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Abstract

:

In this paper, the single-machine scheduling problems under the common and slack due date assignments are studied, where the actual processing time of the job needs to consider some factors, such as convex resource allocation, maintenance activity, and learning effects. The goal of this study is to find the optimal sequence, maintenance activity location, resource allocation and common due date (flow allowance). The objective function is (1) to minimize the sum of scheduling cost (including the weighted sum of earliness, tardiness and common due date (flow allowance), where the weights are position-dependent weights) and resource consumption cost, and (2) to minimize the scheduling cost under the resource consumption cost which is bounded. We prove that these problems can be solved in polynomial time.
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1. Introduction


In a realistic scheduling system, the job-processing time is often affected by many practical settings, such as learning effects, resource allocation, and maintenance activities. Learning effects appear such that, for example, workers continue to process the same jobs, experience increases, and the actual processing time of the work is gradually shortened (see Mosheiov [1]; Cheng et al. [2]; Wu et al. [3]; Azzouz et al. [4]; Sun et al. [5]; Zhao [6]; and Wang et al. [7]). The manager assigns a certain amount of additional resources to the job to reduce and control the processing time of the artifact. Common limited resources are the financial budget, energy, fuel, or manpower (see Vixkson [8]; Shabtay and Kasoi [9]; Wang and Cheng [10]; Shabtay and Steiner [11]; Zhang et al. [12]; Wang et al. [13]). In production, due to machine failure or the processing time being too long, wear will inevitably occur and reduce the working rate, so maintenance activities can be carried out to reduce the job processing time (see Lee and Leon [14]; Wang and Wang [15]; Mosheiov and Sidney [16]; Bai et al. [17]; Yin et al. [18]; and Strusevich and Rustogi [19]).



In order to strengthen global business competition and improve customer satisfaction, new production technologies such as “just-in-time” (JIT) production are adopted. The emergence of the concept of JIT production and the sequencing problems have attracted widespread attention; in a just-in-time system, jobs (work pieces) can neither be completed early nor late, otherwise penalty costs will be incurred (see Parwalker et al. [20], and Cheng et al. [21]). In addition, in actual production, we found that task-processing rates can be affected by several factors simultaneously. Therefore, in previous studies, Ji et al. [22] considered a single machine due date assignment scheduling problem with job-dependent aging effects and a deteriorating maintenance activity, where due dates are assigned using the SLK due date determination method. He et al. [23] studied the single-machine sequencing problem of resource allocation with general truncated learning effects. A convex resource allocation model under the condition of finite resource consumption cost is proposed, and various optimal algorithms are given for different cases of the problem. Liu and Jiang [24] delved into due date assignment scheduling problems with learning effects and resource allocation. Under common due date assignment and slack due date assignment rules, a bi-criteria analysis is provided. Zhao et al. [25] examined a single machine scheduling problem with slack due date assignment in which the actual processing time of a job is determined by its position in a sequence, its resource allocation function, and a rate-modifying activity simultaneously.



In previous studies, two different resource allocation functions were usually employed. One was a linear function setting for the amount of resources and actual processing time associated with each job (Janiak and Kovalyov [26]), and the other was a convex function setting for the amount of resources assigned to each job (Monma et al. [27]). In general, there are two ways to model learning effects: one is a location-dependent learning effect (Biskup [28]), and the other is a time-dependent (sum-of-processing time) learning effect (Azzouz et al. [4]). Wang et al. [29] considered location-dependent learning effects and convex resource allocation to build the model    p  j r  A   (  u j  )  =      θ j   r α    u j    η  ,   where   η > 0   is a given constant,   α ≤ 0   is the learning factor,   θ j   is the normal processing time of job   J j  , and   u j   is the resource allocated to the job   J j  . Zhu et al. [30] addressed the job processing time considering the rate modification activity, learning effect and convex resource allocation, described as follows: when the rate modification activity is not carried out, the job-processing time is    p  j r  A   (  u j  )  =      θ j   r α    u j    η   ; otherwise, it is    p  j r  A   (  u j  )  =      a j   θ j   r α    u j    η   , where   a j   is the modifying rate. For a comparison with other similar papers (see Table 1; the related symbols are given later), this article extends the results of Wang and Wang [15], Bai et al. [17], Ji et al. [22], Zhao et al. [25], Wang et al. [29], and Zhu et al. [30] by scrutinizing a more general scheduling model.



This paper’s contributions and novelties are as follows:




	
Single-machine maintenance scheduling with convex resource constraint and learning effect is modeled and studied;



	
Four algorithms are provided for the following two objective functions: (1) minimize the sum of scheduling cost (including the weighted sum of earliness, tardiness and common due date (flow allowance), where the weight is the position-dependent weight) and resource consumption cost; and (2) the resource consumption cost has an upper bound, minimizing the dispatch cost.



	
It is shown that these problems can be solved in polynomial time, and the effectiveness of the algorithms is presented by numerical study.








The paper is organized as follows. Section 2 introduces the model. Section 3 describes the optimal properties. Section 4 performs an optimal analysis of the objective function and proves that it can be solved in polynomial time. In Section 5, an example is calculated, and numerical experiments are carried out to verify the effectiveness of the algorithm. Section 6 concludes this paper.




2. Problem Description


In this article, the use of symbols is listed in Table 2, and the problem can be stated as follows: there are n independent and non-preemptive jobs   J =   J 1  ,  J 2  , … ,  J n     to be processed on a single machine. Each job   J j   is available for processing at time zero. The machine can handle one job at a time. In addition, for any sequence   ξ = (  J  [ 1 ]   ,  J  [ 2 ]   , … ,  J  [ n ]   )  , there is a maintenance activity whose duration time is t and no jobs are processed during this execution.



In this paper, the model considered is as follows


   P  j r  A  =        (    θ j    ( r )  α    u j   )  η  ,    r ≤ l         (    β j   θ j    ( r )  α    u j   )  η  ,  r > l        



(1)




where   j = 1 , 2 , … , n  ,   η > 0   is a constant,   α ≤ 0   is the non-negative learning index,   β j   is the modifying rate (it satisfies   0 <  β j  ≤ 1  ) and l denotes the position of the job preceding the maintenance activity (i.e., position   l + 1   is the first position after the maintenance activity). In addition, in this article, we discuss two due date assignment models, including the common (CON) due date and slack (SLK) due date assignment. For the CON,    d j  =  d  o p t    , where   d  o p t    is a decision variable. For the SLK,    d j  =  p  j  A  +  q  o p t    , where the common flow allowance   q  o p t    is a decision variable. Given that the maintenance activity time is a fixed value, our goal is to determine the optimal sequence of jobs   ξ *  , optimal amount of resource allocation   u *  , optimal due date (  d  o p t    or   q  o p t   ) and maintenance location   l *  . The first problem of this paper is to minimize


  Z  ( u , ξ , d , l )  =  ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  +  ∑  j = 1  n   v j   u j  ,   



(2)




using three-field representation, the first problem (  P 1  ) can be expressed as


   1 | M A L E , C R E |   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  +  ∑  j = 1  n   v j   u j  ,   



(3)




where   M A L E   means “a maintenance activity and learning effect”, and   C R E   means “convex resource allocation”.



The second problem is to minimize


  Z  ( u , ξ , q , l )  =  ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  +  ∑  j = 1  n   v j   u j  ,   



(4)




using three-field representation, and the second problem (  P 2  ) can be expressed as


   1 | M A L E , C R E |   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  +  ∑  j = 1  n   v j   u j  .   



(5)







The third problem is to minimize     ∑  j = 1  n    (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )    under a common due date, and the cost of the resource consumption cannot exceed a ceiling, i.e.,     ∑  j = 1  n    v j   u j  ≤ U  , and this problem (denoted by   P 3  ) is


   1 | M A L E , C R E ,   ∑  j = 1  n    v j   u j  ≤ U   |  ∑  j = 1  n   (  δ j    E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  ,   



(6)




where   U > 0   is an upper bound on     ∑  j = 1  n     v j   u j    . The last problem is to consider the slack due date assignment, i.e., the fourth problem (denoted by P4) is


   1 | M A L E , C R E ,   ∑  j = 1  n    v j   u j  ≤ U   |  ∑  j = 1  n   (  δ j    E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  .   



(7)








3. Main Properties


In this section, we show some main properties of the problems. Based on the above notations and allowing to perform a maintenance activity in position l,  the maintenance time is a fixed constant t, and the completion time of each job j (  j = 1 , 2 , … , n  ) can be presented in the following:



                        C  [ j ]   =  C  [ j − 1 ]   +     θ  [ j ]     ( j )  α    u  [ j ]     ,    j = 1 , 2 , . . . , l ,  



                        C  [ j ]   =  C  [ j − 1 ]   + t +     β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     , j = l + 1 ,  



                        C  [ j ]   =  C  [ j − 1 ]   +     β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     ,   j = l + 2 , . . . , n .  



Under the optimal schedule, the first job starts processing at time 0 and there is no idle time between jobs.



Lemma 1.

For any given sequence   ξ =   J  [ 1 ]   ,  J  [ 2 ]   , … ,  J  [ n ]     , the optimal value of   d  o p t    is determined by the completion time of the k-th job, i.e.,    d  o p t   =  C  [ k ]    . The optimal value of the common flow allowance   q  o p t    is decided by the start time of the k-th job, i.e.,    q  o p t   =  S  [ k ]    .





Proof. 

