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1. Introduction

Bilevel optimization has received significant attention in recent years, having arisen
as a powerful tool for many machine learning applications such as hyperparameter op-
timization [1,2], signal processing [3,4], and reinforcement learning [5]. It is defined as a
mathematical program in which an optimization problem contains another optimization
problem as a constraint. In this paper, we consider the bilevel optimization problem in
which the following minima are sought:

min
x∈S∗

ω(x), (1)

where ω : Rn → R is assumed to be strongly convex and differentiable, while S∗ is a
nonempty set of inner level optimizers satisfying

min
x∈Rn
{ψ1(x) + ψ2(x)}, (2)

where ψ1 : Rn → R is a differentiable and convex function such that ∇ψ1 is L-Lipschitz
continuous and ψ2 : Rn → R ∪ {∞} is a convex, proper, and lower semi-continuous
function. We let Λ be the solution set of (1).

Observe that this bilevel optimization model contains the inner level minimization
problem (2) as a constraint to the outer level optimization problem (1). It is a well-known
form (1) that

x∗ ∈ Λ if and only if 〈∇ω(x∗), x− x∗〉 ≥ 0 for all x ∈ S∗.
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Many researchers have proposed algorithms for solving problem (2); see [6–10]. The ba-
sic algorithm is the proximal forward–backward technique, or proximal gradient method,
defined by the iterative equation

xn+1 = proxαnψ2(I − αn∇ψ1)(xn), n ∈ N, (3)

where αn > 0 is the step-size, proxψ2 is the proximity operator of ψ2, and ∇ψ1 is the
gradient of ψ1 [6,11]. Equation (3) is referred to in the literature as the forward–backward
splitting algorithm (FBSA). The FBSA can be used to solve the inner level optimization
problem if ψ1 is L-Lipschitz continuous [7].

The proximal gradient method can also be viewed as a fixed-point algorithm, where
the iterated mapping is given by

T := progαψ2(I − α∇ψ1) (4)

and is called the forward–backward mapping [12]. The forward–backward mapping, T,
is nonexpansive if 0 < α < 2/L, where L is a Lipschitz constant of ∇ψ1 and, in that case,
Fix(T) = argmin{ψ1(x)+ψ2(x)}. It is noted that implementation of the forward–backward
operator can be simplified by first changing the inner level optimization problem into a zero-
point problem of the sum of two monotone operators, and then, after analysis, translating
back into the fixed-point problem. Exemplifying the fixed-point approach, Sabach et al. [13]
proposed the bilevel gradient sequential averaging method (BiG-SAM) for solving problems
(1) and (2). The iterative process can be defined as

un = proxcg(xn−1 − c∇ f (xn−1)),

vn = xn−1 − λ∇ω(xn−1),

xn+1 = γnvn + (1− γn)un, n ≥ 1
(5)

where c ∈ (0, 2
L f
), λ ∈ (0, 2

Lω+σ ), ω is strongly convex with parameter σ, and where L f

and Lω are Lipschitz constants for the gradients of f and ω. The authors analyzed the
convergence behavior of BiG-SAM using an existing fixed-point algorithm and discussed
its rate of convergence.

In optimization problems like those presented above, mathematicians frequently em-
ploy a technique known as inertial-type extrapolation [14,15] to accelerate the convergence
of the iterative equations. This approach involves utilizing a term θn(xn − xn−1), where θn
denotes an inertial parameter, to govern the momentum xn − xn−1. One such algorithm
that has enjoyed immense popularity was developed by Nesterov [14]. He used an inertial
or extrapolation technique to solve convex optimization problems of the form of (2), where
F := ψ1 + ψ2 is a convex, smooth function. Nesterov’s algorithm takes the following form:{

zn = xn + θn(xn − xn−1),
xn+1 = zn + c∇F(zn), n ∈ N, (6)

where the inertial parameter θn ∈ (0, 1) for all n and c > 0 is the step size depending
on the Lipschitz continuity modulus of ∇F. Nesterov proved that Equation (6) has a
faster convergence rate than the general gradient algorithm by selecting {θn} such that
supn θn = 1. Similarly, in 2009, Beck et al. [16] introduced the fast iterative shrinkage-
thresholding algorithm (FISTA) for solving linear inverse problems. Their result combined
the proximity algorithm with the inertial technique, again resulting in the algorithm’s
convergence rate being considerably accelerated.

In 2019, Shehu et al. [17] presented an inertial forward–backward algorithm, called
the inertial bilevel gradient sequential averaging method (iBiG-SAM) for solving
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problems (1) and (2). Their method was subsequently improved by Sabach et al. [13],
using the following iterative algorithm:

sn = xn + θn(xn − xn−1),
un = proxcg(I − c∇ f )(sn),

vn = sn − λ∇ω(sn),

xn+1 = γnvn + (1− γn)un, n ≥ 1.

(7)

The authors transformed the bilevel optimization problem into a fixed-point problem
for a nonexpansive mapping in an infinite dimensional Hilbert space and then proved
strong convergence.

