 jai+1 j−1, (xii) aijai+1 jai+1 j+1,

(xiii) aijai j+1ai+1 j+1, (xiv) aijai j−1ai+1 j−1, (xv) aijai j+1ai−1 j+1, (xvi) aijai j−1ai−1 j−1,

(xvii) aijai−1 jai−1 j+1, (xviii) aijai−1 jai−1 j−1.

We shall discuss one P3 path from the above list. The computations for other paths
will follow similarly. So, consider an arbitrary P3 path from the above list, say aijai j+1ai j+2;
then

f (aij) = 2i + j, f (ai j+1) = 2i + j + 1 and f (ai j+2) = 2i + j + 2.
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This shows that all P3 paths in this case are colored. Therefore, all the internal vertices
of the grid graph are P3 colored and this proves that f is a P3-coloring. Similarly, every
vertex is P3 colored in all the cases. So, χ3(Pm�Pn) = 5.

4. P3-Chromatic Number of Bipartite Graphs Having Exactly One Cycle.

In this section, we have discussed the P3 chromatic number for a special class of
bipartite graphs consisting of one or more cycles under different conditions. Theorem 6
provides the P3-chromatic number of bipartite graphs, which contains exactly one cycle.
We have constructed an algorithm for Theorem 6 after its proof.

Theorem 6. Let G be a bipartite graph having exactly one cycle; then χ3(G) = ∆(G) + 1.

Proof. Let G be a bipartite graph having exactly one cycle, with U and V being a vertex
partition of V(G). For simplicity, let ∆(G) = deg(u1). Then, it contains a star subgraph Sm,
such that m = ∆(G) + 1. By Theorem 1, we have χ3(Sm) = ∆(G) + 1, and from Theorem 2,
we obtain χ3(G) ≥ χ3(Sm). So,

χ3(G) ≥ ∆(G) + 1

For the converse, we need to show that every vertex G can be P3 colored with a
color class C = {αi| i = 1, 2, 3, . . . , ∆(G) + 1}, that is, no vertices in any P3 path have
the same colors. For this, we will arrange(or draw) the graph in such a way that all the
vertices having maximum degree are on the leftmost side of the graph and the degrees
of the vertices are in decreasing order from left to right, as shown in Figure 9, where
deg(u1) ≥ deg(u2) ≥ deg(u3) ≥ . . . ≥ deg(um), and the same for the vi’s.

. . .

. . .

v1 vnv5v4v3v2

u1 umu6u5u4u3u2

Figure 9. A bipartite graph G with one cycle. Cycle is in color.

Now, consider the vertex u1 of the graph G. The vertex u1 is adjacent to ∆(G) vertices
of the set V. Therefore, we can assign ∆(G) + 1 different colors to u1 and to its ∆(G)
neighbors for the production of a P3-coloring, as shown in Figure 10.

. . .

f(u1)=α1

α4 αt+1α3α2

Figure 10. P3-coloring at vertex u1.

The graph G is a bipartite graph that contains a cycle, so there will be vertices which are
connected by more than one P3 path. Moreover, there are two types of P3 paths containing
each vertex x ∈ V(G). In one P3 path, the vertex x is a middle vertex (with end points
from the opposite set of vertices U or V), and in the second type of P3 path, the vertex x
is one of the two end points (with the other end vertex from the same set U or V). So, for
the vertex u1, there also exist two types of P3 paths which contain u1. The first type of P3
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paths would be the paths whose middle vertex is u1 and end points must be some vis, for
i ∈ {1, 2, 3, . . . , ∆(G)}; these types of P3 paths are highlighted in Figure 11.

. . .

. . .

v1 vnv5v4v3v2

u1 umu6u5u4u3u2

Figure 11. P3 paths whose middle vertex is u1.

The second type of P3 path that contains u1 starts from u1 and must end at some other
ui, where the number of such uis is at most ∆(G); such types of P3 paths are shown in
Figure 12.

. . .

. . .

v1 vnv5v4v3v2

u1 umu6u5u4u3u2

Figure 12. P3 paths which start from u1 and end at any other ui

The first type of P3 path which contains u1 as the middle vertex is already colored
because its end points are vis, and such vis are neighbors of u1. From Figure 10, it is clear
that we have already assigned colors to u1 and its neighbor vertices using the C color class
that has ∆(G) + 1 colors. Now, for the second type of P3 path containing u1 that starts from
u1 and ends at some other ui, the middle vertex of these types of P3 paths must be some
vi. Such vis are already assigned colors, as shown in Figure 10. So, now we need to assign
color only to uis, which are the end points of this second type of P3 path.

