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Abstract: Integrated process planning and scheduling (IPPS) is important for modern manufactur-
ing companies to achieve manufacturing efficiency and improve resource utilization. Meanwhile,
multiple objectives need to be considered in the realistic decision-making process for manufacturing
systems. Based on the above realistic manufacturing system requirements, it becomes increasingly
important to develop effective methods to deal with multi-objective IPPS problems. Therefore,
an improved NSGA-II (INSGA-II) algorithm is proposed in this research, which uses the fast
non-dominated ranking method for multiple optimization objectives as an assignment scheme for
fitness. A multi-layer integrated coding method is adopted to address the characteristics of the
integrated optimization model, which involves many optimization parameters and interactions.
Elite and mutation strategies are employed during the evolutionary process to enhance population
diversity and the quality of solutions. An external archive is also used to store and update the
Pareto solution. The experimental results on the Kim test set demonstrate the effectiveness of the
proposed INSGA-II algorithm.

Keywords: integrated process planning and scheduling; multi-objective optimization; mutation
strategy; elite strategy

MSC: 90C27

1. Introduction

In the context of Industry 4.0, smart manufacturing is an effective way to realize
sustainable production systems [1]. The application of new technologies, such as digital
twins and networked manufacturing, promotes the progress of smart manufacturing
and enhances data interconnection for process planning and scheduling. In order to
improve the overall performance of manufacturing systems, it is important to study
the integrated process planning and scheduling (IPPS) problem. Scheduling is the link
between process planning and the implementation of production solutions [2,3]. Process
planning is the link between part design and production, and scheduling is the link
between process planning and the implementation of production solutions. Process
planning establishes the processing route and resource allocation for tasks, as well as
providing processing plans for scheduling. Scheduling assigns each processing task to
the appropriate machine [3,4].

In the manufacturing process of most products, process planning and scheduling
operate independently and are fragmented from each other, which may lead to conflicting
optimization objectives and unbalanced system collaboration, and seriously affect the
operational efficiency of the manufacturing process [5]. IPPS aims to bridge the gap
between process planning and scheduling, unify the optimization objects, and realize
system collaboration to make optimization more efficient, stable, and reasonable [6]. In
a practical manufacturing system, there are many evaluation criteria, such as maximal

Mathematics 2023, 11, 3523. https://doi.org/10.3390/math11163523 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11163523
https://doi.org/10.3390/math11163523
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0716-1101
https://doi.org/10.3390/math11163523
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11163523?type=check_update&version=1


Mathematics 2023, 11, 3523 2 of 17

completion time of machines (makespan), maximum machine workload (MMW), total
workload of machines (TWM), etc., and it is obvious that considering only a single objective
cannot meet the needs of realistic production [7]. Therefore, the study of multi-objective
IPPS problems has significant importance in both real-world production environments and
in theory.

The IPPS problem is an extension of the flexible job shop scheduling (FJSP) problem, as
both the job shop scheduling (JSP) problem and the FJSP problem are NP-hard problems [8].
The IPPS problem is more complex and difficult to solve because it is more flexible, with
various process plans for each component [9], and because it considers multiple objectives
for simultaneous optimization. Traditional exact methods cannot effectively solve large-
scale scheduling problems in an acceptable period of time [10–12]. In order to better meet
the needs of real-world problems, metaheuristic algorithms have become an important tool
for solving such problems [13]. Given the multi-flexibility and complexity of IPPS problems,
it is necessary to devise an efficient algorithm for solving multi-objective IPPS problems.
An improved NSGA-II (INSGA-II) algorithm is proposed in this research. A multi-layer
integrated coding approach is employed, which facilitates a comprehensive exploration
of the solution space. This approach enables the simultaneous optimization of multiple
parameters of the IPPS problem within a single iteration, enhancing the efficiency of the
algorithm. The algorithm evolution process introduces an elite strategy and a variation
strategy to improve the quality of population diversity and solution, and an external archive
is used to save and update the Pareto solution. Finally, experimental results on the Kim test
set validate the effectiveness of the NSGA-II algorithm.

The remaining sections are organized as follows: Section 2 examines the pertinent
literature on IPPS problem-solving algorithms. Section 3 describes the IPPS problem.
Section 4 presents the proposed INSGA-II algorithm and strategy. We experiment to
determine the efficacy of the INSGA-II algorithm in Section 5 for solving the multi-objective
IPPS problem. Section 6 concludes with a summary of the paper’s findings and an outlook
on future research directions.