As the above suggests, research on fixed-point problems for nonexpansive mappings
has become crucial for developing optimization methods. The Mann iterative process
is a well-known method for approximating fixed points of nonexpansive mappings on
Hilbert spaces. However, Mann’s process provides only weak convergence. Many authors
have demonstrated fixed-point problems exhibiting strong convergence for nonexpansive
mappings on Hilbert spaces using the viscosity approximation method, expressed by
the equation

xn+1 = βnS(xn) + (1− βn)Txn, n ≥ 1, (8)

where {βn} ∈ (0, 1), S is a contraction on Hilbert spaces H and x1 ∈ H; see [18,19].
In 2009, Takahashi [20] modified the viscosity approximation method, selecting a

particular fixed point of the nonexpansive self-mapping of Moudafi [18]. The iterative
process is given by

xn+1 = βnS(xn) + (1− βn)Tnxn, n ≥ 1, (9)

where {βn} ∈ (0, 1), S is a contraction of C into itself, {Tn} is a countable family of
nonexpansive of C into itself, C is subset of a Banach space, and x1 ∈ C. Takahashi proved
the strong convergence of (9) to a common fixed point of Tn.

Jailoka et al. [21] introduced a fast viscosity forward–backward algorithm (FVFBA)
with the inertial technique for finding a common fixed point of a countable family of
nonexpansive mappings. They proved a strong convergence result and applied it to solving
a convex minimization problem of the sum of two convex functions. The iterative process
can be formulated by 

un = xn + θn(xn − xn−1),
vn = (1− αn)Tnun + αnS(un),

xn+1 = (1− βn)Tnun + βnTnvn, n ≥ 1,
(10)

where {αn}, {βn} ∈ (0, 1), S is a contraction on Hilbert spaces H and x1 ∈ H.
Recently, Janngam et al. [22] presented an inertial viscosity modified SP algorithm

(IVMSPA). The authors proved a strong convergence of their algorithm and applied it to
solving the convex bilevel optimization problems (problems 1 and 2). Their algorithm was
given by

yn = xn + θn(xn − xn−1),

zn = (1− αn)yn + αnS(yn),

wn = (1− βn)zn + βnTnzn,

xn+1 = (1− γn)wn + γnTnwn, n ≥ 1,

(11)

where {αn}, {βn}, {γn} ∈ (0, 1), S is contraction mapping on Hilbert spaces H and x1 ∈ H.
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The above authors all employ a single inertial parameter to accelerate the convergence
of their algorithms. However, it has been noted that the incorporation of two inertial param-
eters enhances motion modeling, improves stability and robustness, increases redundancy
and fault tolerance, expands the range of applications, and offers flexibility and adaptability
in algorithm design. In [23], it was illustrated through an example that the one-step inertial
extrapolation, expressed as wn = xn + θn(xn − xn−1) with θn ∈ [0, 1), may not produce
acceleration. Additionally, Ref. [24] mentioned that incorporating more than two points,
such as xn and xn−1, in the inertial process could lead to acceleration. For instance, consider
the following two-step inertial extrapolation:

yn = xn + θ(xn − xn−1) + δ(xn−1 − xn−2) (12)

where θ > 0 and δ < 0 can provide acceleration. The limitations of employing one-
step inertial acceleration in the alternating direction method of multipliers (ADMM) were
dissused in [25], which led to the proposal of adaptive acceleration as an alternative solution.
In addition, Polyak [26] discussed the potential for multi-step inertial methods to enhance
the speed of optimization techniques despite the absence of established convergence or
rate results in [26]. Recent research conducted in [27] has further explored and examined
various aspects of multi-step inertial methods.

Based on the information provided above, our aim in this paper is to solve the convex
bilevel optimization problem by introducing a new accelerated viscosity algorithm with
the two-point inertial technique, which we then apply to image recovery. The remainder of
the paper is organized as follows. In Section 2, we recall some basic definitions and results
that are crucial in the paper. The proposed algorithm and the analysis of its convergence
are presented in Section 3. The performance of deblurring images using our algorithm is
analyzed and illustrated in Section 4. Finally, we give conclusions and discuss directions
for future work in Section 5.

2. Preliminaries

In this section, we present some preliminary material that will be needed for the
main theorems.

Let C be a nonempty subset of a real Hilbert space H with norm ‖ · ‖, R denote the set
of real numbers, R+ denote the non-negative real numbers, R>0 denote the positive real
numbers, N denote the set of positive integers, and let I denote the identity mapping on H.

Definition 1. The mapping T : C → C is said to be L-Lipschitz with L ≥ 0, if

‖Tu− Tv‖ ≤ L‖u− v‖

for all u, v ∈ C. Furthermore, if L ∈ [0, 1) then T is called a contraction mapping, and it is
nonexpansive if L = 1.

When {xn} is a sequence in C, we denote the strong convergence of xn to x ∈ C by
xn → x, and Fix(T) will symbolize the set of all fixed points of T.

Let T : C → C be a nonexpansive mapping and {Tn} be a family of nonexpansive
mappings of C into itself such that ∅ 6= Fix(T) ⊂ Γ :=

⋂∞
n=1 Fix(Tn). The sequence {Tn}

is said to satisfy the NST-condition (I) with T [28], if for each bounded sequence {xn} ⊂ C,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0.