Now, we prove    d  o p t   =  C  [ k ]    . Consider a schedule   ξ =   J  [ 1 ]   ,  J  [ 2 ]   , … ,  J  [ n ]     ,   d  o p t    with    C  [ k ]   <  d  o p t   <  C  [ k + 1 ]     and let Z be the corresponding objective value. Define   x =  d  o p t   −  C  [ k ]     and   y =  C  [ k + 1 ]   −  d  o p t    . Let   Z   ′    and   Z    ″     be the objective values for    d  o p t   =  C  [ k ]     and    d  o p t   =  C  [ k + 1 ]    . Then


   Z   ′   = Z − x  ∑  j = 1   k + 1      δ j  +  w j  + γ   + x  ∑  j = k + 2  n     δ j  +  w j  + γ    










  = Z + x [  ∑  j = k + 2  n     δ j  +  w j  + γ   −  ∑  j = 1   k + 1      δ j  +  w j  + γ   ]  










   Z    ″    = Z + y  ∑  j = 1   k + 1      δ j  +  w j  + γ   − y  ∑  j = k + 2  n     δ j  +  w j  + γ    










  = Z − y [  ∑  j = k + 2  n     δ j  +  w j  + γ   −  ∑  j = 1   k + 1      δ j  +  w j  + γ   ]  











Thus,    Z   ′   ≤ Z   if     ∑  j = k + 2  n      δ j  +  w j  + γ   ≤   ∑  j = 1   k + 1       δ j  +  w j  + γ     and    Z    ″    ≤ Z   otherwise. This implies that an optimal solution exists in which   d  o p t    is equal to the completion time of some job.



The proof for    q  o p t   =  S  [ k ]     is similar to that for    d  o p t   =  C  [ k ]    . □





Lemma 2.

In the optimal sequence,    d  o p t   =  C  [ k ]    ,    q  o p t   =  S  [ k ]    , where k satisfies



                   ∑  j = 1   k − 1      δ j  −   ∑  j = k  n     ω j  + n γ    ≤ 0   and      ∑  j = 1  k     δ j  −   ∑  j = k + 1  n     ω j  + n γ    ≥ 0 .  





Proof. 

From Lemma 1, in the CON,    d  o p t   =  C  [ k ]    , through the small disturbance technique, we move    d  o p t   =  C  [ k ]    .



(1) If    d  o p t   =  C  [ k ]    , the total cost is


  Z =  ∑  j = 1   k − 1     δ j   (  C  [ k ]   −  C  [ j ]   )   +  ∑  j = k + 1  n    ω j   (  C  [ j ]   −  C  [ k ]   )   + n γ  C  [ k ]   +  ∑  j = 1  n    v j   u j   .  











(2) If    d  o p t   =  C  ξ ( k )   − x  , the total cost is


   Z 1  =  ∑  j = 1   k − 1     δ j   (  C  [ k ]   − x −  C  [ j ]   )   +  ∑  j = k  n    ω j   (  C  [ j ]   + x −  C  [ k ]   )   + n γ  (  C  [ k ]   − x )  +  ∑  j = 1  n    v j   u j   .  











(3) If    d  o p t   =  C  ξ ( k )   + y  , the total cost is


   Z 2  =  ∑  j = 1  k    δ j   (  C  [ k ]   + y −  C  [ j ]   )   +  ∑  j = k + 1  n    ω j   (  C  [ j ]   − y −  C  [ k ]   )   + n γ  (  C  [ k ]   + y )  +  ∑  j = 1  n    v j   u j   .  











We have


  Z −  Z 1  =  ∑  j = 1   k − 1     δ j  x  −  ∑  j = k  n    ω j  x  + n γ x ≤ 0 ,  










  Z −  Z 2  = −  ∑  j = 1  k    δ j  y  +  ∑  j = k + 1  n    ω j  y  − n γ y ≤ 0 .  











So k satisfies both



                 (   ∑  j = 1   k − 1      δ j  −   ∑  j = k  n     ω j  + n γ   ) ≤ 0   and   (   ∑  j = 1  k     δ j  −   ∑  j = k + 1  n     ω j  + n γ   ) ≥ 0  . □





Remark 1.

For a given schedule, if k satisfies both the above inequalities, the optimal common due date can be determined by Lemma 2. But k may not meet both of the above inequalities, so we need to set    d  o p t   =  q  o p t   = 0  , and this term can be minimized by the HLP rule (see Hardy et al. [31]).






4. Optimal Analysis


In this section, we perform an optimal analysis of single-machine maintenance activity scheduling problems with convex resource constraints and learning effects. In each case of the above problems in Section 2, the decision consists of four parts: optimal sequence of jobs   ξ *  , optimal amount of resource allocation   u *  , optimal due date (  d  o p t    or   q  o p t   ) and maintenance location   l *  .



4.1. Results of   P 1  


In this section, we provide an optimal solution to the P1 problem. For the    1 | M A L E , C R E |    ∑  j = 1  n    (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  +   ∑  j = 1  n    v j   u j  ,   its objective function can be expressed as follows.



If   k ≤ l  , where    d  o p t   =  C  [ k ]   =   ∑  j = 1  k    P  [ j ]  A   , we have


     Z ( u , ξ ,  d  o p t   , l )     = n γ  ∑  j = 1  k   P  [ j ]  A  +  ∑  j = 1   k − 1    δ j   (  C  [ k ]   −  C  [ j ]   )  +  ∑  j = k + 1  n    ω j   (  C  [ j ]   −  C  [ k ]   )   +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1  k   P  [ j ]  A    ( n γ +   ∑  m = 1   j − 1     δ m   )   +  ∑  j = k + 1  l    P  [ j ]  A   (  ∑  m = j  l   ω m  +  ∑  m = l + 1  n   ω m  )            +  ∑  j = l + 1  n    P  [ j ]  A   (  ∑  m = j  n   ω m  )   +  ∑  j = 1  n    v  [ j ]    u  [ j ]    +  ∑  j = l + 1  n    ω j  t           =  ∑  j = 1  l   λ j       θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n   λ j       β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = 1  n   v  [ j ]    u  [ j ]   +  ∑  j = l + 1  n    ω j  t  ,     



(8)







 where


   λ j  =      n γ +   ∑  m = 1   j − 1     δ m  ,        j = 1 , 2 , … , k ,         ∑  m = j  l    ω m  +   ∑  m = l + 1  n    ω m  ,     j = k + 1 , k + 2 , … , l ,         ∑  m = j  n    ω m  ,               j = l + 1 , l + 2 , … , n .        



(9)







If   k > l  , where    d  o p t   =  C  [ k ]   =   ∑  j = 1  l    P  [ j ]  A  + t +   ∑  j = l + 1  k    P  [ j ]  A   , we have


      Z ( u , ξ ,  d  o p t   , l )     = n γ  (  ∑  j = 1  l   P  [ j ]  A  + t +  ∑  j = l + 1  k   P  [ j ]  A  )  +  ∑  j = 1  k   δ j   (  C  [ k ]   −  C  [ j ]   )  +  ∑  j = k + 1  n    ω j   (  C  [ j ]   −  C  [ k ]   )            +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1  l   P  [ j ]  A   ( n γ +  ∑  m = 1   j − 1    δ m  )  +  ∑  j = l + 1  k   P  [ j ]  A   ( n γ +  ∑  m = 1  l   δ m  +  ∑  m = l + 1   j − 1    δ m  )           +  ∑  j = k + 1  n   P  [ j ]  A   ∑  m = j  n   ω m  +  ( n γ +  ∑  j = 1  l   δ j  )  t +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1  l   ψ j       θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n   ψ j       β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = 1  n    v  [ j ]    u  [ j ]             + ( n γ +  ∑  j = 1  l   δ j  ) t ,     



(10)




where


   ψ j  =      n γ +   ∑  m = 1   j − 1     δ m  ,       j = 1 , 2 , … , l ,       n γ +   ∑  m = 1  l    δ m  +   ∑  m = l + 1   j − 1     δ m  ,    j = l + 1 , l + 2 , … , k ,         ∑  m = j  n    ω m  ,                j = k + 1 , k + 2 , … , n .        



(11)







Lemma 3.

For a given sequence ξ, the optimal resources   u  [ j ]  *   allocation of P1 is as follows.



If   k ≤ l  ,


    u  [ j ]  *  =          η  λ j    v  [ j ]      1  η + 1       θ  [ j ]     ( j )  α    η  η + 1    ,       j = 1 , 2 , … , l ,           η  λ j    v  [ j ]      1  η + 1     (   β  [ j ]    θ  [ j ]     ( j )  α    )   η  η + 1    , j = l + 1 , l + 2 , … , n .           



(12)







If   k > l  ,


    u  [ j ]  *  =          η  ψ j    v  [ j ]      1  η + 1      (  θ  [ j ]     ( j )  α  )   η  η + 1    ,       j = 1 , 2 , … , l ,           η  ψ j    v  [ j ]      1  η + 1      (  β  [ j ]    θ  [ j ]     ( j )  α  )   η  η + 1    , j = l + 1 , l + 1 , … , n .         



(13)









Proof. 

From (8) and (10), the objective function is a convex function of   u  [ j ]   . For the case of   k ≤ l  , deriving (8) with respect to   u  [ j ]   , we have       ∂ Z   ∂  u  [ j ]     =   ∂   λ j        θ  [ j ]     ( j )  α    u  [ j ]      η  +  v  [ j ]    u  [ j ]      ∂  u  [ j ]     =  v  [ j ]   − η  λ j    (  θ  [ j ]     ( j )  α  )  η     1  u  [ j ]      η + 1    ,   j = 1 , 2 , … , l .  



Let     ∂ Z   ∂  u  [ j ]     = 0  , we have    u  [ j ]  *  =     η  λ j    v  [ j ]      1  η + 1      (  θ  [ j ]     ( j )  α  )   η  η + 1     .



Similarly, if   k > l  , the result (13) can be obtained. □





Bringing optimal   u *   (i.e., Equations (12) and (13)) into the objective function (i.e., Equations (8) and (10)) yields


   Z ⌢   [ l ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ l ]  +  f 1   ( t )    



(14)







 where


    f 1   ( t )   =        ∑  j = l + 1  n    ω j  t , k ≤ l ,       ( n γ +   ∑  j = 1  l    δ j  ) t , k > l .        



(15)






    Z ⌢  1   [ l ]  =  ∑  j = 1  l     v    [ j ]     θ  [ j ]     ( j )  α    η  η + 1        μ ⌢  j    1  η + 1    +  ∑  j = l + 1  n     v    [ j ]      β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1        μ ⌢  j    1  η + 1      



(16)






    μ ⌢  j  =       λ j  , k ≤ l ,        ψ j  , k > l .        