To continue the procedure of producing a P3-coloring, we will assign colors to these
uis (from the same color class C) which are not assigned to u1 and to the neighbors of these
uis. As there exists only one cycle, in these types of paths, any ui can be adjacent to at most
two neighbors of u1. Therefore, we can use the colors of vjs, say αjs, which are not adjacent
to ui, so in this way, we will have at least ∆(G)− 2 and ∆(G)− 1 choices of colors for each
ui when ui is adjacent to two and one neighbors of u1, respectively. Therefore, to produce
a P3-coloring at u1 for the second type of P3 paths, we can assign colors to such uis from
left to right in decreasing order with respect to subscripts of colors, as shown in Figure 13.
Thus, u1 is P3 colored.

. . .

. . .

α4

α1

α3α2

α3 α4 α2 α4α2

Figure 13. P3-coloring of all P3 paths containing u1.

Now, consider any other ui (if it exists) that is not colored yet, say u`. For example, in
Figure 14, the vertex u3 is such a vertex. We will show that u` is also P3 colored. For this,
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firstly, we will assign α1 color to u`, as shown in Figure 14; the vertex u3 is assigned the
color α1.

. . .

. . .

α4

α1

α3α2

α3 α4 α2 α4
α2α1

Figure 14. Assignment of color to u`. Here, it is u3.

We can use the color assigned to u1 for u` because u` is not adjacent to u1 and also
u` is not contained in any P3 path that contains u1. The vertex u` is also contained in two
types of P3 paths. The first type of path is the path having a middle vertex as u`. The degree
of the vertex u` is less than or equal to ∆(G), so for its coloring, we can use the same color
class C; see Figure 15. We will assign those colors to neighbors vjs of u` which are not used
for u`, not used for the uis, which are the end points of P3 paths with u` as the second end
point, and not used for the previous colored vis, which are the end points of P3 paths with
vjs as the second end point (e.g., in Figure 15, we will not assign colors α1, α3, and α2 to
v4). We will have choices of colors from C for vjs because there is only one cycle, and the
degree of the vertices u`, uis, and vis (which are already assigned a color in some P3 paths)
is not more than ∆(G).

. . .

. . .

α4

α1

α3α2

α3 α4 α2 α4α2α1

α4
α2

Figure 15. P3 coloring of paths having u3 as middle vertex.

Now, consider the second type of P3 path having u` as one end point and ui as the
second end point (other than u`). Note that some vertices of these types of paths may
already be colored, while some may not be. The ones that are not yet assigned colors, such
as uis, are not adjacent to any vi that is adjacent to any uk whose P3-coloring is already
completed. There will be choices (at least one) of colors for such vertices from color class C.
For example, the second type of P3 path for the vertex u3 in Figure 15 is already colored.
Similarly, for any ui that is not assigned color, we can use color class C. That ui must be
contained in at most two types of P3 paths with the same conditions. So, with the same
technique, a P3-coloring of all the P3 paths which contain uis can be produced by using
the same color class C. We will select the fewest colors (with respect to the order in the
subscripts) when selecting the colors of vertices uis which are not used for vertices of any
P3 that contains the vertex ui. We will apply this same scheme until all the uis are colored.
After assigning colors to vertices uis, we shall have two cases:

(1) All vps are colored.
(2) Some vps are not colored. See Figure 15.

In the first case, the P3-coloring of the graph is already completed. So, we will obtain
our required result. But in the second case, we will consider the ui vertex that is already
colored, but some vp that are adjacent to that ui are not colored yet. That ui must be
contained in two types of P3 paths. The first type of P3 path has that ui as its middle vertex
(and vp as one end point), and in the second type of P3 path, that ui would be one end point
of the paths, and the other end point would be any other ui (with vp as the middle vertex).
For the first type of path, we need to color only vps because ui is already colored. As the
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degree of that ui must be less than or equal to ∆(G), ui must be connected with at most
∆(G) types of vps. So, we can use the colors from C that are not used for the neighbors
of that vp and also not used for the neighbors of the neighbors of vps. As the considered
vertex ui is already colored, but some of its neighbors are not colored, it shows that this ui
is the end point of any P3 path whose other end point is some different up who is already
P3 colored and this ui is assigned a color when we colored the second type of P3 paths that
contain the up vertex as their one end point. So, it means we can use the colors of that up,
say αp, for the vp.