The following condition is an essential condition for proving our convergence theorem.
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Definition 2 ([29,30]). A sequence {Tn} with
⋂∞

n=1 Fix(Tn) 6= ∅ is said to satisfy the condition
(Z) if for every bounded sequence {un} in C such that

lim
n→∞

‖un − Tnun‖ = 0,

then, every weak cluster point of {un} belongs to
⋂∞

n=1 Fix(Tn).

Recall that for a nonempty closed convex subset C of H, the metric projection on C is a
mapping PC : H → C, defined by

PCx = argmin{‖x− y‖ : y ∈ C}

for all x ∈ H. Note that v = PCx if and only if 〈x− v, y− v〉 ≤ 0 for all y ∈ C.
The definition and properties of a proximity operator are presented below.

Definition 3 ([31,32]). Let g : H → R ∪ {∞} be a function that is convex, proper, and lower
semi-continuous. The function proxg, known as the proximity operator of g, is defined as follows:

proxg(x) := min
y∈H

(
g(y) +

1
2
‖x− y‖2

)
.

Alternatively, it can be expressed as:

proxg = (I + ∂g)−1,

where ∂g represents the subdifferential of g defined by:

∂g(x) := {v ∈ H : g(x) + 〈v, u− x〉 ≤ g(u) for all u ∈ H}

for any x ∈ H. Additionally, for ρ > 0, we know that proxρg is firmly nonexpansive and

Fix(proxρg) = Argmin(g) := {v ∈ H : g(v) ≤ g(u) for all u ∈ H},

where Fix(proxρg) is the set of fixed points of proxρg.

The following lemmas will be used for proving the convergence of our proposed algorithm.

Lemma 1 ([33]). Let g : H → R ∪ {∞} be a convex, proper, and lower semi-continuous func-
tion and let f : H → R be a differentiable and convex function such that ∇f is L-Lipschitz
continuous. Let

Tn := proxρng(I − ρn∇f) and T := proxρg(I − ρ∇f),

where ρn, ρ ∈ (0, 2/L) with ρn → ρ as n→ ∞. Then {Tn} satisfies the NST-condition (I) with T.

Lemma 2 ([34]). Let x1, x2 ∈ H and t ∈ [0, 1]. Then, the following properties are true:

(i) ‖x1 ± x2‖2 = ‖x1‖2 ± 2〈x1, x2〉+ ‖x2‖2;
(ii) ‖x1 + x2‖2 ≤ ‖x1‖2 + 2〈x2, x1 + x2〉;
(iii) ‖tx1 + (1− t)x2‖2 = t‖x1‖2 + (1− t)‖x2‖2 − t(1− t)‖x1 − x2‖2.

Lemma 3 ([35]). Let {an}, {bn} ⊂ R+ and {tn} ⊂ (0, 1) such that ∑∞
n=1 tn = ∞. Assume that

an+1 ≤ (1− tn)an + tnbn

for all n ∈ N. If lim supi→∞ bni ≤ 0 for every subsequence {ani} of {an} satisfying

lim inf
i→∞

(ani+1 − ani ) ≥ 0,
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then limn→∞ an = 0.

3. Main Results

Throughout this section, we let C be closed convex with ∅ 6= C ⊂ H and a mapping
F : C → C be a k-contraction where 0 < k < 1. Let {Tn} is a family of nonexpansive
mappings of C into itself satisfying the condition (Z) such that Γ :=

⋂∞
n=1 Fix(Tn) 6= ∅.

For the first of our main results, we draw upon the ideas of Jailoka et al. [21] and
Liang [24] and introduce a modified two-step inertial viscosity algorithm (MTIVA) for
finding a common fixed point of a family of nonexpansive mappings {Tn}, as follows:

In Theorem 1, we show that Algorithm 1 converges strongly.

Algorithm 1 Modified Two-Step Inertial Viscosity Algorithm (MTIVA)

Initialization: Let {βn}, {γn} ⊂ [0, 1], {τn} ⊂ R+ and let {µn}, {ρn} ⊂ R>0 be bounded
sequences. Take x−1, x0, x1 ∈ H arbitrarily. For n ∈ N.
Step 1. Compute the inertial step:

ϑn =

{
min

{
µn, τn

‖xn−xn−1‖

}
if xn 6= xn−1,

µn otherwise,
(13)

and

δn =

{
max

{
−ρn, −τn

‖xn−1−xn−2‖

}
if xn−1 6= xn−2,

−ρn otherwise,
(14)

wn = xn + ϑn(xn − xn−1) + δn(xn−1 − xn−2). (15)

Step 2. Compute the viscosity step:

zn = (1− γn)Tnwn + γnF(wn). (16)

Step 3. Compute xn+1:

xn+1 = (1− βn)Tnwn + βnTnzn. (17)

Theorem 1. Let a sequence {xn} be generated by Algorithm 1. Suppose the conditions (C1–C3)
hold for the sequences {τn}, {γn}, and {βn}. Then, xn → p̆ ∈ Γ, where p̆ = PΓF( p̆).

(C1) limn→∞
τn
γn

= 0;
(C2) 0 < ε1 ≤ βn ≤ ε2 < 1 for some ε1, ε2 ∈ R;
(C3) 0 < γn < 1, limn→∞ γn = 0 and ∑∞

n=1 γn = ∞.