(17)







It is obvious that    f 1   ( t )    is a constant (if the location l of the maintenance activity location is deterministic), and    Z ⌢   [ l ]    is only related to the the location l so that we find the minimal value of    Z ⌢   [ l ]    is actually the minimal value of     Z ⌢  1   [ l ]   . Let


   χ  j r   =         v   j    θ j    η  η + 1         μ ⌢  r    ( r )   α η      1  η + 1    , 1 ≤ r ≤  l          v   j     β j   θ j     η  η + 1         μ ⌢  r    ( r )   α η      1  η + 1    , l + 1 ≤ r ≤ n        



(18)







    Z ⌢  1   [ l ]    can be minimized by solving the next assignment problem:


  M i n     Z ⌢  1   [ l ]  =  ∑  j = 1  n   ∑  r = 1  n   χ  j r    M  j r    










  s . t    ∑  j = 1  n   M  j r   = 1    r = 1 , 2 , … , n  










        ∑  r = 1  n   M  j r   = 1    j = 1 , 2 , … , n   



(19)






   M  j r   = 0  o r  1    1 ≤ j , r ≤ n  








where   M  j r    is a 0 or 1 variable, if the job   J j   is at location r,    M  j r   = 1  , otherwise    M  j r   = 0  .



Based on the above analysis, it is obtained that the problem   P 1   can be solved by the next Algorithm 1.






	Algorithm 1: Solution for problem   P 1  .



	
Initialization: Let    Z ⌢  = ∞  ,    ξ *  = 0  ,    d  o p t  *  = 0  ,    u *  = 0   and    l *  = 0  .



Step 1. For   l = 1 → n  



Step 2. If   k ≤ l  , then



          obtain the minimum value     Z ⌢  1    l     and the schedule  ξ  by using (14)–(19);



            If     Z ⌢  1    l   <  Z ⌢   , then



            let    Z ⌢  =   Z ⌢  1    l    ,    l *  = l  ,    u *  = u  ,    d  o p t  *  =  d  o p t     and    ξ *  = ξ  ;



        If   k > l  , then



          obtain the minimum value     Z ⌢  1    l     and the schedule  ξ  by using (14)–(19);



            If     Z ⌢  1    l   <  Z ⌢   , then



            let    Z ⌢  =   Z ⌢  1    l    ,    l *  = l  ,    u *  = u  ,    d  o p t  *  =  d  o p t     and    ξ *  = ξ  .



Step 3. Choose the minimum value      Z ⌢  *   = min {    Z ⌢  1   [ l ]    , l = 1 , 2 , … , n }   , and obtain the



      corresponding schedule   ξ *  ,   d  o p t  *  ,   u *   and   l *  .










Theorem 1.

The problem   P 1   can be solved by Algorithm 1 in   O (  n 4  )   time.





Proof. 

The correctness of Algorithm 1 follows the above analysis. Steps 1 need   O ( n )   time; for each maintenance position l, the complexity of the assignment problem is   O (  n 3  )  . Hence, Algorithm 1 can be solved in   O (  n 4  )   time. □






4.2. Results of   P 2  


For the    1 | M A L E , C R E |    ∑  j = 1  n    (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  +   ∑  j = 1  n    v j   u j   , its objective function (4) can be expressed as follows.



If   k − 1 ≤ l  , where    q  o p t   =  S  [ k ]   =   ∑  j = 1   k − 1     P  [ j ]  A   ,


      Z ( u , ξ ,  q  o p t   , l )     = n γ  ∑  j = 1   k − 1    P  [ j ]  A  +  ∑  j = 1   k − 1    δ j   (  C  [ k − 1 ]   −  C  [ j ]   )  +  ∑  j = k  n    ω j   (  C  [ j ]   −  C  [ k − 1 ]   )   +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1   k − 1    P  [ j ]  A   ( n γ +  ∑  m = 1   j − 1    δ m  )  +  ∑  j = k  l    P  [ j ]  A   (  ∑  m = l + 1  n   ω m  +  ∑  m = j  l   ω m  )            +  ∑  j = l + 1  n   P  [ j ]  A   ∑  m = j  n   ω m  +  ∑  j = 1  n    v  [ j ]    u  [ j ]    +  ∑  j = l + 1  n    ω j  t           =  ∑  j = 1  l   λ j   ′        θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n   λ j   ′        β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = 1  n   v  [ j ]    u  [ j ]   +  ∑  j = l + 1  n   ω j  t ,     



(20)




where


   λ j   ′   =      n γ +   ∑  m = 1   j − 1     δ m  ,    j = 1 , 2 , … , k − 1 ,         ∑  m = j  l    ω m  +   ∑  m = l + 1  n    ω m  , j = k , k + 1 , … , l ,         ∑  m = j  n    ω m  ,                j = l + 1 , l + 2 , … , n .        



(21)







If   k − 1 > l  , where    q  o p t   =  S  [ k ]   =   ∑  j = 1  l    P  [ j ]  A  + t +   ∑  j = l + 1   k − 1     P  [ j ]  A   


      Z ( u , ξ ,  q  o p t   , l )     = n γ  (  ∑  j = 1  l   P  [ j ]  A  + t +  ∑  j = l + 1   k − 1    P  [ j ]  A  )  +  ∑  j = 1   k − 1    δ j   (  C  [ k − 1 ]   −  C  [ j ]   )  +  ∑  j = k  n    ω j   (  C  [ j ]   −  C  [ k − 1 ]   )            +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1  l   P  [ j ]  A   ( n γ +  ∑  m = 1   j − 1    δ m  )  +  ∑  j = l + 1   k − 1    P  [ j ]  A   ( n γ +  ∑  m = 1  l   δ m  +  ∑  m = l + 1   j − 1    δ m  )           +  ∑  j = k  n   P  [ j ]  A   ∑  m = j  n   ω m  +  ( n γ +  ∑  m = 1  l   δ m  )  t +  ∑  j = 1  n    v  [ j ]    u  [ j ]             =  ∑  j = 1  l   ψ j   ′        θ  [ j ]     ( j )  α     u [   j ]     η  +  ∑  j = l + 1  n   ψ j   ′        β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η           +  ∑  j = 1  n    v  [ j ]    u  [ j ]    +  ( n γ +  ∑  m = 1  l   δ m  )  t ,     



(22)







 where


   ψ j   ′   =      n γ +   ∑  m = 1   j − 1     δ m  ,    j = 1 , 2 , … , l ,       n γ +   ∑  m = 1  l    δ m  +   ∑  m = l + 1   j − 1     δ m  ,     j = l + 1 , l + 2 , … , k − 1 ,         ∑  m = j  n    ω m  ,             j = k , k + 1 , … , n .        



(23)







Lemma 4.

The optimal resource   u  [ j ]  *   allocation of the problem   P 2   is as follows.



If   k − 1 ≤ l  


    u  [ j ]  *  =          η  λ j   ′     v  [ j ]      1  η + 1      (  θ  [ j ]     ( j )  α  )   η  η + 1    , j = 1 , 2 , … , l ,           η  λ j   ′     v  [ j ]      1  η + 1      (  β  [ j ]    θ  [ j ]     ( j )  α  )   η  η + 1    , j = l + 1 , l + 2 , … , n .         



(24)







If   k − 1 > l  


    u  [ j ]  *  =          η  ψ j   ′     v  [ j ]      1  η + 1      (  θ  [ j ]     ( j )  α  )   η  η + 1    , j = 1 , 2 , … , l ,           η  ψ j   ′     v  [ j ]      1  η + 1      (  β  [ j ]    θ  [ j ]     ( j )  α  )   η  η + 1    , j = l + 1 , l + 1 , … , n .         



(25)









Proof. 

The proof process is similar to that of Lemma 3. Taking a partial derivative of Equation (20) with respect to   u  [ j ]    and making it equal to 0, result Equation (25) can be obtained. □





Substituting Equations (24) and (25) into Equations (20) and (22), we have


   Z   ′    [ l ]  =  (  η   − η   η + 1    +  η  1  η + 1    )   Z 2   ′    [ l ]  +  f 2   ( t )    



(26)




where


    f 2   ( t )   =        ∑  j = l + 1  n    ω j  t , k − 1 ≤ l ,       ( n γ +   ∑  j = 1  l    δ j  ) t , k − 1 > l .        



(27)






   Z 2   ′    [ l ]  =   ∑  j = 1  l      v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1       μ j   ′     1  η + 1    +  ∑  j = l + 1  n     v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1       μ j   ′     1  η + 1     










   μ  j    ′   =       λ j   ′   , k − 1 ≤ l ,        ψ j   ′   , k − 1 > l ,        



(28)




and it is obvious that    f 2   ( t )    is a constant (if the location l of the maintenance activity location is deterministic), and    Z   ′    [ l ]    is only related to the location l, so that we find the minimal value of    Z   ′    [ l ]    is actually the minimal value of      Z 2     ′    [ l ]   . Let


   χ  j r    ′   =         v   j    θ j    η  η + 1       μ r   ′     ( r )   α η     1  η + 1    , 1 ≤ r ≤  l          v   j     β j   θ j     η  η + 1       μ r   ′     ( r )   α η     1  η + 1    , l + 1 ≤ r ≤ n        



(29)




and      Z 2     ′    [ l ]    can be minimized by solving the next assignment problem:


  M i n      Z 2     ′    [ l ]  =  ∑  j = 1  n   ∑  r = 1  n   χ  j r    ′      M  j r      ′    










  s . t    ∑  j = 1  n   M  j r    ′   = 1    r = 1 , 2 , … , n  










        ∑  r = 1  n   M  j r    ′   = 1    j = 1 , 2 , … , n   



(30)






     M  j r    ′   = 0  o r  1    1 ≤ j , r ≤ n  








where   M  j r    ′    is a 0 or 1 variable, if the job   J j   is at location r,    M  j r    ′   = 1  , otherwise    M  j r    ′   = 0  .



Based on the above analysis, the problem   P 2   can be solved by the next Algorithm 2:






	Algorithm 2: Solution for problem   P 2  .



	
Initialization: Let    Z   ′   = ∞  ,    ξ *  = 0  ,    q  o p t  *  = 0  ,    u *  = 0   and    l *  = 0  .



