Miura-Type Transformations for Integrable Lattices in 3D
Abstract
:1. Introduction
- (L1)
- (L2)
- (L3)
- (L4)
- (L5)
- (L6)
- (L7)
- (L8)
- (L9)
2. Local Conservation Laws and Miura-Type Transformations
3. Searching for the Transformations
3.1. Relation between Equations (L1) and (L9)
3.2. Relation between Equations (L2) and (L5)
3.3. Relation between Equations (L3) and (L1)
3.4. Relation between Equations (L3) and (L7)
3.5. Relation between Equations (L4) and (L1)
3.6. Relation between Equations (L6) and (L2)
3.7. Relation between Equations (L8) and (L1)
4. Investigation of Lattice (L9)
4.1. Computation of the Continuum Limit for Lattice (L9)
4.2. Intermediate Continuum Limit and Bäcklund Transformation—A New Integrable Lattice
4.3. Darboux Integrable Reductions of Lattice (L9)
4.4. Explicit Solutions to Lattice (L9)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogdanov, L.V.; Konopelchenko, B.G. Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy. J. Math. Phys. 1998, 39, 4683–4700. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, L.V.; Konopelchenko, B.G. Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies. J. Math. Phys. 1998, 39, 4701–4728. [Google Scholar] [CrossRef] [Green Version]
- Konopelchenko, B.G.; Schief, W.K. Menelaus’ theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A Math. Gen. 2002, 35, 6125–6144. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R. Nonlinear partial difference equations, II. Discrete-time Toda equations. J. Phys. Soc. Jpn. 1977, 43, 2074–2078. [Google Scholar] [CrossRef]
- Hirota, R. Discrete analogue of a generalized Toda equation. J. Phys. Soc. Jpn. 1981, 50, 3785–3791. [Google Scholar] [CrossRef]
- Miwa, T. On Hirota’s difference equation. Proc. Jpn. Acad. Ser. A 1982, 58, 9–12. [Google Scholar] [CrossRef]
- Date, E.; Jimbo, M.; Miwa, T. Method for generating discrete soliton equation. II. J. Phys. Soc. Jpn. 1982, 51, 4125–4131. [Google Scholar] [CrossRef]
- Adler, V.E.; Startsev, S.Y. Discrete analogues of the Liouville equation. Theoret. Math. Phys. 1999, 121, 1484–1495. [Google Scholar] [CrossRef] [Green Version]
- Shamsutdinov, M.A.; Khabibullin, I.T.; Kharisov, A.T.; Tankeyev, A.P. Dynamics of magnetic kinks in exchange-coupled ferromagnetic layers. Phys. Met. Metallogr. 2009, 108, 327–340. [Google Scholar] [CrossRef]
- Shamsutdinov, M.A.; Lomakina, I.Y.; Nazarov, V.N.; Kharisov, A.T.; Shamsutdinov, D.M. Ferro and Antiferromagnetodynamics. Nonlinear Oscillations, Waves and Solitons; Nauka: Moscow, Russia, 2009. (In Russian) [Google Scholar]
- Kunin, I.A. Elastic Media with Microstructure I: One-Dimensional Models; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1982. [Google Scholar]
- Aero, E.L.; Bulygin, A.N. The nonlinear theory of localized waves in a complex crystalline lattice as a discrete continual model. Comput. Contin. Mech. 2008, 1, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, J.; Wang, W.; Zhang, H. A predictor-corrector compact difference scheme for a nonlinear fractional differential equation. Fractal Fract. 2023, 7, 521. [Google Scholar] [CrossRef]
- Kuznetsova, M.N.; Habibullin, I.T.; Khakimova, A.R. On the problem of classifying integrable chain with three independent variables. Theoret. Math. Phys. 2003, 215, 242–268. [Google Scholar] [CrossRef]
- Habibullin, I.T.; Khakimova, A.R. On the classification of nonlinear integrable three-dimensional chains by means of characteristic Lie algebras. arXiv 2023, arXiv:2306.14585. [Google Scholar]