Proof. Let p̆ = PΓF( p̆). By the definition of zn, we obtain

‖zn − p̆‖ = ‖(1− γn)Tnwn + γnF(wn)− p̆‖
≤ (1− γn)‖Tnwn − p̆‖+ γn‖F(wn)− F( p̆)‖+ γn‖F( p̆)− p̆‖
≤
(
1− γn(1− k)

)
‖wn − p̆‖+ γn‖F( p̆)− p̆‖. (18)

By the definition of wn, we obtain

‖wn − p̆‖ = ‖xn + ϑn(xn − xn−1) + δn(xn−1 − xn−2)− p̆‖
≤ ‖xn − p̆‖+ ϑn‖xn − xn−1‖+ δn‖xn−1 − xn−2‖. (19)
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Using (18) and (19), we obtain

‖xn+1 − p̆‖ ≤(1− βn)‖Tnwn − p̆‖+ βn‖Tnzn − p̆‖
≤(1− βn)‖wn − p̆‖+ βn‖zn − p̆‖
≤(1− γnβn(1− k))‖wn − p̆‖+ βnγn‖F( p̆)− p̆‖
≤(1− γnβn(1− k))(‖xn − p̆‖+ ϑn‖xn − xn−1‖+ δn‖xn−1 − xn−2‖)
+ βnγn‖F( p̆)− p̆‖

≤(1− γnβn(1− k))‖xn − p̆‖+ βnγn

(
θn

βnγn
‖xn − xn−1‖

+
δn

βnγn
‖xn−1 − xn−2‖+ ‖F( p̆)− p̆‖

)
.

By (13), (14) and (C1), we have ϑn
βnγn
‖xn − xn−1‖ → 0 as n → ∞ and δn

βnγn
‖xn−1 −

xn−2‖ → 0 as n→ ∞, and then M1, M2 > 0 exist such that

ϑn

βnγn
‖xn − xn−1‖ ≤ M1 and

δn

βnγn
‖xn−1 − xn−2‖ ≤ M2

for all n ≥ 1. Then,

‖xn+1 − p̆‖ ≤ (1− γnβn(1− k))‖xn − p̆‖+ βnγn(1− k)
(

M1 + M2 + ‖F( p̆)− p̆‖
1− k

)
≤ max

{
‖xn − p̆‖, M + ‖F( p̆)− p̆‖

1− k

}
,

where M = M1 + M2 > 0. Thus, by mathematical induction, we deduce that

‖xn − p̆‖ ≤ max
{
‖x1 − p̆‖, M + ‖F( p̆)− p̆‖

1− k

}
for all n ≥ 1. Hence, the sequence {xn} is bounded and so are the sequences {F(wn)},
{Tnwn}, {zn}. Now, by Lemma 2, we obtain

‖zn − p̆‖2 = ‖(1− γn)(Tnwn − p̆) + γn
(

F(wn)− F( p̆)
)
+ γn(F( p̆)− p̆)‖2

≤ ‖γn
(

F(wn)− F( p̆)
)
+ (1− γn)(Tnwn − p̆)‖2 + 2γn〈F( p̆)− p̆, zn − p̆〉

≤ γn‖F(wn)− F( p̆)‖2 + (1− γn)‖Tnwn − p̆‖2 + 2γn〈F( p̆)− p̆, zn − p̆〉
≤
(
1− γn(1− k)

)
‖wn − p̆‖2 + 2γn〈F( p̆)− p̆, zn − p̆〉 (20)

and

‖wn − p̆‖2 = ‖xn − p̆‖2 + 2〈xn − p̆, ϑn(xn − xn−1) + δn(xn−1 − xn−2)〉
+ ‖ϑn(xn − xn−1) + δn(xn−1 − xn−2)‖2

≤ ‖xn − p̆‖2 + 2ϑn‖xn − p̆‖‖xn−1 − xn‖+ 2|δn|‖xn − p̆‖‖xn−1 − xn−2‖
+ ϑ2

n‖xn−1 − xn‖2 + 2ϑn|δn|‖xn−1 − xn‖‖xn−1 − xn−2‖
+ δ2

n‖xn−1 − xn−2‖2. (21)

Also, from Lemma 2 (iii), (20) and (21), we obtain
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‖xn+1 − p̆‖2 = (1− βn)‖Tnwn − p̆‖2 + βn‖Tnzn − p̆‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

≤ (1− βn)‖wn − p̆‖2 + βn‖zn − p̆‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

≤
(
1− βnγn(1− k)

)
‖wn − p̆‖2 + 2γnβn〈F( p̆)− p̆, zn − p̆〉

− βn(1− βn)‖Tnwn − Tnzn‖2

≤
(
1− βnγn(1− k)

)
‖xn − p̆‖2 + 2ϑn‖xn − p̆‖‖xn−1 − xn‖

+ 2|δn|‖xn − p̆‖‖xn−1 − xn−2‖+ ϑ2
n‖xn−1 − xn‖2

+ 2ϑn|δn|‖xn−1 − xn‖‖xn−1 − xn−2‖+ δ2
n‖xn−1 − xn−2‖2

+ 2γnβn〈F( p̆)− p̆, zn − p̆〉 − βn(1− βn)‖Tnwn − Tnzn‖2

=
(
1− βnγn(1− k)