2. Literature Review

In order to effectively address the game–theoretic model of the multi-objective IPPS
problem, Li et al. [14] proposed a hybrid algorithm (hybrid algorithm of genetic algorithm
(GA) and tabu search (TS)) based on minimizing the makespan, minimizing the MMW,
and minimizing the TMW as optimization objectives for handling multiple objectives. A
priority-based optimization approach was proposed by Ausaf et al. [15] to address the
multi-objective IPPS issue. This algorithm makes effective optimization possible when
many objectives are taken into account by allocating various objective functions varying
degrees of priority. The algorithm also employs a variety of scheduling criteria to aid in
selecting the optimal answer. Mahdi et al. [16] introduced optimization algorithms for
IPPS and discussed how to increase productivity and decrease production costs by using
IPPS. These algorithms included GAs, ant colony algorithms (ACO), and particle swarm
optimization (PSO) algorithms, which can optimize production planning by maximizing
resource utilization, reducing waiting times, using real-time monitoring and adjustment,
and optimizing decision making to improve production. Right now, swarm intelligence
optimization algorithms and evolutionary algorithms are the primary methodologies for
solving multi-objective IPPS problems.

2.1. Swarm Intelligence Optimization Algorithm

Cao et al. [17] proposed an adaptive multi-strategy artificial bee colony (AMSABC)
approach to address the issues with IPPS. In AMSABC, the employed bee and the observing
bee are introduced to two search algorithms with distinct characteristics, referred to as “lo-
cal search” and “global search”, respectively. Zhao et al. [18] came up with a two-generation
Pareto-based ACO algorithm to solve multi-objective JSPs with optional process paths
and parallel machines that do not work together. In order to reduce the overall workload,
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workload deviation, and total cost, the parent ACO resolves the subproblem of flexible
process route selection and builds a “sub-tour” by choosing nodes from several alternative
process plans and machines. The child ACO resolves the subproblem of process job se-
quencing. To find the Pareto solution set, Kwang et al. [19] presented a method combining
the firefly algorithm and a GA. First, the approach makes use of the firefly algorithm’s
population self-segmentation and multi-modal search capabilities to simultaneously search
for many optimal sites while preserving the diversity of populations in the solution space.
In particular, multi-objective optimization issues benefit from this characteristic. Second,
by effectively constructing chromosomal encoding techniques, crossovers, and mutation
procedures, GAs are completely exploited in addressing discrete combinatorial optimiza-
tion problems. For challenges involving scheduling and multi-objective integrated process
planning, Wang et al. [20] introduced a PSO-based approach. The technique presents
a distinctive solution representation based on binary encoding and uses specific opera-
tions (e.g., mutation and crossover) to assure the validity and viability of the solution.
It also uses exploratory search and quick convergence to efficiently explore enormous
solution spaces.

2.2. Evolutionary Algorithms

Mohammadi et al. [21] developed a multi-objective problem-solving strategy based
on two meta-heuristics: the simulated annealing (SA) and TS algorithms. To benefit
from the exploration search and fast convergence, a multi-objective hybrid SA technique
(MOHSA) was suggested. The NSGA-II algorithm was used to handle the computational
complexity of the problem when Mohapatra et al. [7] considered IPPS as a multi-objective
optimization problem in a reconfigurable manufacturing environment, taking into account
manufacturing cycle time, processing cost, and machine utilization criteria. To solve
the multi-objective IPPS problem, Jin et al. [22] suggested a multi-objective memetic
algorithm (MOMA). The MOMA algorithm uses a problem-specific multi-objective local
search approach that combines a variable neighborhood search (VNS) procedure with an
effective goal-specific intensive search strategy to optimize all potential scheduling. In
order to solve the multi-objective IPPS problem, Shokouhi et al. [23] proposed a GA with
the objective functions of the makespan, minimization of the critical machine workload,
and minimizing the TMW. In order to save energy and lessen emissions, Zhang et al. [24]
suggested a hierarchical multi-strategy GA (NSHMSGA) based on non-dominated ranking
for the IPPS. A population degradation operator based on crowding distance ranking is
added to the algorithm, which is built on the NSGA-II framework, to boost the diversity of
repeated populations while also strengthening the genetic operator and coding approach.
For the purpose of solving the multi-objective IPPS problem, Luo et al. [25] employed
an effective multi-objective GA based on the immunity principle and external archives.
The method uses an external archive to save non-dominated solutions for selection in
following rounds and relies on the immunity principle to maintain population variety and
prevent premature maturation. As an additional adaptation and assignment mechanism,
the algorithm employs a quick, non-dominated sorting technique. Insights and research
on using GAs to solve IPPS difficulties were offered by Chaudhry et al. [26]. To increase
the effectiveness and precision of GA solutions, improved operator schemes and genetic
representations were created. A control elite non-dominated sorting GA was presented
by Mohapatra et al. [27], taking into account three separate goals: reducing production
time, reducing processing costs, and reducing machine idle time. In order to generate a
set of optimal solutions that are non-dominated under various goal functions, it blends
evolutionary algorithms and non-dominated ranking techniques. To keep the present
optimal solution and ensure the newly generated solution is not worse than the current
optimal solution, the control elite strategy is utilized. The green multi-objective IPPS
problem was addressed by Wen et al. [28] using the NSGA-II algorithm. The problem
is broken down into two phases: the process planning phase, which is optimized using
the fundamental NSGA-II algorithm to produce a close to optimal process plan, and
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the scheduling phase, which employs an improved NSGA-II algorithm to discover a
non-dominated scheduling plan. For the purpose of enhancing the multi-objective IPPS
problem, Li et al. [29] suggested an effective GA. The excellent characteristics of the parent
individuals can be better kept by introducing a new crossover operation approach, and
a new local search method can be introduced to better explore the best solutions in the
solution space.