For example, the v3 vertex is such a vertex in Figure 15, and it is assigned a color as
shown in Figure 16, where f (u1) and f (v3) are the colors of vertices u1 and v3, respectively.
By using this scheme, all the vps in this type of path would be colored by using same color
class C. Then, we do not need to color the second type of P3 path because that must already
be colored, as here we assigned colors to vps and all the uis are already labelled. So, by
using this technique, we can color all the remaining vertices of set V by using at most
∆(G) + 1 colors (see Figure 16). The process will end eventually since the graph is finite
and the degree of vertices is non-increasing from left to right, with every vertex becoming
P3 colored in the process with at most ∆(G) + 1 colors. Therefore, χ3(G) ≤ ∆(G) + 1. We
have already proved that χ3(G) ≥ ∆(G) + 1; therefore,

χ3(G) = ∆(G) + 1.

. . .

. . .

α4

α1

α3α2

α3 α4 α2 α4α2α1

α4
α2α1

Figure 16. f (u1) = f (v3)

Algorithm to produce a P3-coloring of graphs for Theorem 6

Let G be a bipartite graph having exactly one cycle and V(G) = U ∪V be the vertex
partition of G. Let ∆(G) be the maximum degree of G. Arrange the bipartite graph such
that d(u1) ≥ d(u2) ≥ d(u3) ≥ . . . ≥ d(um), d(v1) ≥ d(v2) ≥ d(v3) ≥ . . . ≥ d(vn) from left
to right. We define a P3-coloring f : V(G)→ C, where C = {αi| i = 1, 2, . . . , ∆(G) + 1}. Let
d(u1) = ∆(G) and fix f (u1) = α1 .

Step 1: If vj ∈ N(u1) then f (vj) = αi, i = 2, 3, . . . , ∆(G) + 1.

Step 2: Select the vertex vj ∈ N(u1) that already has a color, say αj, and assign different
colors to neighbors of vj. Choose colors that are not used for other neighbors of vj.

Step 3: Select the immediate next vertex of set U which is not colored yet, say us, and put
f (us) = α1. Then apply Step 1 and Step 2 to us.

Step 4: Repeat Step 3 until all the uis are not colored.

Step 5: Select the vertex from set V which is not yet colored, say vt. Assign the color αt
to the vertex vt where αt is the color that is not assigned to neighbors of vt and
neighbors of its neighbors.

Step 6: Repeat Step 5 until all the vts are not colored.

Example 2. Consider the bipartite graph G having exactly one cycle, as depicted in
Figure 17.
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Figure 17. A bipartite graph having exactly one cycle

Arrange graph G such that the degrees of the vertices are in decreasing order from
left to right, as shown in Figure 18. We can see ∆(G) = 4. So, C = {αi| i = 1, 2, 3, 4, 5}. Fix
f (u1) = α1.

u1 u9u8u7u6u5u4u3u2

v8v7v6v5v4v3v1 v2

Figure 18. Arrangement of the vertices of G in non-increasing order from left to right.

Step 1: We have N(u1) = {v1, v2, v4, v8}. We consider the assignment of colors to the
neighbors of u1 as f (v1) = α2, f (v2) = α3, f (v4) = α4, f (v8) = α5.

Step 2: The neighborhood of v1 is {u1, u3, u4, u5}; therefore, we assign f (u3) = α3, f (u4) =
α4, and f (u5) = α5.
The neighborhood of v2 is {u1, u2, u7, u8}; therefore, we assign f (u2) = α2, f (u7) =
α4, and f (u8) = α5.
The neighborhood of v4 is {u1, u9}; therefore, we put f (u9) = α2.

Step 3: Select the immediate next vertex u6 of set U which is not colored yet and assign
f (u6) = α1. The vertex v3 is the only neighbor of u6, and we assign f (v3) = α4.

Step 4: All the uis are already colored. So we move to Step 5.

Step 5: The vertex v5 from set V is not colored yet. We assign f (v5) = α1.

Step 6: Now, select vertex v6 and assign f (v6) = α1. For the vertex v7, we put f (v7) = α1.

Thus, Figure 19 represents the final P3-coloring of the graph.

α4 α5 α1 α4 α5 α2α1 α2 α3

α2 α5α1α1α1α4α4α3

Figure 19. P3-labelling of G.

5. Conclusions

In this article, the main interest of the authors was to study a recently introduced
coloring of graphs called P3-coloring. This coloring arises as a natural generalization of
the coloring of a graph. In this respect, we have determined the P3-chromatic number of
different families of bipartite graphs. We have formalized the P3-chromatic number of tree
graphs, grid graphs, complete bipartite graphs, and the class of bipartite graphs that have
only one cycle. Moreover, we have also presented algorithms to produce a P3-coloring
of tree graphs, grid graphs, and the bipartite graphs that have exactly one cycle with the
minimum number of colors. In the future, the authors are interested in extending this study
and making some more significant advancements.
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