)
‖xn − p̆‖2 − βn(1− βn)‖Tnwn − Tnzn‖2

+ βnγn(1− k)bn, (22)

where

bn =
1

1− k

(
2ϑn

βnγn
‖xn − p̆‖‖xn−1 − xn‖+

2|δn|
βnγn

‖xn − p̆‖‖xn−1 − xn−2‖

+
2ϑn|δn|
βnγn

‖xn−1 − xn‖‖xn−1 − xn−2‖+
δ2

n
βnγn

‖xn−1 − xn−2‖2

+ 2〈F( p̆)− p̆, zn − p̆〉
)

.

It follows that

βn(1− βn)‖Tnwn − Tnzn‖2 ≤ ‖xn − p̆‖2 − ‖xn+1 − p̆‖2 + βnγn(1− k)M
′
, (23)

where M
′
= sup{bn : n ∈ N}.

Next, we shall show that the sequence {xn} converges strongly to p̆. Take
an := ‖xn − p̆‖2 and tn = βnγn(1− k). From (22), we have

an+1 ≤ (1− tn)an + tnbn

for all n ∈ N. To apply Lemma 3, we have to show that lim supi→∞ bni ≤ 0 whenever a
subsequence {ani} of {an} satisfies

lim inf
i→∞

(ani+1 − ani ) ≥ 0. (24)

Suppose that {ani} is a subsequence of {an} satisfying (24). It follows from (23) and
(C3) that

lim sup
i→∞

βni (1− βni )‖Tni wni − Tni zni‖
2 ≤ lim sup

i→∞
(ani − ani+1 + βni γni (1− k)M

′
)

≤ lim sup
i→∞

(ani − ani+1) + (1− k)M
′

lim
i→∞

βni γni

= − lim inf
i→∞

(ani+1 − ani )

≤ 0.

The condition (C2) and above inequality lead to

lim
i→∞
‖Tni wni − Tni zni‖ = 0. (25)
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Using (C2) and (C3), and since

βni‖zni − Tni wni‖ = βni γni‖F(wni )− Tni wni‖,

we obtain

lim
i→∞
‖zni − Tni wni‖ = 0. (26)

From (25) and (26), we obtain

‖zni − Tni zni‖ ≤ ‖zni − Tni wni‖+ ‖Tni wni − Tni zni‖ → 0 (27)

as i→ ∞. In order to prove that lim supi→∞ bni ≤ 0, it suffices to show that

lim sup
i→∞

〈F( p̆)− p̆, zni − p̆〉 ≤ 0. (28)

Since {zni} is bounded, a subsequence {znij
} of {zni} and y ∈ H exists such that

{znij
}⇀ y as j→ ∞ and

lim sup
i→∞

〈F( p̆)− p̆, zni − p̆〉 = lim
j→∞

〈
F( p̆)− p̆, znij

− p̆
〉

= 〈F( p̆)− p̆, y− p̆〉.

Since {Tn} satisfies the condition (Z) and (27), we obtain y ∈ Γ. From p̆ = PΓF( p̆), we
obtain

〈F( p̆)− p̆, z− p̆〉 ≤ 0

For all z ∈ Γ. In particular, we have

〈F( p̆)− p̆, y− p̆〉 ≤ 0.

Hence, we obtain (28). Thus, in view of Lemma 3, {xn} converges to p̆, as required.

In what follows, we impose the assumptions on the mappings ψ1, ψ2, and ω associated
with the convex bilevel optimization problems (1) and (2).

(A1) ψ1 : H → R is a convex and differentiable function such that ∇ψ1 is Lipschitz
continuous with constant Lψ1 > 0 and ψ2 : H → (−∞, ∞] are proper lower semi-
continuous and convex functions;

(A2) ω : Rn → R is strongly convex with parameter σ such that ∇ω is Lω-Lipschitz
continuous and s ∈ (0, 2

Lω+σ ).

With the above assumptions in place, we propose the following algorithm, called the
two-step inertial forward–backward bilevel gradient method (TIFB-BiGM), for solving
problems (1) and (2).

The proposition below is attributable to Sabach and Shtern [13] and is critical to our
next result.

Proposition 1. Suppose that ω : Rn → R is strongly convex with σ > 0 and ∇ω is Lips-
chitz continuous with constant Lω. Hence, it follows that for all s ∈ (0, 2

σ+Lω
), the mapping

Ss = I − s∇ω is a contraction such that

‖x− s∇ω(u)− (v− s∇ω(v))‖ ≤

√
1− 2sσLω

σ + Lω
‖u− v‖

for all u,v ∈ Rn.
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Theorem 2. The sequence {xn} generated by Algorithm 2 converges strongly to p̆ ∈ Λ, where
Λ is the set of all solutions of (1) and p̆ = PS∗(I − s∇ω)( p̆), provided that all conditions as in
Theorem 1 hold.