Step 1. For   l = 1 → n  



Step 2. If   k − 1 ≤ l  , then



          obtain the minimum value    Z 2   ′     l     and the schedule  ξ  by using (26)–(30);



            If    Z 2   ′     l   <  Z   ′    , then



            let    Z   ′   =  Z 2   ′     l    ,    l *  = l  ,    u *  = u  ,    q  o p t  *  =  q  o p t     and    ξ *  = ξ  ;



        If   k − 1 > l  , then



          obtain the minimum value    Z 2   ′     l     and the schedule  ξ  by using (26)–(30);



            If    Z 2   ′     l   <  Z   ′    , then



            let    Z   ′   =  Z 2   ′     l    ,    l *  = l  ,    u *  = u  ,    q  o p t  *  =  q  o p t     and    ξ *  = ξ  .



Step 3. Choose the minimum value    Z    ′  *   = min  {  Z 2   ′    [ l ]  , l = 1 , 2 , … , n }   , and obtain the



      corresponding schedule   ξ *  ,   q  o p t  *  ,   u *   and   l *  .










Theorem 2.

The problem   P 2   can be solved by Algorithm 2 in   O (  n 4  )   time.






4.3. Results of   P 3  


In this subsection, we consider the problem   P 3  , i.e.,


   1 | M A L E , C R E ,   ∑  j = 1  n    v j   u j  ≤ U   |  ∑  j = 1  n   (  δ j    E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  .  











If   k ≤ l  , similarly, we have


   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  =  ∑  j = 1  l   κ j       θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n   κ j       β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n    ω j  t  .   



(31)







If   k > l  , similarly, we have


   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )  =  ∑  j = 1  l   σ j       θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n    σ j       β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]     η  +  ( n γ +  ∑  j = 1  l   δ j  )  t  ,   



(32)




where


   κ j  =      n γ +   ∑  m = 1   j − 1     δ m  ,        j = 1 , 2 , … , k ,         ∑  m = l + 1  n    ω m  +   ∑  m = j  l    ω m  ,     j = k + 1 , k + 2 , … , l ,         ∑  m = j  n    ω m  ,                j = l + 1 , l + 2 , … , n ,           



(33)






   σ j  =      n γ +   ∑  m = 1   j − 1     δ m  ,       j = 1 , 2 , … , l ,       n γ +   ∑  m = 1  l    δ m  +   ∑  m = l + 1   j − 1     δ m  ,     j = l + 1 , l + 2 , … , k ,         ∑  m = j  n    ω m  ,             j = k + 1 , k + 2 , … , n .        



(34)







Lemma 5.

For a given sequence ξ, the corresponding optimal resources   u  [ j ]  *   allocation for P3 is as follows.



If   k ≤ l  


    u  [ j ]  *  =   U     1  v  [ j ]       1  η + 1       κ j    1  η + 1        θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α     η  η + 1        ∑  j = 1  l      κ j    1  η + 1       v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +   ∑  j = l + 1  n      κ j    1  η + 1       v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      , j = 1 , 2 , … , n .    



(35)







If   k > l  


    u  [ j ]  *  =   U     1  v  [ j ]       1  η + 1       σ j    1  η + 1        θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α     η  η + 1        ∑  j = 1  l      σ j    1  η + 1       v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +   ∑  j = l + 1  n      σ j    1  η + 1       v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      , j = 1 , 2 , … , n .    



(36)









Proof. 

Obviously, when     ∑  j = 1  n    v j   u j  = U  ,     ∑  j = 1  n    (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )    is the smallest. Thus, this problem becomes a conditional extreme problem of minimizing     ∑  j = 1  n    (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t   )    subject to     ∑  j = 1  n    v j   u j  = U  . For this problem, we use the Lagrange multiplier method to solve it, and the Lagrange function is


  L  ( u , π , l , ϕ )  =   ∑  j = 1  l     κ j      θ  [ j ]     ( j )  α    u  [ j ]      η   +   ∑  j = l + 1  n     κ j      β  [ j ]    θ  [ j ]     ( j )  α    u  [ j ]      η   +  ∑  j = l + 1  n    ω j  t + ϕ   ∑  j = 1  n    v  [ j ]    u  [ j ]   − U      



(37)




where   ϕ ( 0 ≤ ϕ )   is the Lagrange multiplier.



Deriving (37) with respect to f   u  [ j ]    and  ϕ , we have


    ∂ L   ∂ u   = ϕ  v  [ j ]   − η  κ j       θ  [ j ]     ( j )  α    η      u  [ j ]      η + 1    − η  κ j       β  [ j ]    θ  [ j ]     ( j )  α    η      u  [ j ]      η + 1    = 0 , j = 1 , 2 , . . . , n .   



(38)






    ∂ L   ∂ ϕ   =  ∑  j = 1  n   v  [ j ]    u  [ j ]   − U = 0 , j = 1 , 2 , … , n .   



(39)







From (38), we have


   u  [ j ]  *  =     η  κ j    ϕ  v  [ j ]       1  η + 1    ×    θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    , j = 1 , 2 , … , n .   



(40)







From (39) and (40), we have


   ϕ  1  η + 1    =     ∑  j = 1  n     ( η  κ j  )   1  η + 1        (  θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α  )   v  [ j ]      η  η + 1     U  , j = 1 , 2 , … , n .   



(41)







From (40) and (41), we have


   u  [ j ]  *  =   U     1  v  [ j ]       1  η + 1       κ j    1  η + 1        θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α     η  η + 1        ∑  j = 1  l      κ j    1  η + 1       v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +   ∑  j = l + 1  n      κ j    1  η + 1       v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      , j = 1 , 2 , … , n .  











   □





Bringing optimal   u *   (i.e., Equations (35) and (36)) into the objective function (i.e., Equations (31) and (32)) yields


   Z ˙   [ l ]  =  U  − η     Z ˙  3  η + 1    [ l ]  +  f 1   ( t )    



(42)




where    f 1   ( t )    is given by Equation (15) (is a constant), and 


    Z ˙  3   [ l ]  =  ∑  j = 1  l     μ j  ˙   1  η + 1       v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +  ∑  j = l + 1  n     μ j  ˙   1  η + 1       v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      



(43)






    μ j  ˙  =       κ j  , k ≤ l ,        σ j  , k > l ,        



(44)




it is obvious that the minimal value of    Z ˙   [ l ]    is actually the minimal value of     Z ˙  3   [ l ]   . Let


    B ˙   j r   =         v   j    θ j    η  η + 1        μ r  ˙    ( r )   α η     1  η + 1    , 1 ≤ r ≤  l          v   j     β j   θ j     η  η + 1        μ r  ˙    ( r )   α η     1  η + 1    , l + 1 ≤ r ≤ n        



(45)







    Z ˙  3   [ l ]    can be minimized by solving the next assignment problem:


  M i n     Z ˙  3   [ l ]  =  ∑  j = 1  n   ∑  r = 1  n    B ˙   j r     N ˙   j r    










  s . t    ∑  j = 1  n    N ˙   j r   = 1    r = 1 , 2 , … , n  










        ∑  r = 1  n    N ˙   j r   = 1    j = 1 , 2 , … , n   



(46)






    N ˙   j r   = 0  o r  1    1 ≤ j , r ≤ n  








where    N ˙   j r    is a 0 or 1 variable, and if the job   J j   is at location r,     N ˙   j r   = 1  ; otherwise,     N ˙   j r   = 0  .



Based on the above analysis, the problem   P 3   can be solved by the next Algorithm 3:






	Algorithm 3: Solution for problem   P 3  .



	
Initialization: Let    Z ˙  = ∞  ,    ξ *  = 0  ,    d  o p t  *  = 0  ,    u *  = 0   and    l *  = 0  .



Step 1. For   l = 1 → n  



Step 2. If   k ≤ l  , then



          obtain the minimum value     Z ˙  3   [ l ]    and the schedule  ξ  by using (43)–(46);



            If     Z ˙  3   [ l ]  <  Z ˙   , then



            let    Z ˙  =    Z ˙  3   [ l ]    ,    l *  = l  ,    u *  = u  ,    d  o p t  *  =  d  o p t     and    ξ *  = ξ  ;



        If   k > l  , then



          obtain the minimum value     Z ˙  3   [ l ]    and the schedule  ξ  by using (43)–(46);



            If      Z ˙  3   [ l ]   <  Z ˙   , then



            let    Z ˙  =   Z ˙  3   [ l ]   ,    l *  = l  ,    u *  = u  ,    d  o p t  *  =  d  o p t     and    ξ *  = ξ  .



Step 3. Choose the minimum value     Z *  ˙  = min  {   Z ˙  3   [ l ]  , l = 1 , 2 , … , n }   , and obtain the



       corresponding schedule   ξ *  ,   d  o p t  *  ,   u *   and   l *  .










Theorem 3.

The problem   P 3   can be solved by Algorithm 3 in   O (  n 4  )   time.






4.4. Results of   P 4  


Similar to Section 4.3, the    1 | M A L E , C R E ,    ∑  j = 1  n     v j    u j  ≤ U   |    ∑  j = 1  n    (  δ j    E  [ j ]   +  ω j   T  [ j ]    + γ  q  o p t    )    problem can be expressed as follows.



If   k − 1 ≤ l  


   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  =  ∑  j = 1  l   κ j   ′        θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n   κ j   ′        β j   θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n    ω j  t  .   



(47)







If   k − 1 > l  


   ∑  j = 1  n   (  δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t   )  =  ∑  j = 1  l   σ j   ′        θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = l + 1  n    σ j   ′        β j   θ  [ j ]     ( j )  α    u  [ j ]     η  +  ∑  j = 1  l   δ j  t  .   



(48)




where


   κ j   ′   =      n γ +   ∑  m = 1   j − 1     δ m  ,        j = 1 , 2 , … , k − 1 ,         ∑  m = j  l    ω m  +   ∑  m = l + 1  n    ω m  ,     j = k , k + 1 , … , l ,         ∑  m = j  n    ω m  ,             j = l + 1 , l + 2 , … , n .           