The primary objectives of the solution are makespan, TWM and MMW, etc. It is clear
that the usual solution approach for the multi-objective IPPS problem is an improved
version of the algorithm. However, some issues still need to be addressed more effectively.
One of the key factors is that these algorithms are either not created in accordance with the
problem’s features or are not sufficiently consistent with those qualities. In this study, a
multi-objective IPPS model is made and an INSGA-II algorithm is proposed. The following
three objectives were considered. The first objective is makespan. This objective represents
the shortest time required for all tasks to be completed. Minimizing makespan can shorten
production cycles and improve production efficiency. The second objective is TWM and
represents the sum of the workloads of all machines. Minimizing TWM can reduce machine
usage and lower production costs. The third objective is MMW and repre sents the largest
workload among all machines. Minimizing MMW can make machine loads more balanced,
avoiding overloading some machines and affecting production efficiency. For the properties
of the integrated optimization model, where there are numerous optimization parameters
and they interact with one another, a multi-layer integration coding method is utilized.
In order to guarantee the quality of population diversity and Pareto solutions, elite and
variation strategies are built during the algorithm’s progress. The Pareto solutions are also
stored and maintained in an external archive.

3. Problem Modeling

In order to better solve the multi-objective IPPS problem, it needs to be modeled.
First, the problem is described in detail. Then, assumptions are made about the actual
production and processing situation, and a mathematical model of the problem is devel-
oped based on the problem description and assumptions in order to solve it using an
optimization algorithm.

3.1. Problem Description

IPPS is the organic integration and coordination of all production planning compo-
nents for effective and adaptable manufacturing production processes. This is how it
is explained: A machine set of k machines (M1, M2,. . . Mk) is used to process a job set
(J_1, J_2,. . . J_i) having i jobs. Each job includes numerous processing features, each of
which can be treated using a variety of processing techniques. If the limitations are met, the
job can also have various processing orders. Different machines can execute each step of the
job. Table 1 displays a case of an IPPS issue involving three jobs and five machines. Feature
F1 has two machining methods that correspond to processes O1-O2 and O3-O4, and process
O4 can be machined by two machines. J_1 consists of three features to be machined, and
feature F2 must be processed before feature F3. Solving the production solution for this job
set means determining the machining method for each job, the machining equipment, and
the start and finish times of the process on the machine to ensure that the final scheduling
solution meets multiple production requirements.
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Table 1. The machining information of instance with three jobs and five machines.

Jobs Features Alternative
Operations

Alternative
Machines

Precedence
Constraints

Processing
Time

F1
O1-O2 M2, M3/M2, M5 4, 6/8, 10
O3-O4 M4/M2, M3 6/4, 6

J_1 F2 O5 M3, M4 Before F3 6, 5
F3 O6-O7 M1, M2/M3 8, 7/9

J_2
F1 O1 M2, M4 Before F3 10, 9

F2
O2 M2, M3 8,9

O3-O4 M1/M3, M4 7/6, 7
F3 O5 M2, M5 5, 8
F1 O1 M2, M4 7, 9

J_3 F2 O2 M3, M5 6, 8
F3 O3-O4 M2, M4/M3 Before F2 8, 9/3
F4 O5 M2 7

3.2. Mathematical Model

Based on the real manufacturing and processing environment, the following assump-
tions are established prior to developing the specific mathematical model:

(1) Each machine is limited to processing one procedure at a time;
(2) It is known how long each job will take to process;
(3) Processes for the same job have sequential priorities, whereas they do not have

sequential priorities for processes for distinct jobs;
(4) A process cannot be stopped once it has begun;
(5) Only one machine may be used to machine a given job at once;
(6) There are no machine failures, and all machines are functional at time 0.