Algorithm 2 Two-Step Inertial Forward–Backward Bilevel Gradient Method (TIFB-BiGM)

Initialization: Let {βn}, {γn} ⊂ [0, 1], {τn} ⊂ R+, and let {µn}, {ρn} ⊂ R>0 be
bounded sequences. Take x−1, x0, x1 ∈ H arbitrarily.
Let {cn} ⊂ (0, 2

Lψ1
) with cn → c as n→ ∞, where c ∈ (0, 2

Lψ1
). For n ∈ N.

Step 1. Compute the inertial step:

ϑn =

{
min

{
µn, τn

‖xn−xn−1‖

}
if xn 6= xn−1,

µn otherwise,
(29)

and

δn =

{
max

{
−ρn, −τn

‖xn−1−xn−2‖

}
if xn−1 6= xn−2,

−ρn otherwise,
(30)

wn = xn + ϑn(xn − xn−1) + δn(xn−1 − xn−2). (31)

Step 2. Compute:

zn = (1− γn)proxcnψ2(I − cn∇ψ1)wn + γn(I − s∇ω)(wn), (32)

xn+1 = (1− βn)proxcnψ2(I − cn∇ψ1)wn + βn proxcnψ2(I − cn∇ψ1)zn. (33)

Proof. Put F = I − s∇ω and Tn = proxcnψ2(I − cn∇ψ1), where cn ∈ (0, 2
Lψ1

) Then,
by Proposition 1, F is a contraction mapping. We also know that Tn is nonexpansive.
Using Theorem 1, we conclude that xn → p̆ ∈ Γ, where p̆ = PΓF( p̆). It is noted that,
Γ =

⋂∞
n=1 Fix(Tn) = S∗. Then, for all x ∈ S∗, we have

0 ≥ 〈F( p̆)− p̆, x− p̆〉 = 〈 p̆− s∇ω( p̆)− p̆, x− p̆〉 = 〈−s∇ω( p̆), x− p̆〉.

Dividing above inequalities by −s, we obtain

〈∇ω( p̆), x− p̆〉 ≥ 0

for all x ∈ S∗. Hence, p̆ ∈ Λ, so xn → p̆ ∈ Λ. This completes the proof.

4. Application to Image Recovery

Algorithm 2 will now be applied to the problem of image restoration. The algorithm’s
performance will be compared to that of several existing methods, such as IVMSPA, FVFBA,
BiG-SAM, and iBiG-SAM. Image restoration, also known as image deblurring or image
deconvolution, is the process of removing or minimizing degradations (blur) in an image.
Efforts along these lines began in the 1950s, and applications have been found in a number of
areas, including consumer photography, scientific exploration, and image/video decoding;
see [36,37]. Mathematically, image restoration can be modeled with the equation

v = Ax + b̆, (34)

where v ∈ Rm is the observed image,A ∈ Rm×n is the blurring matrix, x ∈ Rn is an original
image, and b̆ is an additive noise. The objective is to recover the original image x̄ ∈ Rn

that satisfies (34) by minimizing the value of b̆ using the least squares method as shown in
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Equation (35). This method aims to minimize the squared difference between v and Ax
defined as follows:

min
x
‖v−Ax‖2

2, (35)

where ‖ · ‖2 is the Euclidean norm. Many iterations, such as the Richardson iteration,
see [38], can be used to estimate the solution of (35). The problem stated in Equation (35)
is considered ill-posed because there are more unknown variables than observations,
resulting in a norm result that is too large to be meaningful. This issue is discussed in
references [39,40]. To address this problem, various regularization methods have been intro-
duced to improve the least squares problem. One commonly used method is Tikhonov reg-
ularization, which was proposed by Tikhonov and involves minimizing a specific equation.

min
x

{
‖v−Ax‖2

2 + ζ‖Lx‖2

}
, (36)

where ζ is a positive parameter known as a regularization parameter, ‖ · ‖1 is the l1-norm
and ‖ · ‖2 is the Euclidean norm, and L ∈ Rm×n is called the Tikhonov matrix. L is set to be
the identity in the standard form. A well-known model for solving problem (34) is the least
absolute shrinkage and selection operator (LASSO) [41], which is defined by the expression

min
x

{
‖v−Ax‖2

2 + ζ‖x‖1

}
. (37)

The restoration of RGB images presents a challenge for the model (36) due to the sig-
nificant size of the matrix A, as well as its associated elements, which can make computing
the multiplication Ax and ‖x‖1 quite expensive. To address this, researchers in this field
commonly implement a 2-D fast Fourier transform to transform the images, resulting in a
modified version of the model (36) that overcomes this issue.

min
x

{
‖v− Ax‖2

2 + ζ‖Wx‖1

}
. (38)

The blurring operation A, commonly selected as A = RW, plays a crucial role in the
problem (34). R represents the blurring matrix, while W denotes the two-dimensional fast
Fourier transform. The observed image v ∈ Rm×n is affected by both blurring and noise,
with its dimensions being m× n.