(49)






   σ j   ′   =      n γ +   ∑  m = 1   j − 1     δ m  ,       j = 1 , 2 , … , l ,       n γ +   ∑  m = 1  l    δ m  +   ∑  m = l + 1   j − 1     δ m  ,     j = l + 1 , l + 2 , … , k − 1 ,         ∑  m = j  n    ω m  ,              j = k , k + 1 , … , n .        



(50)







Lemma 6.

The optimal resource allocation of the problem   P 4   is as follows.



If   k − 1 ≤ l  


    u  [ j ]  *  =   U     1  v  [ j ]       1  η + 1       κ j      ′   1  η + 1         θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α     η  η + 1        ∑  j = 1  l      κ j      ′   1  η + 1        v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +   ∑  j = l + 1  n      κ j      ′   1  η + 1        v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      , j = 1 , 2 , … , n .    



(51)







If   k − 1 > l  


    u  [ j ]  *  =   U     1  v  [ j ]       1  η + 1       σ j      ′   1  η + 1         θ  [ j ]     ( j )  α  +  β  [ j ]    θ  [ j ]     ( j )  α     η  η + 1        ∑  j = 1  l      σ j      ′   1  η + 1        v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +   ∑  j = l + 1  n      σ j      ′   1  η + 1        v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1      , j = 1 , 2 , … , n .    



(52)









Proof. 

Similar to the proof of Lemma 5. □





Bringing optimal   u *   (i.e., Equations (51) and (52)) into the objective function (i.e., Equations (47) and (48)) yields


   Z ¨   [ l ]  =  U  − η     Z ¨  4  η + 1    [ l ]  +  f 2   ( t )    



(53)




where    f 2   ( t )    is given by Equation (27) (is a constant), and 


    Z ¨  4   [ l ]  =  ∑  j = 1  l     μ j  ¨   1  η + 1       v  [ j ]    θ  [ j ]     ( j )  α    η  η + 1    +  ∑  j = l + 1  n     μ j  ¨   1  η + 1       v  [ j ]     β  [ j ]    θ  [ j ]      ( j )  α    η  η + 1     










    μ j  ¨  =       κ j   ′   , k − 1 ≤ l ,        σ j   ′   , k − 1 > l .        



(54)







Let


    B ¨   j r   =         v   j    θ j    η  η + 1        μ r  ¨    ( r )   α η     1  η + 1    , 1 ≤ r ≤  l          v   j     β j   θ j     η  η + 1        μ r  ¨    ( r )   α η     1  η + 1    , l + 1 ≤ r ≤ n ,        



(55)




and     Z ¨  4   [ l ]    can be minimized by solving the next assignment problem:


  M i n     Z ¨  4   [ l ]  =  ∑  j = 1  n   ∑  r = 1  n    B ¨   j r     N ¨   j r    










  s . t    ∑  j = 1  n    N ¨   j r   = 1    r = 1 , 2 , … , n  










        ∑  r = 1  n    N ¨   j r   = 1    j = 1 , 2 , … , n   



(56)






    N ¨   j r   = 0  o r  1    1 ≤ j , r ≤ n  








where    N ¨   j r    is a 0 or 1 variable, and if the job   J j   is at location r,     N ¨   j r   = 1  ; otherwise,     N ¨   j r   = 0  .



The problem   P 4   can be solved by the following Algorithm 4:






	Algorithm 4: Solution for problem   P 4  .



	
Initialization: Let    Z ¨  = ∞  ,    ξ *  = 0  ,    q  o p t  *  = 0  ,    u *  = 0   and    l *  = 0  .



Step 1. For   l = 1 → n  



Step 2. If   k − 1 ≤ l  , then



          obtain the minimum value     Z ¨  4   [ l ]    and the schedule  ξ  by using (52)–(56);



            If     Z ¨  4   [ l ]  <  Z ¨   , then



            let    Z ¨  =    Z ¨  4   [ l ]    ,    l *  = l  ,    u *  = u  ,    q  o p t  *  =  q  o p t     and    ξ *  = ξ  ;



        If   k − 1 > l  , then



          obtain the minimum value     Z ¨  4   [ l ]    and the schedule  ξ  by using (52)–(56);



            If      Z ¨  4   [ l ]   <  Z ¨   , then



            let    Z ¨  =   Z ¨  4   [ l ]   ,    l *  = l  ,    u *  = u  ,    q  o p t  *  =  q  o p t     and    ξ *  = ξ  .



Step 3. Choose the minimum value     Z ¨  *  = min  {   Z ¨  4   [ l ]  , l = 1 , 2 , … , n }   , and obtain the



        corresponding schedule   ξ *  ,   q  o p t  *  ,   u *   and   l *  .










Theorem 4.

The problem   P 4   can be solved by Algorithm 4 in   O (  n 4  )   time.







5. An Example and Numerical Study


5.1. An Example


Since algorithms of   P 1   and   P 2   (resp.   P 3   and   P 4  ) are similar, we only consider the calculation steps of   P 1   (resp.   P 3  ).



Let   n = 6  ,   t = 3  ,   α = − 0.2  ,   η = 1  ,   γ = 4  ,   U = 100  , and the remaining data are given in Table 3.



Solution: According to Lemma 2, we can obtain   k = 2  .



Case 1. First, we consider the problem   P 1  .



When   l = 3  , from Equations (17) and (18), we can obtain


   χ  j r   =         v j   θ j     1 2      ( n γ +   ∑  m = 1   r − 1     δ m  )    ( r )   − 0.2     1 2     r = 1 , 2         v j   θ j     1 2       ∑  m = r  n    ω m    ( r )   − 0.2     1 2     r = 3         v j   β j   θ j     1 2       ∑  m = r  n    ω m    ( r )   − 0.2     1 2     r = 4 , 5 , 6      



(57)




and it is easy to see that



    χ 11  =     v 1   θ 1     1 2      ( n γ )    ( 1 )   − 0.2     1 2   =   ( 22 × 9 )   1 2   ×   ( 24 )   1 2   = 68.93475 ;   



   χ 12  =     v 1   θ 1     1 2      ( n γ +  δ 1  )    ( 2 )   − 0.2     1 2   =   ( 22 × 9 )   1 2   ×   [  ( 24 + 7 )  ×  2  − 0.2   ]   1 2   = 73.09883  ;



    χ 13  =     v 1   θ 1     1 2      (  ω 3  +  ω 4  +  ω 5  +  ω 6  )    ( 3 )   − 0.2     1 2   =   ( 22 × 9 )   1 2    × [  ( 2 + 12 + 6 + 9 )     



                ×  3  − 0.2     ]   1 2   = 67.89213  ;



    χ 14  =     v 1   β 1   θ 1     1 2      (  ω 4  +  ω 5  +  ω 6  )    ( 4 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [  ( 12 + 6 + 9 )  ×  4  − 0.2   ]   1 2     



         = 40.25672  ;



   χ 15  =     v 1   β 1   θ 1     1 2      (  ω 5  +  ω 6  )    ( 5 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [  ( 6 + 9 )  ×  5  − 0.2   ]   1 2     = 29.34345;



   χ 16  =     v 1   β 1   θ 1     1 2      ω 6    ( 6 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [ 9 ×  6  − 0.2   ]   1 2   = 22.31869  .



Similarly, the rest of the values of   χ  j r    are given in Table 4.



We can obtain the optimal schedule   ξ = [  J 3  ,  J 4  ,  J 1  ,  J 6  ,  J 5  ,  J 2  ]   by solving the assignment problem (19), and     Z ⌢  1   [ 3 ]  = 67.89213 + 18.9772 + 37.94733 + 28.59419 + 18.29885 + 38.17462 = 209.88434  ,   u = ( 2.5298 , 4.18827 , 3.086 , 3.3035 , 2.61412 , 0.65757 )  ,    d  o p t   =  p 3  +  p 4  = 1.58115 + 2.7004 = 4.28155  ,    f 1   ( t )  = t  (  ω 4  +  ω 5  +  ω 6  )  = 3 ×  ( 12 + 6 + 9 )  = 81  , so    Z ⌢   [ 3 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 3 ]  +  f 1   ( t )  = 2 × 209.88434 + 81 = 500.76868  .



  l = 1  : Similarly, we can easily find the values of   χ  j r    from Equations (17) and (18), and solve the assignment problem (19) to obtain the optimal schedule   ξ = [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]  , and     Z ⌢  1   [ 1 ]  = 169.78529  ,   u = ( 8.68496 , 1.36212 , 1.93 , 3.3035 , 1.8797 , 1.0145 )  ,    d  o p t   =  p 5  + t +  p 2  = 2.53311 + 3 + 0.70258 = 6.23569  ,    f 1   ( t )  = t  ( n γ +  δ 1  )  = 3 ×  ( 24 + 7 )  = 93  , so    Z ⌢   [ 1 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 1 ]  +  f 1   ( t )  = 2 × 169.78529 + 93 = 432.57051  .



  l = 2  : With the above calculation, we can obtain the optimal schedule   ξ = [  J 5  ,  J 4  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and     Z ⌢  1   [ 1 ]  = 179.81382  ,   u = ( 8.68496 , 4.18827 , 1.95176 , 3.3035 , 1.31889 , 0.65757 )  ,    d  o p t   =  p 5  +  p 4  = 2.53311 + 2.7004 = 5.23351  ,    f 1   ( t )  = t  (  ω 3  +  ω 4  +  ω 5  +  ω 6  )  = 3 ×  ( 2 + 12 + 6 + 9 )  = 87  , so    Z ⌢   [ 2 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 2 ]  +  f 1   ( t )  = 2 × 179.81382 + 87 = 446.62764  .



  l = 4  : As above, we can obtain the optimal schedule   ξ = [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and     Z ⌢  1   [ 4 ]    = 242.07549,   u = ( 3.94968 , 9.20959 , 3.086 , 3.69343 , 1.31889 , 0.65757 )  ,    d  o p t   =  p 4  +  p 5  = 3.29141 + 2.07827 = 5.36968  ,    f 1   ( t )  = t  (  ω 5  +  ω 6  )  = 3 ×  ( 6 + 9 )  = 45  , so    Z ⌢   [ 4 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 4 ]  +  f 1   ( t )  = 2 × 242.07549 + 45 = 529.15098  .



  l = 5  : We can obtain the optimal schedule   ξ = [  J 4  ,  J 6  ,  J 1  ,  J 5  ,  J 3  ,  J 2  ]  , and     Z ⌢  1   [ 5 ]  = 263.33595  ,   u = ( 3.94968 , 3.9395 , 3.086 , 8.0193 , 1.70268 , 0.65757 )  ,    d  o p t   =  p 4  +  p 6  = 3.29141 + 1.32504 = 4.61645  ,    f 1   ( t )  = t  (  ω 6  )  = 3 ×  ( 9 )  = 27  , so    Z ⌢   [ 5 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 5 ]  +  f 1   ( t )  = 2 × 263.33595 + 27 = 553.6719  .



  l = 6  : We can obtain the optimal schedule   ξ = [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and     Z ⌢  1   [ 6 ]  = 283.82959  ,   u = ( 3.94968 , 9.20959 , 3.086 , 2.69217 , 1.70268 , 2.07942 )  ,    d  o p t   =  p 4  +  p 5  = 3.29141 + 2.07827 = 5.36968  ,    f 1   ( t )  = 0  , so    Z ⌢   [ 6 ]  =  (  η   − η   η + 1    +  η  1  η + 1    )    Z ⌢  1   [ 46 ]  +  f 1   ( t )  = 2 × 283.82959 = 567.65918  .