The definitions of several of the symbols used in this paper are provided in Abbreviations.
The mathematical model of multi-objective IPPS addressed in this paper is stated

as follows:
Min Cmax = Max Ci ∀i ∈ n (1)

Min TWM= (∑
i∈n

∑
j∈hi

∑
k∈m

ti,j,kxi,j,k) (2)

Min MMW = (Max (∑
i∈n

∑
j∈hi

ti,j,kxi,j,k)) ∀k ∈ m (3)

Si,j + ti,j,k = fi,j ∀i ∈ n, j ∈ hi, k ∈ m (4)

fi,j ≤ Si,j+1 ∀i ∈ n, j ∈ hi (5)

Si,j + ti,j,k ≤ Sh,p + M · (1− yi,j,h,p) ∀i, h ∈ n, j, p ∈ hi, k ∈ m (6)

∑
k∈m

xi,j,k = 1 ∀i ∈ n, j ∈ hi (7)

Si,j ≥ 0 ∀i ∈ n, j ∈ hi (8)

fi,j ≥ 0 ∀i ∈ n, j ∈ hi (9)

Three objective functions are represented by Equations (1)–(3). Equations (4) and (5)
place restrictions on the order in which processes must be carried out in accordance with
the process route for each job. Equation (6) states that each machine can only process one
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process at a time. Equation (7) consists of exclusivity constraints that ensure each process
can only be carried out on one machine at a given time. Equations (8) and (9) state that the
variables of each parameter must be positive.

4. Improved NSGA-II Algorithm for Solving Multi-Objective IPPS Method

As the multi-objective problem of IPPS requires simultaneous optimization of job
machining methods, process routes, job sequences, and process machine assignments, it
involves many optimization parameters. In addition, the optimization parameters interact
with each other, e.g., when one of the machining methods is changed, the type of the
candidate machine tool will also be changed, and the process machine assignments are
changed as well. Therefore, a multilayer integrated coding method is adopted, based on
which the NSGA-II algorithm is improved to realize the model solution. In the evolution,
the elite strategy and the variation strategy are constructed. The quality of population
diversity and solution is improved, and the localization of optimization results is improved.

4.1. INSGA-II for Scheduling

In this paper, a multilayer integrated coding method that simultaneously optimizes
multiple parameters of the IPPS problem in a single iteration is used and an improved
NSGA-II algorithm is designed to solve it. Figure 1 depicts the algorithm’s flowchart.
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The main steps of INSGA-II for scheduling are described as follows:
Step 1: Initialization parameters, such as the population size, the number of iterations

allowed, the likelihood of variation and crossover, and the size of external archives;
Step 2: Using the non-dominated sorting method [25] and the crowding calculation to

identify individuals who are not dominated;
Step 3: Modifying the external archive established under the external archiving plan;
Step 4: Crossover and mutation. The elite strategy saves the better individuals to the

elite library “temppop”, and, after performing crossover and mutation, if the children are
better than the parents, it replaces it, otherwise, it remains unchanged and the remaining
individuals are directly replaced with children;

Step 5: Combining the children and parent populations, performing non-dominated
sorting and calculating crowding, and selecting the optimal solution as the new population;

Step 6: Check to see if the algorithm’s termination condition is met. Execute Step 7 if it
is satisfied; otherwise, continue with Step 2;

Step 7: Output the collection of Pareto-optimal solutions.

4.2. Encoding and Decoding Method

The integrated optimization model requires optimization of a large number of pa-
rameters, including the machining features of all jobs, the process route, the sequence of
job machining, and the machine assignment of each process. The general coding method
can only employ cyclic alternating optimization, first optimizing the machining method
and process route, then the job machining sequence and the machine assignment of each
process, and, finally, returning to optimizing the machining method and process route
once more.

In this paper, a multi-layer integrated coding approach is used [30] and the first layer
is the processing feature coding, which indicates the processing method corresponding to
all the processing features of the job. The total length of the feature code is equal to the sum
of all the features of the job, and the gene is a processing feature of a job. The first layer in
Figure 2 consists of 10 gene bits to form the processing method code layer, which indicates
the processing order of each of the three jobs; for example, the first three gene bits indicate
that the processing order of the features of J_1 is F1-F2-F3.
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Figure 2. Multi-layer integrated encoding.