Now, let S∗ be the set of all solutions of (38). Among the solutions in S∗, we would
also like to select a solution x∗ ∈ S∗ in such a way that x∗ is a minimizer of

min
x∗∈S∗

1
2
‖x∗‖2. (39)

We consider 2 RGB images (Wat Chedi Luang [42] and Matsue Castle) with the size of
256× 256 as the original images (see Figure 1). The pictures we used in this experiment
were created by the third author. In order to simulate blurring, we convolved the images
using a Gaussian blur filter with a size of 9× 9 and a standard deviation of σ = 4 with
noise 10−4.

Peak signal-to-noise ratio (PSNR) [43] and signal-to-noise ratio (SNR) [44] were used
as the metrics for evaluating the performance of each algorithm. The PSNR and SNR at xn
are given by

PSNR(xn) = 10 log10

(MAX2

MSE

)
, (40)

SNR(xn) = 10 log10

( ‖x− x̄‖2

‖xn − x̄‖2

)
, (41)
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where MAX is the maximum pixel value (usually 255 in 8-bit grayscale images) and
MSE = 1

2562 ‖xn − x‖2
2 is the mean squared error between the original and the distorted

image. Both and SNR are expressed in decibels (dB) as a logarithmic measure of the
signal-to-noise or signal-to-error ratio.

(a) (b)
Figure 1. Original images: (a) Wat Chedi Luang, (b) Matsue Castle.

In image restoration, both PSNR and SNR are commonly used as metrics to assess
the performance of deblurring results. However, it is important to note that these metrics
provide different types of information.

PSNR measures the quality of a deblurred image by comparing it to the original image
and evaluating the amount of noise introduced during the restoration process. It calculates
the ratio between the peak signal power (the maximum possible value for the pixel) and
the mean squared error (MSE) between the original and deblurred images. Higher PSNR
values indicate better restoration quality as they indicate a lower level of distortion or noise.

On the other hand, SNR measures the ratio between the signal power and the noise
power in the deblurred image. It quantifies the preservation of the original signal after the
restoration process. Higher SNR values indicate less noise in the deblurred image.

While both PSNR and SNR are useful metrics, they focus on different aspects of image
restoration. PSNR primarily considers the visual quality and fidelity of the deblurred image
compared to the original, while SNR focuses more on the amount of noise present in the
deblurred image.

To comprehensively evaluate the performance of your deblurring algorithm, it is
recommended to consider both PSNR and SNR. They provide complementary information
about the restoration quality.

We now employ our proposed algorithm (TIFB-BiGM) in Theorem 2 to solve the
convex bilevel optimization problems (38) and (39). In our experiments, the algorithm
developed in this paper (TIFB-BiGM) as well as the others are discussed and applied
to solve the convex bilevel optimization problems (38) and (39), where ω(x) = 1

2‖x‖2
2,

ψ1(x) = ‖v− Ax‖2, ψ2(x) = ζ‖Wx‖1 and ζ = 5× 10−5. The observed images are blurred
images. We compute the Lipschitz constant Lψ1 by using the maximum eigenvalues of the
matrix AᵀA.

For the first experiment, the parameters of the TIFB-BiGM are chosen as follows:
βn = 0.99n

n+1 , γn = 1
50n , cn = 1

Lψ1
, τn = 1014

n2 and s = 0.01. Now, the experiments for recovering
the “Wat Chedi Luang” image with size of 256× 256 using TIFB-BiGM with different inertial
parameters are shown in Tables 1 and 2. We also observe from Tables 1 and 2 that µn tends
to 1 and ρn tends to 0

µn =
0.99n

n + 0.001
and ρn =

1
n2
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gives the highest values of PSNR and SNR for our method.

Table 1. PSNR values for restoration of “Wat Chedi Luang” image by TIFB-BiGM after 300 iterations
for different choices of parameters µn and ρn.

µn → 0.1 0.3 0.5 0.9 0.99n
n+0.001 1

ρn ↓
0.1 22.9755 23.2143 23.5185 24.6769 25.3398 25.4489
0.3 22.7791 22.9764 23.2154 23.9454 24.2129 24.2479
0.5 22.6116 22.7799 22.9773 23.5215 23.6923 23.7133
0.9 22.3362 22.4662 22.6129 22.9789 23.0805 23.0924

1
n2 23.0847 23.3513 23.7038 25.4271 26.2116 24.9267

Table 2. SNR values for restoration of “Wat Chedi Luang” image by TIFB-BiGM after 300 iterations
for different choices of parameters µn and ρn.

µn → 0.1 0.3 0.5 0.9 0.99n
n+0.001 1

ρn ↓
0.1 18.9503 19.1890 19.4932 20.6516 21.3144 21.4236
0.3 18.7539 18.9510 19.1901 19.9200 20.1876 20.2225
0.5 18.5864 18.7545 18.9519 19.4961 19.6670 19.6879
0.9 18.3110 18.4408 18.5875 18.9536 19.0551 19.0670

1
n2 19.0595 18.3260 19.6784 21.4018 22.1913 20.9014

The parameter values for each algorithm were chosen for optimum performance,
based on the published literature. The value for γn in Table 3 is the best choice for BiG-SAM
considered in [13]. For iBiG-SAM, α = 3 is the best choice over other values considered
in [17], and the same authors found, based on their numerical experiments, µn = n

n+1 to be
the best choice for FVFBA.