After the above calculation, the results of Case 1 are shown in Table 5.



We can see that the optimal solution for   P 1   is   l = 1  ,     ξ  *  =    [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]  ,    d  o p t  *  = 6.23569   and    u *  =  ( 8.68496 , 1.36212 , 1.93 , 3.3035 , 1.8797 , 1.0145 )  .  



Case 2. Next, we compute the problem   P 3  .



When   l = 1  , from Equations (44) and (45), we can obtain


    B ˙   j r   =           v j   θ j     1 2      ( n γ +   ∑  m = 1   r − 1     δ m  )    ( r )   − 0.2     1 2                r = 1            v j   β j   θ j     1 2      ( n γ +   ∑  m = 1   r − 1     δ m  )    ( r )   − 0.2     1 2             r = 2            v j   β j   θ j     1 2       ∑  m = r  n    ω m    ( r )   − 0.2     1 2                    r = 3 , 4 , 5 , 6       



(58)




and it is easy to see that



     B ˙  11  =     v 1   θ 1     1 2      ( n γ )    ( 1 )   − 0.2     1 2   =   ( 22 × 9 )   1 2   ×  ( 24 )  = 337.70993 ;   



     B ˙  12  =     v 1   β 1   θ 1     1 2      ( n γ +  δ 1  )    ( 2 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [  ( 24 + 7 )  ×  2  − 0.2   ]   1 2     



         = 257.407552  ;



     B ˙  13  =     v 1   β 1   θ 1     1 2      (  ω 3  +  ω 4  +  ω 5  +  ω 6  )    ( 3 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2    × [  ( 2 + 12 + 6 + 9 )     



         ×  3  − 0.2     ]   1 2   = 231.23228  ;



     B ˙  14  =     v 1   β 1   θ 1     1 2      (  ω 4  +  ω 5  +  ω 6  )    ( 4 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [  ( 12 + 6 + 9 )  ×  4  − 0.2   ]   1 2     



         = 209.180094  ;



     B ˙  15  =     v 1   β 1   θ 1     1 2      (  ω 5  +  ω 6  )    ( 5 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [  ( 6 + 9 )  ×  5  − 0.2   ]   1 2     



         = 113.64671  ;



    B ˙  16  =     v 1   β 1   θ 1     1 2      ω 6    ( 6 )   − 0.2     1 2   =   ( 22 × 0.4 × 9 )   1 2   ×   [ 9 ×  6  − 0.2   ]   1 2   = 66.95607  .



Similarly, the rest of the values of    B ˙   j r    are given in Table 6,



We can obtain the optimal schedule   ξ = [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]   by solving the assignment problem (46), and      Z ˙  3   [ 1 ]   = 169.78528  ,   u = ( 5.60353 , 2.65995 , 1.22568 , 2.92227 , 1.91124 , 1.11076 )  ,    d  o p t   =  p 5  +  p 2  = 4.33963  ,    f 1   ( t )  = t  ( n γ +  δ 1  )  = 3 ×  ( 24 + 7 )  = 93  , so    Z ˙   [ 1 ]  =  U  − η     Z ˙  3  η + 1    [ 1 ]  +  f 1   ( t )  =  100  − 1   × 169 .  78528 2  + 93 = 381.27041  .



  l = 2  : Similarly, we can easily find the values of    B ˙   j r    from Equations (44) and (45), and solve the assignment problem (46) to obtain the optimal schedule   ξ = [  J 5  ,  J 4  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and      Z ˙  3   [ 2 ]   = 179.81382  ,   u = ( 5.29097 , 2.85518 , 2.202719 , 2.75966 , 1.19380 , 1.20519 )  ,    d  o p t   =  p 5  +  p 4  = 8.7116  ,    f 1   ( t )  = t  (  ω 3  +  ω 4  +  ω 5  +  ω 6  )  = 3 ×  ( 2 + 12 + 6 + 9 )  = 87  , so    Z ˙   [ 2 ]  =  U  − η     Z ˙  3  η + 1    [ 2 ]  +  f 1   ( t )  =  100  − 1   × 179 .  81382 2  + 87 = 404.331  .



  l = 3  : We can obtain the optimal schedule   ξ = [  J 3  ,  J 4  ,  J 1  ,  J 6  ,  J 5  ,  J 2  ]  , and      Z ˙  3   [ 3 ]   = 209.88434  ,   u = ( 3.02238 , 2.44322 , 1.73675 , 2.36428 , 3.04078 , 1.03252 )  ,    d  o p t   =  p 3  +  p 4  = 6.64431  ,    f 1   ( t )  = t  (  ω 4  +  ω 5  +  ω 6  )  = 3 ×  ( 12 + 6 + 9 )  = 81  , so    Z ˙   [ 3 ]  =  U  − η     Z ˙  3  η + 1    [ 3 ]  +  f 1   ( t )  =  100  − 1   × 209 .  88434 2  + 81 = 521.54136  .



  l = 4  : As given above, we can obtain the optimal schedule   ξ = [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and     Z ˙  3   [ 4 ]      = 242.07549  ,   u = ( 1.99828 , 4.16622 , 1.5058 , 2.04988 , 0.88676 , 0.89522 )  ,    d  o p t   =  p 4  +  p 5  = 11.78616  ,    f 1   ( t )  = t  (  ω 5  +  ω 6  )  = 3 ×  ( 6 + 9 )  = 45  , so    Z ˙   [ 4 ]  =  U  − η     Z ˙  3  η + 1    [ 4 ]  +  f 1   ( t )  =  100  − 1   × 242 .  07549 2  + 45 = 631.00543  .



  l = 5  : We can obtain the optimal schedule   ξ = [  J 4  ,  J 6  ,  J 1  ,  J 5  ,  J 3  ,  J 2  ]  , and      Z ˙  3   [ 5 ]   = 263.33595  ,   u = ( 1.83695 , 2.16033 , 1.38423 , 3.34065 , 0.81517 , 0.82294 )  ,    d  o p t   =  p 4  +  p 6  = 9.85430  ,    f 1   ( t )  = t  (  ω 6  )  = 3 ×  ( 9 )  = 27  , so    Z ˙   [ 5 ]  =  U  − η     Z ˙  3  η + 1    [ 5 ]  +  f 1   ( t )  =  100  − 1   × 263 .  33595 2  + 27 = 720.45823  .



  l = 6  : We can obtain the optimal schedule   ξ = [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]  , and      Z ˙  3   [ 6 ]   = 283.82959  ,   u = ( 1.70432 , 3.55333 , 1.2843 , 1.74832 , 0.75632 , 0.76352 )  ,    d  o p t   =  p 4  +  p 5    = 13.81905,    f 1   ( t )  = 0  , so    Z ˙   [ 6 ]  =  U  − η     Z ˙  3  η + 1    [ 6 ]  +  f 1   ( t )  =  100  − 1   × 283 .  82959 2  = 805.59236  .



After the above calculation, the results of Case 2 are shown in Table 7.



We can see that the optimal solution for   P 3   is   l = 1  ,     ξ  *  =    [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]  ,    d  o p t  *  = 4.33963   and    u *  =  ( 5.60353 , 2.65995 , 1.22568 , 2.92227 , 1.91124 , 1.11076 )  .  




5.2. Numerical Study


To test the validity of Algorithms 1–4, we randomly generated the instances. We implemented all the algorithms in Java language on JetBrains 2023, and coded on a PC with Intel(R) Core(TM) i5-10500 CPU @ 3.10 GHz, 8.00 GB of RAM on a Windows 10 OS. The features of the examples are listed below:




	(1)

	
  n = 35 , 45 , 55 , 65 , 75 , 85 , 95 , 105 , 115 , 125 , 135  ,   t = 10   and   α = − 0.3  ;




	(2)

	
  η = 2  ,   γ = 12   and   U = 500  ;




	(3)

	
  θ j   (  j = 1 , 2 , … , n  ) is drawn from a discrete uniform distribution in [1, 100] (i.e.,    θ j  ∼  [ 1 , 100 ]   );




	(4)

	
  β j   (  j = 1 , 2 , … , n  ) ∼ [0.5, 1];




	(5)

	
   δ j  ,  ω j    (  j = 1 , 2 , … , n  ) ∼ [1, 40];




	(6)

	
  v j   (  j = 1 , 2 , … , n  ) ∼ [1, 50].









For each n, 20 instances are generated randomly. The computational tests for Algorithms 1–4 are given as follows. The average (mean) and maximum (max) CPU times (milliseconds (ms)) are shown in Table 8. From Table 8, we can see that Algorithms 1–4 are effective, and their CPU times increase moderately as n increases from 35 to 135, and the maximum CPU time is 139,834.75 ms for   n = 135  .