The second layer is the process selection coding, which represents the process selection
scheme for all jobs. The total length of the process route coding is equal to the feature
coding. The gene positions represent the processing sequence corresponding to each
machining feature of each job in turn. Combined with the machining information in Table 1,
for example, the digit 1 at the second gene position indicates that the machining feature F2
of J_1 selects the first processing method, that is, operation O5.

The third layer is the machine selection coding, indicating that all jobs are machine
selected according to the second layer of process selection after the length is equal to the
sum of the total number of processes of all jobs, while each part is the total number of
processes of its individual jobs. Combined with the processing information in Table 1, the
fifth genetic digit 2 indicates that the O5 processing machine is M4. The number 0 in the
code indicates that the process was not selected when the job was processed.
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The fourth layer is the processing sequence coding, which shows the order in which
all job operations should be completed, and its total length is the same as the machine
selection coding. The occurrence of a certain job number in the gene position indicates the
processing sequence of that job, and the meaning of the number 0 in the coding is the same
as that of the machine selection coding.

The process path and scheduling plan for all jobs are simultaneously optimized using
this technology, which integrates four sets of parameters. By using this encoding technique,
the search space can be shrunk, search effectiveness and optimization precision increased,
and computational complexity decreased.

The machining information from Table 1 shows that there are three jobs and five
machines. J_1 and J_2 have three machining features, while J_3 has 4 machining features.
Since the coding schemes are related to one another, obtaining the machining information
for the jobs requires decoding the coding. The following describes how to decode the
encoding technique in Figure 2.

The gene bits are obtained from left to right in the order of processing characteristics
for each task, starting with the first layer of decoding features:

J_1: F1-F2-F3;
J_2: F1-F3-F2;
J_3: F3-F2-F1-F4;
Following is the genetic position from left to right to determine the machining

process chosen for the machining features of each job in the second layer of process
selection decoding:

J_1: O1-O2-O5-O6-O7;
J_2: O1-O5-O3-O4;
J_3: O3-O4-O2-O1-O5;
To obtain the processing machine for each task in the sequence of processing processes,

the third layer of machine selection decoding uses genetic position from left to right,
as follows:

J_1: O1 (M2)-O2 (M2)-O5 (M4)-O6 (M1)-O7 (M3);
J_2: O1 (M2)-O5 (M5)-O3 (M3)-O4 (M4);
J_3: O3 (M2)-O4 (M3)-O2 (M3)-O1 (M2)-O5 (M2);
The fourth layer is in charge of sequential decoding. Using the decoding information

from the first three layers, the active scheduling decoding method is used to create the final
decoded Gantt chart shown in Figure 3.
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4.3. Initial Population Acquisition and Crossover and Mutation Operations

According to the encoding approach, the initial population is made at random, and
each layer of processing characteristics, process selection, machine selection, and processing
order is made after the model constraints and encoding rules are met.

The precedence operation crossover (POX) crossover operator is made to adjust to
the situation for the four-layer coding because crossover and variation are needed for
each coding layer independently. This larger-scale genetic information exchange, as seen
in Figure 4, is the first crossover operation with a strong global search capability. This
can increase the population’s diversity and broaden the algorithm’s search scope. This
is achieved by first randomly dividing the job numbers {1, 2, 3} into two non-empty job
subsets {3} and {1, 2}. Then, the feature layer, process layer, and machine layer of the
jobs belonging to the job set {3} in the parent generations P1 and P2 are copied to the
corresponding positions of the children generations C1 and C2, respectively. Finally, the
feature layer, process layer, and machine layer of the artifacts belonging to the job sets {1, 2}
are copied to the corresponding positions of the children C2 and C1, respectively. The
second crossover operation complements the first by performing a more thorough search of
the solution space, and the two approaches work best together. When the population meets
the requirements of the process selection coding layer with at least one artifact that shares
the same coding information as its counterparts in the other population, this operation is
initiated, and only two chromosomes, which correspond to the processing feature layer and
the machine selection layer, need to be exchanged. Four variation operations are created to
disturb each of the four layers in order to boost population variety and enhance the search
dimension of the algorithm. Mutations and more detailed crossover manipulations are
described in the literature [30]. In the algorithm iteration, these six evolutionary operations
are carried out concurrently to search the solution space from various breadths and depths,
enhancing the algorithm’s search capability.
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4.4. Mutation Strategy and Elite Strategy Solutions