Table 3. Parameters selection of TIFB-BiGM, IVMSPA, FVFBA, BiG-SAM, and iBiG-SAM.

Methods Setting

TIFB-BiGM
s = 0.01, cn = 1

Lψ1
, βn = 0.99n

n+1 , γn = 1
50n ,

τn = 1018

n2 , µn = 0.99n
n+0.001 , ρn = 1

n2

IVMSPA

s = 0.01, cn = 1
L f

, αn = 1
50n , βn = γn = 0.5,

τn = 1020

n

θn =

 min
{

pn−1
pn+1

, αnτn
‖xn−xn−1‖

}
if xn 6= xn−1

pn−1
pn+1

otherwise

where p1 = 1 and pn+1 =
1+
√

1+4p2
n

2

FVFBA

cn = n
n+1 , βn = 0.99n

n+1 , γn = 1
50n , τn = 1015

n2

θn =

{
min

{
n

n+1 , τn
‖xn−xn−1‖

}
if xn 6= xn−1

n
n+1 otherwise



Mathematics 2023, 11, 3518 14 of 20

Table 3. Cont.

Methods Setting

BiG-SAM λ = 0.01, c = 1
Lψ1

, γn = 2(0.1)

1−n
2+cLψ1

4

iBiG-SAM

λ = 0.01, c = 1
Lψ1

, γn = 2(0.1)

1−
2+cLψ1

4

, βn = γn
n0.01

θn =

{
min

{
n

n+α−1 , βn
‖xn−xn−1‖

}
if xn 6= xn−1,

n
n+α−1 otherwise

The following experiments demonstrate Algorithm 2’s efficiency for image restora-
tion in comparison to IVMSPA, FVFBA, BiG-SAM, and iBiG-SAM using PSNR and SNR
as measurements.

The efficiency of restoring images using various algorithms under different iterations
are illustrated in Figures 2–7. The results indicate that TIFB-BiGM achieves higher PSNR
and SNR values than IVMSPA, FVFBA, BiG-SAM, and iBiG-SAM. Therefore, our algorithm
demonstrates superior convergence behavior compared to the aforementioned methods.

Figure 2. The graphs of PSNR of each algorithm for Wat Chedi Luang.
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Figure 3. The graphs of SNR of each algorithm for Wat Chedi Luang.

Figure 4. The graphs of PSNR of each algorithm for Matsue Castle.
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Figure 5. The graphs of SNR of each algorithm for Matsue Castle.

(a) (b)

(c) (d)

Figure 6. Cont.
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(e) (f)

Figure 6. Results for deblurring “Wat Chedi Luang” image using various algorithms at the 500th it-
eration. (a) Gaussian blurred image, (b) TIFB-BiGM (PSNR = 29.7216, SNR = 25.6962), (c) IVMSPA
(PSNR = 29.5375, SNR = 25.5121), (d) FVFBA (PSNR = 28.9243, SNR = 24.8989), (e) BiG-SAM
(PSNR = 24.7118, SNR = 20.6864), and (f) iBiG-SAM (PSNR = 27.0172, SNR = 22.9918).

(a) (b)

(c) (d)

Figure 7. Cont.
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(e) (f)

Figure 7. Results for deblurring “Matsue Castle” image using various algorithms at the 500th iter-
ation. (a) Gaussian blurred image, (b) TIFB-BiGM (PSNR = 30.9830, SNR = 27.5075), (c) IVMSPA
(PSNR = 30.8212, SNR = 27.3457), (d) FVFBA (PSNR = 30.43625, SNR = 26.9636), (e) BiG-SAM
(PSNR = 25.4625, SNR = 21.9870), and (f) iBiG-SAM (PSNR = 27.9712, SNR = 24.4957).

5. Conclusions

In this paper, algorithmic solutions to a family of convex bilevel optimization prob-
lems are developed and applied to image processing. An interesting connection between
minization problems and fixed-point methods is observed. We first present a modified
two-step inertial viscosity algorithm (MTIVA) for finding a common fixed point of a family
of nonexpansive operators in a Hilbert space and prove strong convergence under relatively
mild conditions. This is the applied to the solution of a convex bilevel optimization problem
by introducing a novel two-step inertial forward–backward bilevel gradient method (TIFB-
BiGM). The main results are then employed in the solution of an image restoration problem.
Through careful comparative analysis, we demonstrate that our algorithm outperforms
several existing algorithms such as IVMSPA, FVFBA, BiG-SAM, and iBiG-SAM, in terms
of image recovery efficiency, as verified through numerical experiments conducted under
specific parameter settings.

There are several potential avenues for future research. Firstly, investigating the adapt-
ability and performance of the proposed algorithm in different image processing tasks
could provide valuable insights. Additionally, one might explore the algorithm’s scalability
to large-scale image datasets or investigate the incorporation of parallel computing tech-
niques that could enhance the algorithm’s computational efficiency. Moreover, conducting
comparative studies with other state-of-the-art image restoration algorithms would provide
a comprehensive evaluation of the algorithm’s strengths and limitations. Finally, exploring
the applicability of the proposed algorithm to other domains beyond image processing,
such as computer vision or signal processing, would broaden its potential impact.
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