6. Conclusions


In previous studies, the influence of learning effects and resource allocation factors in single-machine scheduling was considered. In this paper, we extend this setting by allowing the execution of a maintenance activity. It is revealed that these four problems can be solved in   O (  n 4  )   time (see Table 1). In future work, we will incorporate more realistic settings, such as multiple maintenance activities, or multiple machine (e.g., flow shop) conditions.







Author Contributions


Investigation, L.-Y.W.; Writing—original draft, Z.-J.W.; Writing—review and editing, Z.-J.W., L.-Y.W., L.Z., J.-B.W. and E.W. All authors have read and agreed to the published version of the manuscript.




Funding


This Work was supported by the Science Research Foundation of Educational Department of Liaoning Province (LJKMZ20220527). Ershen Wang was also supported by the SongShan Laboratory Foundation (YYJC062022017), the Open Fund of Key Laboratory of Flight Techniques and Flight Safety CAAC (FZ2021KF15, FZ2021ZZ06), the Applied Basic Research Programs of Liaoning Province (2022020502-JH2/1013), and the Special Funds program of Shenyang Science and technology (22-322-3-34).




Data Availability Statement


The data used to support the findings of this study are available from the corresponding author upon request.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Mosheiov, G. Scheduling problems with learning effect. Eur. J. Oper. Res. 2001, 132, 687–693. [Google Scholar] [CrossRef]

	



Cheng, M.; Tadikamalla, P.R.; Shang, J.; Zhang, B. Single machine scheduling problems with exponentially time-dependent learning effects. J. Manuf. Syst. 2015, 34, 60–65. [Google Scholar] [CrossRef]

	



Wu, W.H.; Chen, J.C.; Lin, W.C.; Wu, J.; Wu, C.C. A heuristic-based genetic algorithm for the two-machine flow shop scheduling with learning consideration. J. Manuf. Syst. 2015, 35, 223–233. [Google Scholar] [CrossRef]

	



Azzouz, A.; Ennigrou, M.; Said, L.B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar] [CrossRef]

	



Sun, X.; Geng, X.N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. Eur. J. Oper. Res. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]

	



Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Mathematics 2022, 41, 146. [Google Scholar] [CrossRef]

	



Wang, J.-B.; Zhang, L.-H.; Lv, Z.-G.; Lv, D.-Y.; Geng, X.-N.; Sun, X. Heuristic and exact algorithms for single-machine scheduling problems with general truncated learning effects. Mathematics 2022, 41, 417. [Google Scholar] [CrossRef]

	



Wang, J.-B.; Cui, B.; Ji, P.; Liu, W.-W. Research on scheduling with position-dependent weights and past-sequence-dependent delivery times. J. Comb. Optim. 2021, 41, 290–303. [Google Scholar] [CrossRef]

	



Wang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. J. Ind. Manag. Optim. 2023, 19, 2824–2837. [Google Scholar] [CrossRef]

	



Sun, X.-Y.; Geng, X.-N.; Liu, T. Due-window assignment scheduling in the proportionate flow shop setting. Ann. Oper. Res. 2020, 292, 113–131. [Google Scholar] [CrossRef]

	



Qian, J.; Han, H. Improved algorithms for proportionate flow shop scheduling with due-window assignment. Ann. Oper. Res. 2022, 309, 249–258. [Google Scholar] [CrossRef]

	



Yue, Q.; Zhou, S. Due-window assignment scheduling problem with stochastic processing times. Eur. J. Oper. Res. 2021, 290, 453–468. [Google Scholar] [CrossRef]

	



Wang, W. Single-machine due-date assignment scheduling with generalized earliness/tardiness penalties including proportional setup times. J. Appl. Math. Comput. 2022, 68, 1013–1031. [Google Scholar] [CrossRef]

	



Lee, C.Y.; Leon, V.J. Machine scheduling with a rate-modifying activity. Eur. J. Oper. Res. 2001, 128, 119–128. [Google Scholar] [CrossRef]

	



Wang, X.-Y.; Wang, M.-Z. Single machine common flow allowance scheduling with a rate-modifying activity. Comput. Ind. Eng. 2010, 59, 898–902. [Google Scholar] [CrossRef]

	



Mosheiov, G.; Sidney, J.-B. Scheduling a deteriorating maintenance activity on a single machine. Eur. J. Oper. Res. 2010, 61, 882–887. [Google Scholar] [CrossRef]

	



Bai, J.; Li, Z.-R.; Wang, J.-J.; Huang, X. Single machine common flow allowance scheduling with deteriorating jobs and a rate-modifying activity. Appl. Math. Model. 2014, 38, 5431–5438. [Google Scholar] [CrossRef]

	



Yin, Y.; Cheng, T.C.E.; Xu, D.; Wu, C.-C. Common due date assignment and scheduling with a rate-modifying activity to minimize the due date, earliness, tardiness, holding, and batch delivery cost. Comput. Ind. Eng. 2012, 63, 223–234. [Google Scholar] [CrossRef]

	



Strusevich, V.-A.; Rustogi, K. Scheduling with Time-Changing Effects and Rate-Modifying Activities; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]

	



Parwallker, S.-S.; Smith, M.-L.; Seidmann, A. Common due-date assignment to minimize total penalty for the one machine scheduling problem. Oper. Res. 1982, 30, 391–399. [Google Scholar]

	



Cheng, T.-C.-E.; Kang, L.; Ng, C.-T. Due-date assignment and single machine scheduling with deteriorating jobs. J. Oper. Res. 2004, 65, 198–203. [Google Scholar] [CrossRef]

	



Ji, P.; Li, G.; Huo, Y.-Z.; Wang, J.-B. Single-machine common flow allowance scheduling with job-dependent aging effects and a deteriorating maintenance activity. Optim. Lett. 2014, 8, 1389–1400. [Google Scholar] [CrossRef]

	



He, H.-Y.; Liu, M.; Wang, J.-B. Resource constrained scheduling with general truncated job dependent learning effect. J. Comb. Optim. 2017, 33, 626–644. [Google Scholar] [CrossRef]

	



Liu, W.W.; Jiang, C. Flow shop resource allocation scheduling with due date assignment, learning effect and position-dependent weights. J. Oper. Res. 2020, 37, 2050014. [Google Scholar] [CrossRef]

	



Zhao, X.-L.; Xu, J.; Wang, J.-B.; Li, L. Bicriteria common flow allowance scheduling with aging effect, convex resource allocation, and a rate-modifying activity on a single machine. Asia-Pac. J. Oper. Res. 2022, 21, 2150046. [Google Scholar] [CrossRef]

	



Janiak, A.; Kovalyov, M.-Y. Single machine scheduling subjective to deadlines and resource dependent processing times. Eur. J. Oper. Res. 1996, 94, 284–291. [Google Scholar] [CrossRef]

	



Monma, C.-L.; Schrijver, A.; Todd, M.-J.; Wei, V.-K. Convex resource allocation problems on directed acyclic graphs: Duality, complexity, special cases and extensions. Math. Oper. Res. 1990, 15, 736–748. [Google Scholar] [CrossRef]

	



Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [Google Scholar] [CrossRef]

	



Wang, D.; Wang, M.-Z.; Wang, J.-B. Single–machine scheduling with learning effect and resource-dependent processing times. Comput. Ind. Eng. 2010, 59, 458–462. [Google Scholar] [CrossRef]

	



Zhu, Z.-G.; Chu, F.; Sun, L.-Y.; Liu, M. Single machine scheduling with resource allocation and learning effect considering the rate-modifying activity. Appl. Math. Model. 2013, 37, 5371–5380. [Google Scholar] [CrossRef]

	



Hardy, G.-H.; Littlewood, J.-E.; Polya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]








 





Table 1. Models studied.






Table 1. Models studied.





	
References

	
Scheduling Problem

	
Time Complexity






	
Wang et al. [29]

	
   1   P  j r  A   (  u j  )  =      θ j   r α    u j    η    δ 1   C max  +  δ 2  T C +  δ 3  T A D C +  δ 4   ∑  j = 1   n ˇ    v j   u j    

	
   O ( n log ( n ) )   




	
   1   P  j r  A   (  u j  )  =      θ j   r α    u j    η    δ 1   C max  +  δ 2  T W +  δ 3  T A D W +  δ 4   ∑  j = 1   n ˇ    v j   u j    

	
   O ( n log ( n ) )   




	
Zhu et al. [30]

	
   1  M A L E , R E   δ 1   C max  +  δ 2  T C +  δ 3  T A D C +  δ 4   ∑  j = 1   n ˇ    v j   u j    

	
   O (  n 2  log  ( n )  )   




	
   1  M A L E , R E   δ 1   C max  +  δ 2  T W +  δ 3  T A D W +  δ 4   ∑  j = 1   n ˇ    v j   u j    

	
   O (  n 2  log  ( n )  )   




	
Wang and Wang [15]

	
   1  M A , S L K ,  P j  =  (  θ j  ,  β j   θ j  )    ∑  j = 1  n   δ  E j  + ω  T j  + γ  q  o p t      

	
   O (  n 4  )   




	
Bai et al. [17]

	
   1  M A D E ,  P j  =  (  θ j  + b  s j  ,  β j   θ j  + b  s j  )    ∑  j = 1  n   δ  E j  + ω  T j  + γ  q  o p t      

	
   O (  n 4  )   




	
Ji et al. [22]

	
   1  M A D E ,  P  j r  A  =  θ j    ( r − l )   a j     ∑  j = 1  n   δ  E j  + ω  T j  + γ  q  o p t      

	
   O (  n 4  )   




	
Zhao et al. [25]

	
   1  M A D E , C R E ,  ∑  j = 1  n    v  [ j ]    u  [ j ]    ≤ U   ∑  j = 1  n   δ  E j  + ω  T j  + γ  q  o p t      

	
   O (  n 4  )   




	
   1  M A D E , C R E ,  ∑  j = 1  n   δ  E j  + ω  T j  + γ  q  o p t    ≤ V   ∑  j = 1  n    v  [ j ]    u  [ j ]      

	
   O (  n 4  )   




	
This article

	
   1  M A L E , C R E   ∑  j = 1  n    δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t    +  ∑  j = 1  n    v  [ j ]    u  [ j ]      

	
   O (  n 4  )   




	
   1  M A L E , C R E   ∑  j = 1  n    δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t    +  ∑  j = 1  n    v  [ j ]    u  [ j ]      

	
   O (  n 4  )   




	
   1  M A L E , C R E ,  ∑  j = 1  n    v  [ j ]    u  [ j ]    ≤ U   ∑  j = 1  n    δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  d  o p t      

	
   O (  n 4  )   




	
   1  M A L E , C R E ,  ∑  j = 1  n    v  [ j ]    u  [ j ]    ≤ U   ∑  j = 1  n    δ j   E  [ j ]   +  ω j   T  [ j ]   + γ  q  o p t      

	
   O (  n 4  )   








  M A   means “maintenance activity”;   M A D E   means “maintenance activity and aging effect”;   R E   means “resource allocation”; b means common deterioration rate of all jobs;   a j   means aging factor of job   J j  ;   s j   means starting time of job   J j  ;  δ ,  ω ,   δ 1  ,   δ 2  ,   δ 3   and   δ 4   are given constants.