Large mutation probabilities in evolution can introduce more diversity in the search
space and increase the global exploration ability of the algorithm. When the algorithm is
stuck in a local optimal solution, large mutation probabilities can quickly jump out of the
local optimal solution and re-explore other possible solutions. However, large mutation
probabilities may also lead to slower convergence of the algorithm because they increase the
randomness of the algorithm. The role of the elite strategy is to retain the better individuals
in the evolutionary process and avoid the loss of good information, thus speeding up the
convergence of the algorithm. However, the implementation of the elite strategy may lead
to a reduction in the diversity of the population, which affects the exploration ability of the
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algorithm. To balance the relationship between elite individuals and diversity, it is often
necessary to use it in combination with other optimization strategies.

The elite strategy and variation strategy are combined in this study using the following
methodology: since the solutions consist of multiple targets, dominance rank is used as
the fitness allocation scheme. Before each evolution, the population’s good solutions that
satisfy the evolutionary conditions are stored separately in the elite pool. By determining
the size of the dominance rank, it is decided which is better, the parent or the children; if
the evolved children outperform their parent, the parent is removed, and the offspring is
then stored in the new population. If not, the parent is retained in the new population and
the offspring is discarded.

4.5. External Archive Maintenance Scheme

The result of a multi-objective optimization problem is the set of Pareto optimal
solutions rather than a single solution. The solutions obtained throughout the optimization
process, which are not dominated by one another, are stored and maintained in the external
archive. The external archive is updated in accordance with the following steps whenever
a new solution is discovered during an IPPS iteration: (1) if any solution in the external
archive dominates the new solution, the new solution is discarded; (2) if any solution in
the external archive dominates the new solution, it is removed from the archive and a new
solution is added; (3) if all solutions in the external archive are non-dominated by the new
solution and the archive is not full, the new solution is added to the archive; if the archive
is full, the solution with the smallest crowding distance is removed [25].

4.6. Time Complexity of INSGA-II Algorithm

The time complexity of an algorithm is the number of basic operations required to
complete the entire algorithm, given the overall scale, number of iterations, and problem
size of the algorithm. In the algorithm, the number of times a statement is executed is called
frequency, denoted as T(n). T(n) is a function of the overall scale, number of iterations, and
problem size. For ease of calculation, we assume that the population size of the INSGA-II
algorithm is N, the number of iterations of the population is G, and the variables Fn, Pn, On,
and nml represent the number of features, process numbers, process numbers, and machine
string lengths of the job; Jn represents the number of jobs and Mn represents the number of
machines. The following is a frequency analysis of the main steps.

(1) Population initialization stage:

T1 = N × (Jn × Fn
2 + Jn × On + Jn × Fn + Jn × Pn + Jn × On + Jn × nml) = N × Jn × (Fn

2

+ 2 × On + Fn + nml + 16 + 10 ×Mn).

(2) Update external archive stage: T2 = 3 × N.
(3) Fast non-dominated sorting stage: T3 = 8 × N + 8 × N2.
(4) Genetic operation stage:

T4 = 5 × N2 + 5 × N × Jn + N + 6 × N × Jn + Jn × Fn + N × Jn + N × nml + N × Jn
2 +

N × Jn + N × Pn + N × Jn × Fn + N × Jn × On = 5 × N2 + N × Jn
2 + Jn × Fn + N × (1 + 13

× Jn + Pn + nml + Jn × Fn + Jn × On).

(5) Generate new population stage: T5 = 10 × N.

Therefore, the total frequency of INSGA-II algorithm is:
T6 = T1 + G × (T2 + T3 + T4 + T5) = N × Jn × (Fn

2 + 2 × On + Fn + nml + 16 + 10 ×
Mn)+ G × (3 × N + 8 × N + 8 × N2 + 5 × N2 + N × Jn

2 + Jn × Fn + N × (1 + 13 × Jn + Pn +
nml + Jn × Fn + Jn × On) + 10 × N).