- Ferapontov, E.V.; Novikov, V.S.; Roustemoglou, I. On the classification of discrete Hirota-type equations in 3D. Int. Math. Res. Not. 2015, 2015, 4933–4974. [Google Scholar] [CrossRef] [Green Version]
- Adler, V.E. The tangential map and associated integrable equations. J. Phys. A Math. Theor. 2009, 42, 332004. [Google Scholar] [CrossRef]
- Habibullin, I. Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+1)-dimensional lattices. Phys. Scr. 2013, 87, 065005. [Google Scholar] [CrossRef]
- Habibullin, I.; Poptsova, M. Classification of a subclass of two-dimensional lattices via characteristic Lie rings. SIGMA 2017, 13, 073. [Google Scholar] [CrossRef]
- Habibullin, I.T.; Khakimova, A.R. Characteristic Lie algebras of integrable differential-difference equations in 3D. J. Phys. A Math. Theor. 2021, 54, 295202. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W. Bäcklund transformations and three-dimensional lattice equations. Phys. Lett. A 1984, 105, 267–272. [Google Scholar] [CrossRef]
- Shabat, A.B.; Yamilov, R.I. To a transformation theory of two-dimensional integrable systems. Phys. Lett. A 1997, 227, 15–23. [Google Scholar] [CrossRef]
- Levi, D.; Petrera, M.; Scimiterna, C.; Yamilov, R. On Miura transformations and Volterra-type equations associated with the Adler-Bobenko-Suris equations. SIGMA 2008, 4, 077. [Google Scholar] [CrossRef] [Green Version]
- Ferapontov, E.V.; Habibullin, I.T.; Kuznetsova, M.N.; Novikov, V.S. On a class of 2D integrable lattice equations. J. Math. Phys. 2020, 61, 073505. [Google Scholar] [CrossRef]
- Zhiber, A.V.; Kuznetsova, M.N. Integrals and characteristic Lie rings of semi-discrete systems of equations. Ufa Math. J. 2021, 13, 22–32. [Google Scholar] [CrossRef]
- Habibullin, I.T.; Khakimova, A.R. Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph. Theoret. Math. Phys. 2022, 213, 1589–1612. [Google Scholar] [CrossRef]
- Smirnov, S.V. Darboux integrability of discrete two-dimensional Toda lattices. Theoret. Math. Phys. 2015, 182, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Leznov, A.N.; Savel’ev, M.V. Group Methods for the Integration of Nonlinear Dynamical Systems; Nauka: Moscow, Russia, 1985. (In Russian) [Google Scholar]
- Kostrigina, O.S.; Zhiber, A.V. Darboux-integrable two-component nonlinear hyperbolic systems of equations. J. Math. Phys. 2011, 52, 033503. [Google Scholar] [CrossRef]
- Kuznetsova, M.N. Construction of localized particular solutions of chains with three independent variables. Theoret. Math. Phys. 2023, 216, 1158–1167. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibullin, I.T.; Khakimova, A.R.; Sakieva, A.U. Miura-Type Transformations for Integrable Lattices in 3D. Mathematics 2023, 11, 3522. https://doi.org/10.3390/math11163522
Habibullin IT, Khakimova AR, Sakieva AU. Miura-Type Transformations for Integrable Lattices in 3D. Mathematics. 2023; 11(16):3522. https://doi.org/10.3390/math11163522
Chicago/Turabian StyleHabibullin, Ismagil T., Aigul R. Khakimova, and Alfya U. Sakieva. 2023. "Miura-Type Transformations for Integrable Lattices in 3D" Mathematics 11, no. 16: 3522. https://doi.org/10.3390/math11163522
APA StyleHabibullin, I. T., Khakimova, A. R., & Sakieva, A. U. (2023). Miura-Type Transformations for Integrable Lattices in 3D. Mathematics, 11(16), 3522. https://doi.org/10.3390/math11163522