 





Table 2. Notations.






Table 2. Notations.





	Notation
	Meaning





	n
	the number of jobs



	   J j   
	the j-th job



	   J  [ j ]    
	the job scheduled in the j-th position



	  θ  j    (resp.   θ j  )
	the normal processing time of job   J  [ j ]    (resp.   J j  )



	  p   j   A   (  p  j  A  )
	the actual processing time of job   J  [ j ]    (resp.   J j  )



	   β j   
	the modifying rate of job   J j  



	   p  j r  A   
	the actual processing time of job   J j   in position r



	  α  
	the learning factor



	t
	the maintenance duration



	l
	the location of the maintenance activity



	  u  [ j ]    (resp.   u j  )
	the resource allocated to job   J  [ j ]    (resp.   J j  )



	  C  j    (resp.   C j  )
	the completion time of job   J  [ j ]    (resp.   J j  )



	  S  j    (resp.   S j  )
	the start time of job   J  [ j ]    (resp.   J j  )



	  E  j    (resp.   E j  )
	  ( = max   0 ,  d j  −  C j    )   the earliness of job   J  [ j ]    (resp.   J j  )



	  T  j    (resp.   T j  )
	  ( = max   0 ,  C j  −  d j    )   the tardiness of job   J  [ j ]    (resp.   J j  )



	  v j   (resp.   v  [ j ]   )
	the cost when allocating unit resource to job   J  [ j ]    (resp.   J j  )



	    δ j  ,  ω j    
	the position-dependent (but job-independent) weight (cost) of the j-th job



	 γ  (   η , U  )
	the given constant










 





Table 3. The remaining data.






Table 3. The remaining data.





	    J j    
	    J 1    
	    J 2    
	    J 3    
	    J 4    
	    J 5    
	    J 6    





	   θ j   
	9
	11
	4
	13
	22
	6



	   β j   
	   0.4   
	   0.1   
	   0.6   
	   0.5   
	   0.2   
	   0.8   



	   δ j   
	7
	2
	8
	5
	4
	10



	   ω j   
	5
	4
	2
	12
	6
	9



	   v j   
	22
	16
	15
	20
	7
	9










 





Table 4. The values of   χ  j r   .






Table 4. The values of   χ  j r   .





	j∖r
	1
	2
	3
	4
	5
	6





	1
	   68.93475   
	   73.09883   
	67.89213
	   40.25672   
	   29.34345   
	   22.31869   



	2
	   64.9923   
	   68.91824   
	   64.00931   
	18.9772
	   13.83263   
	   10.52113   



	3
	   37 . 94733   
	   40.23958   
	   37.37339   
	   27.14108   
	   19.78335   
	   15.04725   



	4
	   78.99367   
	   83.76537   
	   77.79892   
	   51.57599   
	   37.59415   
	   28 . 59419   



	5
	   60.79474   
	   64.46711   
	   59.87523   
	   25.10448   
	   18 . 29885   
	   13.9184   



	6
	36
	   38 . 17462   
	   35.45551   
	   29.73156   
	   21.67157   
	   16.48345   







The bold values are the optimal solution.













 





Table 5. The results of Case 1.






Table 5. The results of Case 1.





	l
	    d opt    
	u
	     Z   ⌢    ([l])
	   ξ   





	1
	6.23569
	   ( 8.68496 , 1.36212 , 1.93 , 3.3035 , 1.8797 , 1.0145 )   
	   432.57051   
	   [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]   



	2
	   5.23351   
	   ( 8.68496 , 4.18827 , 1.95176 , 3.3035 , 1.31889 , 0.65757 )   
	   446.62764   
	   [  J 5  ,  J 4  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   



	3
	   4.28155   
	   ( 2.5298 , 4.18827 , 3.086 , 3.3035 , 2.61412 , 0.65757 )   
	   500.76868   
	   [  J 3  ,  J 4  ,  J 1  ,  J 6  ,  J 5  ,  J 2  ]   



	4
	   5.36968   
	   ( 3.94968 , 9.20959 , 3.086 , 3.69343 , 1.31889 , 0.65757 )   
	   529.15098   
	   [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   



	5
	   4.61645   
	   ( 3.94968 , 3.9395 , 3.086 , 8.0193 , 1.70268 , 0.65757 )   
	   553.6719   
	   [  J 4  ,  J 6  ,  J 1  ,  J 5  ,  J 3  ,  J 2  ]   



	6
	   5.36968   
	   ( 3.94968 , 9.20959 , 3.086 , 2.69217 , 1.70268 , 2.07942 )   
	   567.65918   
	   [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   










 





Table 6. The values of    B ˙   j r   .






Table 6. The values of    B ˙   j r   .





	j∖r
	1
	2
	3
	4
	5
	6





	1
	   68.93475   
	   46.23176   
	   42.93875   
	   40.25672   
	   29 . 34345   
	   22.31869   



	2
	   64.99230   
	   21 . 79386   
	   20.24152   
	   18.9772   
	   13.83264   
	   10.52113   



	3
	   37.94733   
	   31.16945   
	   28 . 94930   
	   27.14108   
	   19.78335   
	   15.04726   



	4
	   78.99367   
	   59.23106   
	   55.01214   
	   51.57599   
	   37.59415   
	   28 . 59419   



	5
	   60.79474   
	   28.83057   
	   26.77702   
	   25 . 10448   
	   18.29886   
	   13.91815   



	6
	  36  
	   34.14442   
	   31.7124   
	   29.73156   
	   21.67158   
	   16.48345   







The bold values are the optimal solution.













 





Table 7. The results of Case 2.






Table 7. The results of Case 2.





	l
	    d opt    
	u
	     Z ˙   [ l ]     
	   ξ   





	1
	   4.33963   
	   ( 5.60353 , 2.65995 , 1.22568 , 2.92227 , 1.91124 , 1.11076 )   
	   381.27041   
	   [  J 5  ,  J 2  ,  J 3  ,  J 6  ,  J 4  ,  J 1  ]   



	2
	   8.71116   
	   ( 5.29097 , 2.85518 , 2.202719 , 2.75966 , 1.19380 , 1.20519 )   
	   404.331   
	   [  J 5  ,  J 4  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   



	3
	   6.64431   
	   ( 3.02238 , 2.44322 , 1.73675 , 2.36428 , 3.04078 , 1.03252 )   
	   521.54136   
	   [  J 3  ,  J 4  ,  J 1  ,  J 6  ,  J 5  ,  J 2  ]   



	4
	   11.78616   
	   ( 1.99828 , 4.16622 , 1.5058 , 2.04988 , 0.88676 , 0.89522 )   
	   631.00543   
	   [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   



	5
	   9.85430   
	   ( 1.83695 , 2.16033 , 1.38423 , 3.34065 , 0.81517 , 0.82294 )   
	   720.45823   
	   [  J 4  ,  J 6  ,  J 1  ,  J 5  ,  J 3  ,  J 2  ]   



	6
	   13.81905   
	   ( 1.70432 , 3.55333 , 1.2843 , 1.74832 , 0.75632 , 0.76352 )   
	   805.59236   
	   [  J 4  ,  J 5  ,  J 1  ,  J 6  ,  J 3  ,  J 2  ]   










 





Table 8. CPU times (ms) of algorithms.






Table 8. CPU times (ms) of algorithms.





	

	
Algorithm 1

	
Algorithm 2

	
Algorithm 3

	
Algorithm 4






	
n

	
mean

	
max

	
mean

	
max

	
mean

	
max

	
mean

	
max




	
35

	
367.09

	
390.12

	
408.67

	
442.16

	
302.86

	
352.29

	
322.18

	
349.82




	
45

	
896.46

	
925.06

	
1250.46

	
1346.82

	
759.28

	
829.51

	
762.24

	
837.24




	
55

	
1864.52

	
1876.59

	
2386.35

	
2587.35

	
1562.37

	
1582.65

	
2118.32

	
2297.14




	
65

	
3624.21

	
3703.29

	
4103.54

	
4346.54

	
2993.52

	
3121.57

	
3314.17

	
3504.02




	
75

	
6735.58

	
6898.34

	
7827.50

	
8786.35

	
5615.58

	
5754.39

	
6849.91

	
6928.42




	
85

	
13,683.45

	
13,968.32

	
15,072.53

	
16,855.50

	
11,394.35

	
11,528.39

	
13,864.47

	
14,941.57




	
95

	
23,877.03

	
24,120.57

	
26,147.35

	
27,845.36

	
21,572.70

	
23,489.86

	
24,478.50

	
26,116.25




	
105

	
34,453.85

	
34,635.58

	
40,527.32

	
42,965.50

	
28,712.15

	
28,892.27

	
34,785.23

	
37,123.85




	
115

	
53,679.54

	
54,008.94

	
61,296.86

	
63,085.45

	
44,731.62

	
45,021.23

	
52,246.21

	
54,004.32




	
125

	
77,623.53

	
77,985.72

	
89,614.36

	
95,238.62

	
64,685.83

	
65,023.21

	
76,372.23

	
81,823.32




	
135

	
114,304.61

	
114,892.56

	
136,835.45

	
139,834.75

	
95,153.30

	
95,802.52

	
117,325.23

	
120,11