Constants in computation indicate the number of times an algorithm performs a
certain operation. Their effect is usually not taken into account when calculating time
complexity. Let the function f = G × N × Jn

2 be a function. When the problem size is
infinitely large, T6/f is a constant. Therefore, the time complexity of INSGA-II algorithm is
O(G × N × Jn

2).
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5. Experimental Studies and Discussion

The present research tests the algorithm’s effectiveness using the IPPS problem
test set recommended by Kim et al. Information on the specific cases is available in
the literature [31]. For comparison, the problem was solved using many rounds of the
NSGA-II and INSGA-II algorithms. The NSGA-II algorithm, in contrast to the INSGA-
II algorithm, only uses multi-layer integrated coding methods. All of the algorithm
programs in this paper were created in Visual C++ and ran on a machine with an Intel
i7 12700F 2.10 GHz CPU and 16 GB of RAM. The configuration of parameters affects
the performance of INSGA-II. The possible range of parameter values was determined
based on literature and experience. Table 2 lists all possible parameter combinations.
From the table, it can be seen that population sizes are 200, 400, 600, and 800, respectively,
while crossover probability (PC) and machine layer mutation probability (PM) are 0.6, 0.8,
and 0.9, respectively. Feature layer mutation probability (PF), operation layer mutation
probability (PO), and scheduling layer mutation probability (PS) are 0.1, 0.2, and 0.3,
respectively. After verification, when the parameter combination is as shown in Table 3,
the performance of INSGA-II is better.

Table 2. Parameters setting values.

No.
Parameters

Population Size PC PF PO PM PS

1 200 0.6 0.1 0.1 0.6 0.1
2 200 0.8 0.2 0.2 0.8 0.2
3 200 0.9 0.3 0.3 0.9 0.3
4 400 0.6 0.1 0.1 0.6 0.1
5 400 0.8 0.2 0.2 0.8 0.2
6 400 0.9 0.3 0.3 0.9 0.3
7 600 0.6 0.1 0.1 0.6 0.1
8 600 0.8 0.2 0.2 0.8 0.2
9 600 0.9 0.3 0.3 0.9 0.3

10 800 0.6 0.1 0.1 0.6 0.1
11 800 0.8 0.2 0.2 0.8 0.2
12 800 0.9 0.3 0.3 0.9 0.3

Table 3. The parameters in the proposed algorithm.

Parametric Description Value

Maximum generations of iterations 400
Population size 400

Reproduction probability 0.2
PC 0.8
PF 0.2
PO 0.2
PM 0.8
PS 0.2

Table 4 shows the total number of non-dominated solutions each algorithm produced
for each set of issues, and Table 5 compares the experimental outcomes of the INSGA-II
algorithm to those of the other methods. Figure 5 compares the outcomes of the INSGA-II
and NSGA-II algorithms. Figure 6 displays the Gantt chart for the instance 20.



Mathematics 2023, 11, 3523 12 of 17

Table 4. The number of Pareto solutions obtained by NSGA-II and INSGA-II.

No. Total Number of Pareto Solutions NSGA-II INSGA-II

1 13 0 13
2 24 0 24
3 22 0 22
4 12 0 12
5 30 0 30
6 10 0 10
7 26 0 26
8 20 0 20
9 15 0 15

10 18 0 18
11 30 0 30
12 30 0 30
13 17 0 17
14 21 0 21
15 15 0 15
16 14 0 14
17 50 0 50
18 45 0 45
19 33 0 33
20 50 0 50
21 24 0 24
22 35 0 35
23 50 0 50
24 50 0 50

Table 5. Objective values of resultant schedules.

No.
MOMA INSGA-II

Makespan TWM MMW Makespan TWM MMW

1 427 1822 150 427 1822 150
2 343 1623 174 343 1647 167
3 347 1713 166 344 * 1713 * 164 *
4 306 1433 148 306 1438 136
5 319 1588 159 318 1645 129
6 427 2134 175 427 * 2131 * 175 *
7 372 1826 189 372 1861 147
8 343 1686 148 343 * 1603* 141 *
9 427 1641 169 427 1668 153

10 428 2727 237 427 2764 226
11 348 2449 205 344 * 2448 * 205 *
12 320 2231 175 318 2275 175
13 427 2936 245 427 2955 228
14 375 2749 210 372 * 2744 * 209 *
15 427 2430 215 427 2456 196
16 427 3451 251 427 3502 248
17 359 3358 254 358 3408 250
18 329 3043 229 327 3095 227
19 440 3733 270 439 3802 268
20 400 3558 262 394 * 3558 * 259 *
21 427 3336 268 427 3414 267
22 448 4358 317 441 4410 309
23 418 4238 294 390 4278 317
24 482 5195 362 459 5237 368
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In order to compare the optimization of the two algorithms in 24 instances, all the
Pareto solution sets acquired by the two methods are combined, and Table 4 shows the
number of non-dominated solutions in the combined solution set. To clearly show the
value of the suggested method, the results of the two methods in instances 6 and 20 are
displayed in Figure 5. It can be seen that the outcomes produced by INSGA-II are better
than those produced by NSGA-II.

Table 5 lists the comparison of the results obtained by the INSGA-II algorithm and
MOMA algorithm in literature [22]. The same method as in the literature was used to find
the most satisfactory scheduling scheme from the Pareto front obtained by the algorithm
for comparison. Where for the same instance if one is dominated by another, it is identified
by an asterisk (*) on the non-dominated solution. It is not straightforward to discover
that six solutions generated by the INSGA-II algorithm outperform solutions discovered
in the literature in all metrics, and three of the examples (instances 3, 11, and 14) find
the lower bound on the completion time. In five of the remaining 18 cases (instances 5,
7, 9, 13, and 15), the machine maximum workload metric is obviously superior in the
non-dominated solution obtained by the INSGA-II method, and the instances 5, 10, and 12
reach the lower limit of the completion time. The suggested INSGA-II algorithm is superior
in the remaining 18 instances, when two solutions are not dominated by one another.

Finally, an illustration is provided to show how it is critical to take several needs into
account in a practical production setting. Figure 7 shows the Gantt chart for instance 5,
which solely takes into account the makespan. The Gantt chart produced by the INSGA-II
algorithm is preferable, even though the two schedules have the same total completion time
(318), when the two metrics, maximum machine workload and total machine workload,
are compared. Figure 8 displays the workloads on each machine in both Gantt charts.
It is obvious that each machine has a more uniform workload in the scheduling scheme
produced by the INSGA-II algorithm when several goals are taken into account. The
maximum and minimum machine workloads for the scheduling scheme considering three
targets are 129 and 61, respectively, in comparison to the scheduling scheme considering
only one target. This shows that the latter workload is more evenly distributed across
machines, which is significant for extending the machine’s life. The suggested technique
also lowers the maximum machine workload by moving unnecessary operations to more
practical computers. The scheduling schemes with single objective values of 1687 and
multiple objective values of 1645 for the total machine workload index, respectively, show
that the proposed algorithm also optimizes the total machine workload.
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6. Conclusions

The makespan, the MMW, and the TMW are all minimized in this paper’s multi-
objective IPPS problem model. To increase the depth of search for the features of the
integrated optimization model, which has numerous optimization parameters and how they
interact with one another, multi-layer integrated coding is utilized. An INSGA-II method
using the elite strategy and variation strategy is proposed to overcome the issues of limited
population diversity and low quality of the traditional NSGA-II solution set. The Pareto
solutions are also maintained and stored in an external archive. Finally, the algorithm’s
performance was evaluated using the Kim test set, and the findings demonstrated the
algorithm’s efficiency in resolving problems relating to multi-objective IPPS.

In future research, considering the actual situation in production, several directions
can be considered to further improve the proposed method. Firstly, uncertain processing
times should be included, and a multi-objective algorithm for the IPPS problem with
uncertain processing time can be considered. Secondly, more objectives, such as machining
cost and energy consumption, can be taken into account. Thirdly, more effective diversity
maintenance schemes can be explored. Finally, exploring more effective algorithms to solve
multi-objective IPPS problem is also a promising direction.

Author Contributions: Conceptualization, X.W. and Q.S.; methodology, Y.Z. and D.Q.; investigation,
H.L.; supervision, H.W.; software, Y.Q. and Q.S.; writing—original draft preparation, X.W. and Q.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research work is supported by the National Natural Science Foundation of China
(grant nos. 51905494 and 52105536), Key Scientific and Technological Research Projects in Henan
Province (grant no. 232102221009).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers and the editor for
their positive comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or
in the decision to publish the results.



Mathematics 2023, 11, 3523 16 of 17

Abbreviations
Explanation of symbols in mathematical model.

Symbol Description
n The set of jobs.
m The set of machines.
k The number of machines.
hi The set of operations in job i.
i,h The number of jobs.
j,p The number of operations.
Oi,j The j-th operation of the i-th job.
ti,j,k The processing time of operation Oij on machine k.
Si,j The starting time of Oij.
fi,j The ending time of Oij.
yi,j,h,p If process Oi,j is processed before Oh,p is 1,otherwise is 0, ∀i, h ∈ n, j, p ∈ hi.
xi,j,k If Oi,j processed on machine k is 1,otherwise is 0,∀i ∈ n, j ∈ hi, k ∈ m.
M A very large positive integer.
Ci The completion time of job i.
Cmax The maximal completion time of machines.
TWM The total workload of machines.
MMW The maximum machine workload.
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